徐郗陽 宋佳杰 于琦 白金澤 焦小盈 張志浩 任廣鑫 馮永忠
摘 要 為探明秸稈還田和化肥施用對(duì)冬小麥-夏大豆輪作系統(tǒng)土壤培肥和生產(chǎn)效益的影響,于2020-2022年在關(guān)中平原開展田間定位試驗(yàn),設(shè)置秸稈不還田不施肥(S0F0)、秸稈不還田常規(guī)施肥(S0F1)、秸稈還田配合常規(guī)施肥(S1F1)和秸稈還田配合減量施肥(S1F0.8)4個(gè)處理。利用靜態(tài)暗箱-氣相色譜法監(jiān)測(cè)土壤N2O排放通量,綜合分析土壤養(yǎng)分、作物產(chǎn)量和土壤N2O排放,明確秸稈還田配施化肥在土壤培肥、增產(chǎn)減排方面的效應(yīng)。結(jié)果表明,秸稈還田和施肥通過顯著提高土壤有機(jī)質(zhì)(SOM)、全氮(TN)、全磷(TP)、硝態(tài)氮(NO-3-N)、銨態(tài)氮(NH+4-N)、速效磷(AP)含量來促進(jìn)土壤培肥。與S0F0相比,S1F0.8和S1F1處理提高土壤綜合肥力314.24%~317.12%、330.58%~384.98%;S1F0.8和S1F1處理顯著提高冬小麥產(chǎn)量? 80.29%~? 101.25%、82.50%~107.66%,提高夏大豆產(chǎn)量25.31%~34.72%、36.93%~45.20%;S0F1、S1F0.8、S1F1均顯著增加土壤N2O累積排放量和種植系統(tǒng)溫室氣體排放強(qiáng)度,但S1F0.8較S0F1、S1F1處理顯著降低土壤N2O累積排放量和種植系統(tǒng)溫室氣體排放強(qiáng)度;S1F0.8和S1F1處理提高生產(chǎn)效益? 75.09%~75.88%、67.54%~114.23%。綜上,秸稈還田配合常規(guī)施肥(S1F1)是關(guān)中平原麥-豆輪作系統(tǒng)土壤培肥的有效方式;但依照國(guó)家降低化肥施用量的要求來說,秸稈還田配合減量施肥(S1F0.8)是關(guān)中平原? 麥-豆輪作系統(tǒng)增產(chǎn)、減排、提高收益的推薦方式。
關(guān)鍵詞 土壤肥力;秸稈還田;N2O排放;冬小麥-夏大豆輪作
中國(guó)以世界7%耕地面積種植的糧食養(yǎng)活了全球19%的人口。作為中國(guó)重要的糧食生產(chǎn)基地,關(guān)中平原地區(qū)以施肥手段來獲得糧食高產(chǎn)。然而盲目大量施用化肥,不但造成土壤養(yǎng)分失調(diào),土壤綜合肥力降低,農(nóng)田生產(chǎn)力下降,還會(huì)促使農(nóng)田N2O排放增加[1]。因此,探索合理的施肥制度能有效降低N2O排放、促進(jìn)土壤肥力和作物增產(chǎn),是實(shí)現(xiàn)關(guān)中平原地區(qū)培肥、增產(chǎn)減排增收的重要途徑。
施肥可以改善作物養(yǎng)分吸收,保障作物生長(zhǎng)發(fā)育,從而提高作物產(chǎn)量。但化肥的投入會(huì)增加農(nóng)田溫室氣體的排放,氮肥對(duì)農(nóng)田溫室氣體排放的貢獻(xiàn)率達(dá)50%[2],是農(nóng)業(yè)土壤N2O排放的重要來源。減施氮肥則能有效降低N2O累計(jì)排放量[3]。秸稈是來源豐富的生物質(zhì)肥料資源,長(zhǎng)期秸稈還田不僅能優(yōu)化土壤孔隙,達(dá)到保水保墑的作用[4],還能顯著提高土壤有機(jī)碳(SOC)、全氮(TN)、有效磷含量[5]。然而,單一秸稈還田釋放的養(yǎng)分不能滿足作物生長(zhǎng)的養(yǎng)分需求,作物增產(chǎn)效果不顯著甚至減產(chǎn)[6]。因此,秸稈還田配施化肥成為重要的土壤培肥、作物增產(chǎn)措施。研究發(fā)現(xiàn),秸稈還田配施中量氮肥顯著提高土壤有機(jī)質(zhì)(SOM)和速效鉀(AK),并促進(jìn)作物增產(chǎn)。7? a定位試驗(yàn)結(jié)果表明,長(zhǎng)期秸稈還田配施化肥顯著提高土壤SOC、TN和速效磷(AP)含量[7-8]。然而,秸稈還田配施化肥對(duì)N2O排放的影響尚無統(tǒng)一定論。人們普遍認(rèn)為,秸稈分解過程中添加外源氮素能夠促進(jìn)土壤氮素礦化形成礦物氮,增加N2O排放[9];但也有人認(rèn)為,添加氮肥雖然促進(jìn)秸稈分解,但秸稈分解產(chǎn)生的化感物質(zhì)(Allelochemical)會(huì)抑制N2O排放[10];也有部分研究者認(rèn)為增施秸稈還田不影響土壤N2O排放[11]。
目前,人們對(duì)土壤肥力的研究多集于土壤某一養(yǎng)分含量,而缺少對(duì)土壤綜合肥力的研究。此外,多數(shù)研究中在研究秸稈還田和施肥對(duì)種植系統(tǒng)環(huán)境效應(yīng)和經(jīng)濟(jì)效益的影響時(shí),主要用溫室氣體累計(jì)排放量或排放強(qiáng)度來簡(jiǎn)單表示環(huán)境效益,用籽粒產(chǎn)值與農(nóng)業(yè)生產(chǎn)成本之差表示種植系統(tǒng)的生產(chǎn)效益,而忽略溫室氣體排放所導(dǎo)致的環(huán)境修復(fù)成本[12]。因此,本研究基于秸稈還田和施肥田間定位試驗(yàn),綜合比較秸稈不還田不施肥(S0F0)、秸稈不還田常規(guī)施肥(S0F1)、秸稈還田配合常規(guī)施肥(S1F1)和秸稈還田配合減量施肥(S1F0.8)處理下,冬小麥-夏大豆輪作體系土壤培肥效應(yīng)、作物產(chǎn)量、溫室氣體排放及經(jīng)濟(jì)效益的影響,旨在為關(guān)中平原冬小麥-夏大豆輪作體系土壤培肥、增產(chǎn)減排增收提供理論依據(jù)。
1 材料與方法
1.1 試驗(yàn)地概況
在陜西省西北農(nóng)林科技大學(xué)校農(nóng)作一站開展研究(E108°06′,N34°16′)。該地區(qū)屬于半干旱半濕潤(rùn)地區(qū),年均溫12.9 ℃,年降水量約660 mm,日照2 163.5 h,年均蒸發(fā)量993.2 mm,濕潤(rùn)指數(shù)0.64。根據(jù)中國(guó)土壤系統(tǒng)分類,土壤質(zhì)地為粉砂質(zhì)粘壤土,試驗(yàn)地土壤為塿土。2011年長(zhǎng)期定位試驗(yàn)開始前土壤基礎(chǔ)理化性質(zhì)為:有機(jī)質(zhì) 17.58 g·kg-1,全氮 0.7 g·kg-1,全磷 0.65 g·kg-1,堿解氮 3.7 mg·kg-1,速效磷 1.08 mg·kg-1。試驗(yàn)開展期間月均溫和降水量如圖1所示。
1.2 試驗(yàn)設(shè)計(jì)
冬小麥-夏大豆輪作長(zhǎng)期定位試驗(yàn)開始于2011年,本試驗(yàn)研究周期為2020年10月至2022年9月。冬小麥于2020年10月24日和2021年10月24日播種,于2021年6月6日和2022年6月7日收獲,播量210 kg·hm-2;夏大豆于2021年6月13日和2022年6月12日播種,于2021年9月30日和2022年9月28日收獲,播量? 97.50 kg·hm-2。冬小麥供試品種為‘西農(nóng)889,夏大豆供試品種為‘秦豆9號(hào)。
試驗(yàn)在免耕條件下設(shè)置秸稈不還田不施肥(S0F0)為對(duì)照,秸稈不還田常規(guī)施肥(S0F1)、秸稈還田配合常規(guī)施肥(S1F1)和秸稈還田配合減量施肥(S1F0.8)共4個(gè)處理。各處理小區(qū)面積均為108 m2。秸稈還田處理為前茬作物收獲后,利用秸稈粉碎機(jī)將小區(qū)內(nèi)所有作物秸稈粉碎,覆蓋還田;秸稈不還田處理為前茬作物收獲后,人工拔出所有根茬。冬小麥秸稈中碳氮含量分別為植株干質(zhì)量的44.4%、0.66%;夏大豆秸稈氮含量分別為植株干質(zhì)量的45.35%、1.05%。供試肥料為尿素(N 46%)、 磷酸二銨(P2O5 46%,N 18%)。冬小麥?zhǔn)褂媚蛩睾土姿岫@作為基肥于播種前施用,夏大豆使用磷酸二銨作為追施于拔節(jié)期施用。各處理秸稈還田量和施肥量如表1所示,試驗(yàn)期間無灌水,依據(jù)田間實(shí)際情況進(jìn)行除草和病蟲害防治。
1.3 樣品采集與測(cè)定
1.3.1 N2O測(cè)定 采用靜態(tài)箱-氣相色譜法測(cè)定土壤N2O排放通量。靜態(tài)箱為體積0.125 m2的正方體不銹鋼箱,在冬小麥和夏大豆播種后,立即埋入各小區(qū)中間作物行間位置土壤中,并保證土壤和靜態(tài)箱底座凹槽間無縫隙。箱體外覆反光材料,以降低取氣過程中由于陽光照射而造成箱體內(nèi)溫度升高對(duì)N2O排放的影響。取氣時(shí)間均為上午9:00-10:00,在施肥后每2 d采集1次,10 d后每周采集1次,土壤N2O排放通量恢復(fù)到穩(wěn)定水平后每30 d采集1次。
1.3.2 作物產(chǎn)量測(cè)定 冬小麥、夏大豆收獲時(shí),每小區(qū)均取2 m2地上部樣方,風(fēng)干脫粒,測(cè)定產(chǎn)量。
1.3.3 土壤養(yǎng)分測(cè)定 于冬小麥、夏大豆關(guān)鍵生育期和收獲期,通過“5點(diǎn)取樣法”采集0~20 cm土層土樣,使用重鉻酸鉀容量法測(cè)定土壤SOM含量,凱氏消解法測(cè)定土壤TN含量,用H2SO4-HClO4消解法測(cè)定土壤全磷(TP)含量,使用? 1 mol·L-1KCL浸提-高分辨率自動(dòng)分析儀(AA3)測(cè)定土壤NO-3-N和NH+4-N含量,使用? 0.5 mol·L-1NaHCO3浸提-鉬藍(lán)比色法測(cè)定土壤AP含量[13]。
1.4 土壤肥力評(píng)價(jià)
依據(jù)研究區(qū)域?qū)嶋H情況選取土壤SOM、TN、TP、NO-3-N、NH+4-N、AP作為土壤肥力等級(jí)評(píng)價(jià)指標(biāo)。用相關(guān)系數(shù)法計(jì)算各指標(biāo)評(píng)價(jià)權(quán)重,采用模糊數(shù)學(xué)理論確定指標(biāo)隸屬度,以指數(shù)和法計(jì)算土壤綜合肥力指數(shù)[14]。
1.4.1 評(píng)價(jià)指標(biāo)權(quán)重確定 權(quán)重計(jì)算方法有主成分分析法、 熵值法、AHP層次法、CRITIC權(quán)重法、相關(guān)系數(shù)法等。本研究通過SPSS軟件分析各評(píng)價(jià)指標(biāo)之間的相關(guān)系數(shù)(表2)來計(jì)算各指標(biāo)權(quán)重,2020-2021、2021-2022年土壤SOM、TN、TP、NO-3-N、NH+4-N、AP的權(quán)重值分別為0.16、0.16、0.18、0.15、0.18、0.17和0.18、0.15、0.19、0.17、0.17、0.15。
1.4.2 評(píng)價(jià)指標(biāo)隸屬度確定 根據(jù)模糊數(shù)學(xué)理論,土壤SOM、TN、TP、NO-3-N、NH+4-N、AP選擇S型函數(shù)模型計(jì)算隸屬度,隸屬度函數(shù)表達(dá)? 式為:
fx=1.0???????????? x≥x20.1+0.9x-x1/x2-x1 x1 式中:x1、x2為隸屬函數(shù)拐點(diǎn)值。參考前人研究和全國(guó)第二次土壤普查養(yǎng)分分級(jí)標(biāo)準(zhǔn)[14],結(jié)合實(shí)際研究,本研究隸屬度函數(shù)拐點(diǎn)值如表3所示。 1.4.3 綜合評(píng)價(jià)指數(shù)計(jì)算 指數(shù)和法是劃分土壤肥力等級(jí)最常用的方法,計(jì)算公式如下: IFI=∑fi×ai 式中:IFI為土壤肥力綜合評(píng)價(jià)指數(shù),fi為第i個(gè)評(píng)價(jià)指標(biāo)隸屬度,ai為第i個(gè)評(píng)價(jià)指標(biāo)? 權(quán)重。 1.4.4 土壤肥力等級(jí)劃分 土壤綜合肥力指數(shù)IFI為0~1,土壤綜合肥力指數(shù)值越大,則土壤綜合肥力越高。根據(jù)全國(guó)農(nóng)業(yè)地力等級(jí)劃分標(biāo)準(zhǔn),結(jié)合陜西土壤質(zhì)量的特點(diǎn),將陜西省土壤肥力質(zhì)量劃分為8個(gè)等級(jí)(表4)[15]。 1.5 數(shù)據(jù)計(jì)算 1.5.1 產(chǎn)量計(jì)算 糧食能源產(chǎn)量(GJ·hm-2)= 冬小麥產(chǎn)量×籽粒熱值+夏大豆產(chǎn)量×籽粒熱值 式中:產(chǎn)量單位為kg·hm-2;冬小麥和夏大豆籽粒熱值分別為15.7 MJ·kg-1和20.7?? MJ·kg-1;糧食能源產(chǎn)量能夠調(diào)節(jié)不同作物之間的產(chǎn)量差異[16]。 1.5.2 溫室氣體排放 FN2O=ρ×h×273/273+T×dc/dt C(N2O)=Fi+Fi+1/2×24×n GHG=298×CN2O GHGI=GHG/糧食能源產(chǎn)量 式中:FN2O為N2O排放通量,μg·m-2·h-1;ρ為標(biāo)準(zhǔn)狀態(tài)下N2O的密度;h為靜態(tài)箱頂部距離土壤表面的高度;T為地下5 cm土壤溫度;dC/dt為采樣期間N2O濃度的變化率。CN2O為N2O累積排放量,kg·hm-2;Fi和Fi+1分別為第i次和i+1次測(cè)量的N2O釋放速率(μg·m-2·h-1);n為相鄰2次測(cè)量間隔時(shí)間(d);24為小時(shí)轉(zhuǎn)化為天。GHG為溫室氣體排放總量(kg·hm-2);GHGI為種植系統(tǒng)溫室氣體排放強(qiáng)度(kg·GJ-1)[17]。 1.5.3 經(jīng)濟(jì)效益 凈生態(tài)系統(tǒng)經(jīng)濟(jì)預(yù)算? (元·hm-2)=籽粒收益-溫室氣體成本-農(nóng)業(yè)成本 式中:籽粒收益由冬小麥價(jià)格乘以實(shí)際產(chǎn)量計(jì)算得出;溫室氣體成本是根據(jù)N2O累計(jì)排放量乘以N2O修復(fù)價(jià)格(83.36 元·kg-1)計(jì)算得出[12];農(nóng)業(yè)成本包括種子、化肥、農(nóng)藥、機(jī)械和勞動(dòng)力成本。凈生態(tài)系統(tǒng)經(jīng)濟(jì)預(yù)算常被用來估算種植系統(tǒng)經(jīng)濟(jì)效益[17]。 1.6 統(tǒng)計(jì)與分析 采用Excel 2021和SPSS 26.0進(jìn)行數(shù)據(jù)的記錄和分析,采用LSD法進(jìn)行處理間顯著性分析(P<0.05),采用Origin 2022軟件進(jìn)行數(shù)據(jù)的可視化操作。數(shù)據(jù)均為“平均值±標(biāo)準(zhǔn)差”。 2 結(jié)果與分析 2.1 土壤養(yǎng)分與土壤肥力 單施化肥或秸稈還田配施化肥處理顯著提高土壤養(yǎng)分(表5,P<0.05)。土壤SOM、TN、TP含量變化趨勢(shì)一致,均表現(xiàn)為S1F1>S1F0.8>S0F1>S0F0。較S0F0相比,S0F1、S1F0.8、S1F1處理提高土壤SOM含量8.56%~14.30%、? 27.06%~40.67%、51.12%~57.19%。? S1F0.8、S1F1處理提高土壤TN含量24.63%~? 30.41%、41.76%~57.19%。S0F1、S1F0.8、S1F1處理提高土壤TP含量12.56%~28.57%、? 20.78%~36.36%、28.14%~45.03%。單施化肥或秸稈還田配施化肥處理提高土壤NO-3-N、NH+4-N含量151.31%~256.31%、41.18%~213.85%。S1F1較S0F1處理降低土壤NO-3-N含量1.68%~6.30%,提高土壤NH+4-N含量13.84%~41.57%。單施化肥或秸稈還田配施化肥處理提高土壤AP含量50.37%~128.44%。土壤肥力表現(xiàn)為S1F1>S1F0.8>S0F1>S0F0。與S0F0相比,S0F1、S1F0.8、S1F1處理提高土壤肥力102.40%~207.53%、314.24%~317.12%、330.58%~382.98%。 2.2 作物產(chǎn)量 單施化肥或秸稈還田配施化肥均顯著提高作物產(chǎn)量和糧食能源產(chǎn)量(圖2,P<0.05)。單施化肥或秸稈還田配施化肥處理冬小麥產(chǎn)量為? 4 200.00~6 440.00 kg·hm-2,S0F1、S1F0.8、S1F1處理提高冬小麥產(chǎn)量53.28%~70.94%、80.29%~101.25%、82.50%~107.66%。2021年,S1F1較S1F0.8處理顯著升高冬小麥產(chǎn)量,但2022年,S1F1較S1F0.8處理顯著降低冬小麥產(chǎn)量(圖2-A)。單施化肥或秸稈還田配施化肥處理夏大豆產(chǎn)量為2 626.67~3 325.00 kg·hm-2,S0F1、S1F0.8、S1F1處理提高夏大豆產(chǎn)量? 8.99%~28.62%、25.31%~34.72%、36.93%~? 45.20%,夏大豆產(chǎn)量隨施肥量增加而增加(圖2-B)。單施化肥或秸稈還田配施化肥處理作物周年產(chǎn)量為7 145.50~9 460.00 kg·hm-2,S0F1、S1F0.8、S1F1處理提高作物周年產(chǎn)量42.06%~44.33%、59.54%~68.63%、62.92%~79.22%(圖2-C)。S0F1、S1F0.8、S1F1處理提高糧食能源產(chǎn)量40.07%~40.36%、56.40%~63.41%、59.80%~74.92%(圖2-D)。 2.3 N2O排放 各處理土壤N2O排放通量的動(dòng)態(tài)變化規(guī)律均顯示(圖3),冬小麥?zhǔn)┓? d后土壤N2O排放通量出現(xiàn)峰值,且最高峰值均為S1F1處理? (512.61 μg·m-2·h-1、949.70 μg·m-2·h-1),施肥30 d后排放通量降到穩(wěn)定且較低水平。夏大豆施氮量低,N2O排放通量無明顯峰值。單施化肥或秸稈還田配施化肥顯著提高土壤N2O累積排放量和溫室氣體排放強(qiáng)度(表6,P<0.05)。土壤N2O累積排放量在1.08~3.63?? kg·hm-2范圍,各處理土壤N2O累積排放量表現(xiàn)為S1F1>S1F0.8>S0F1>S0F0。與S0F0相比,S0F1、S1F0.8、S1F1處理提高N2O累積排放量? 130.55%~226.09%、129.01%~192.13%、? 176.46%~235.52%,但S1F0.8較S0F1、S1F1處理降低N2O累積排放量0.67%~10.41%、12.93%~17.17%。各處理溫室氣體排放強(qiáng)度表現(xiàn)為S0F1>S1F1>S1F0.8>S0F0。與S0F0相比,S0F1、S1F0.8、S1F1處理提高溫室氣體排放強(qiáng)度 64.42%~132.78%、46.65%~78.69%、58.05%~109.85%,但S1F0.8較S0F1、S1F1處理降低溫室氣體排放強(qiáng)度10.80%~14.85%、? 7.21%~14.85%。 2.4 生產(chǎn)效益 施肥或秸稈還田配施化肥處理顯著增加籽粒收益、溫室氣體排放成本和生產(chǎn)效益(表7,P<? 0.05)。施肥或秸稈還田配施化肥處理籽粒收益為23 127.50~28 180.00元·hm-2,溫室氣體排放成本為217.64~302.52元·hm-2,生產(chǎn)效益為5 182.45~11 744.06 元·hm-2。與S0F0相比,S0F1、S1F0.8、S1F1處理提高 生產(chǎn)效益? 31.04%~52.79%、75.09%~75.88%、67.54%~? 114.23%。 2.5 土壤養(yǎng)分對(duì)N2O排放與產(chǎn)量的影響 相關(guān)分析發(fā)現(xiàn)(表8),土壤N2O排放量與土壤TP、NO-3-N、NH+4-N呈極顯著正相關(guān)關(guān)系? (P<0.001),與土壤SOM、TN呈極顯著正相關(guān)關(guān)系(P<0.01);作物產(chǎn)量與土壤SOM、TN、TP、NO-3-N、NH+4-N呈極顯著正相關(guān)關(guān)系(P<0.001),與土壤AP呈極顯著正相關(guān)關(guān)系(P<? 0.01)?;貧w分析發(fā)現(xiàn)(表9),土壤NH+4-N對(duì)N2O排放量影響最大;土壤TP對(duì)作物產(chǎn)量影響最大。 3 討? 論 3.1 秸稈還田和施肥對(duì)土壤肥力的影響 有機(jī)物料還田能夠擴(kuò)大土壤養(yǎng)分庫容,常被用來增強(qiáng)土壤肥力。秸稈作為最常見的有機(jī)物料,還田后促進(jìn)土壤耕層形成微生物聚集層,微生物活動(dòng)加速秸稈腐解從而釋放大量有機(jī)態(tài)養(yǎng)分[18]。研究發(fā)現(xiàn),單施化肥或秸稈還田配合施肥均顯著增加土壤SOM,且秸稈還田配施化肥較單施化肥處理土壤SOM增幅更大[17]。本研究中土壤SOM含量變化為S1F1>S1F0.8>S0F1>S0F0,與上述研究一致。這可能是作物秸稈還田為土壤補(bǔ)充外源有機(jī)物質(zhì),增加了土壤碳庫;同時(shí)長(zhǎng)時(shí)間單施化肥使得土壤有機(jī)質(zhì)加速分解,土壤微生物對(duì)土壤原有有機(jī)物質(zhì)利用增加,而土壤新生成有機(jī)物質(zhì)有限,因此秸稈還田配施化肥較單施化肥土壤SOM增加顯著。施肥和秸稈還田顯著提高土壤氮素,單施化肥較秸稈還田配施化肥處理土壤TN更高[19],但高麗超等[20]認(rèn)為秸稈還田配施化肥較單施化肥處理土壤TN更高,同本研究秸稈還田配施化肥顯著提高土壤TN含量的結(jié)果一致。這可能是秸稈本身就含有氮素,還田腐解后的氮素釋放引起土壤氮素礦化的正激發(fā)效應(yīng),強(qiáng)化土壤的供氮能力[21]。NO-3-N是作物吸收的主要氮形式。研究表明,長(zhǎng)期大量施肥會(huì)造成NO-3-N、NH+4-N在土壤大量累積。蓋霞普等[22]研究發(fā)現(xiàn),秸稈還田對(duì)土壤NO-3-N具有固持作用,秸稈還田后表層土壤NO-3-N含量增加。本研究發(fā)現(xiàn),S0F1、S1F1、S1F0.8處理顯著提高土壤NO-3-N、NH+4-N含量,但相比于S0F1處理,S1F1使土壤NO-3-N在一定范圍呈降低趨勢(shì),而NH+4-N在一定范圍呈上升趨勢(shì)。這一方面可能秸稈還田促進(jìn)土壤微生物群的形成以加強(qiáng)土壤對(duì)NH4+的固定,減少NO-3-N的積累[23-24];另一方面可能是秸稈還田改善土壤孔隙比例,在降水后使得土壤NO-3-N隨水分下滲淋溶損失。施肥或秸稈還田配施化肥顯著提高土壤TP、AP含量。施磷肥是提高土壤磷含量的主要措施。秸稈還田通過改善土壤環(huán)境條件與養(yǎng)分狀況來影響土壤微生物數(shù)量和磷酸酶活性[25],以此促進(jìn)土壤中穩(wěn)活性和非活性磷的活化來降低土壤礦物對(duì)磷的固定,從而增加土壤無機(jī)磷溶解,進(jìn)而調(diào)節(jié)土壤磷的循環(huán)[26]。趙小軍等[27]研究發(fā)現(xiàn),秸稈還田能促進(jìn)其他形態(tài)的磷轉(zhuǎn)化為土壤AP,在0~15 cm土層中,AP增加27%。此外,秸稈還田還通過減少因侵蝕、徑流或淋溶而造成的磷損失[28]。與單一土壤養(yǎng)分相比,土壤綜合肥力更能真實(shí)有效反映土壤肥力狀況。本研究發(fā)現(xiàn),S1F1、? S1F0.8處理顯著提高土壤綜合肥力,同前人冬季綠肥覆蓋能夠顯著提高土壤綜合肥力的結(jié)論一致[29]。依照陜西省土壤肥力標(biāo)準(zhǔn)劃分(表4),S1F1、S1F0.8處理土壤綜合肥力達(dá)到1級(jí),由此表明,長(zhǎng)期秸稈還田配施化肥處理能顯著提高土壤養(yǎng)分含量,增強(qiáng)土壤肥力[15]。 3.2 秸稈還田和施肥對(duì)產(chǎn)量的影響 長(zhǎng)期定位試驗(yàn)作物產(chǎn)量受施肥和秸稈還田共同影響。秸稈還田配施化肥能夠促進(jìn)土壤肥力持續(xù)發(fā)揮其增產(chǎn)潛力[22,30],究其原因是秸稈還田配施化肥能有效提高土壤SOM、TN、TP、NO-3-N、NH+4-N和AP養(yǎng)分,而這些養(yǎng)分與作物產(chǎn)量呈極顯著正相關(guān)關(guān)系。本研究中,S1F1、? S1F0.8處理冬小麥增產(chǎn)最顯著,在2022年,S1F0.8較S1F1處理冬小麥產(chǎn)量高。這一方面是常規(guī)施肥處理施肥量過高,造成部分冬小麥貪青徒長(zhǎng),生長(zhǎng)后期倒伏減產(chǎn);另一方面是高施肥量使得土壤累積過多無機(jī)氮,造成作物對(duì)氮素的奢侈吸收而并沒有產(chǎn)生實(shí)際肥效,出現(xiàn)增氮不增產(chǎn)或增產(chǎn)不顯著的現(xiàn)象[31]。也有研究認(rèn)為,長(zhǎng)期高施氮量處理降低20%施氮量不會(huì)對(duì)小麥產(chǎn)量產(chǎn)生明顯影響[32]。因?yàn)殡S秸稈逐年還田,土壤碳匯功能逐漸增強(qiáng)從而提升土壤肥力,化肥減量對(duì)作物產(chǎn)量的影響降低,秸稈還田能在一定程度代替化肥[33]。這表明,關(guān)中地區(qū)冬小麥實(shí)施秸稈還田配合減量施肥具有必要性。本研究中,S1F1、S1F0.8處理顯著增加夏大豆產(chǎn)量。前人研究發(fā)現(xiàn),施磷肥顯著提高大豆單株莢數(shù)和單株粒數(shù),且施磷120?? kg·hm-2時(shí),大豆產(chǎn)量最佳[34]。秸稈還田不僅提高土壤磷素含量,還促進(jìn)大豆根系生長(zhǎng)并優(yōu)化根系在土壤空間的分布,提高大豆對(duì)土壤養(yǎng)分和水分利用,促進(jìn)干物質(zhì)積累[35-36],為大豆增產(chǎn)奠定基礎(chǔ)。本研究中夏大豆施磷量較低,故此為保證關(guān)中地區(qū)夏大豆產(chǎn)量,還需在現(xiàn)有施肥量的基礎(chǔ)增施磷肥。 3.3 秸稈還田和施肥對(duì)N2O排放的影響 各處理土壤N2O累積排放量在1.08~3.63 kg·hm-2,基本符合中國(guó)西北旱地N2O累積排放量[37]。農(nóng)田土壤釋放N2O最主要的途徑是硝化與反硝化作用,NO-3-N、NH+4-N是硝化與反硝化作用的底物,其含量不僅影響N2O生成速率,還會(huì)影響產(chǎn)物中N2O所占比例。本研究發(fā)現(xiàn),土壤N2O排放通量同土壤SOM、TN、TP、NO-3-N、NH+4-N呈現(xiàn)極顯著正相關(guān)關(guān)系,冬小麥在施用尿素和磷酸二銨后出現(xiàn)N2O排放通量峰值,且N2O排放量隨施肥量增加而增加[38]。原因是施肥后土壤SOM和P含量增加提高土壤微生物生長(zhǎng)繁殖,同時(shí)土壤NH+4-N顯著增加促進(jìn)土壤氨氧化細(xì)菌即刻生長(zhǎng),氨氧化細(xì)菌(AOB)和氨氧化古菌(AOA)通過提高氨氧化速率,產(chǎn)生大量N2O[39];同時(shí)由反硝化過程產(chǎn)生的NO-3-N大量累積也能夠促進(jìn)N2O轉(zhuǎn)化生成[40]。夏大豆使用磷酸二銨追肥,N2O無明顯峰值,可能是氮投入量較少,且追肥時(shí)沒有對(duì)土壤進(jìn)行松耕,土壤通氣透水性差,且土壤NO-3-N、NH+4-N含量低,硝化與反硝化過程受到抑制。本研究發(fā)現(xiàn),秸稈還田促進(jìn)N2O排放。一方面是秸稈還田有助于抵消土壤碳儲(chǔ)存的氣候效應(yīng),增加土壤N2O排放[41];另一方面秸稈還田產(chǎn)生的有機(jī)質(zhì)促進(jìn)土壤微生物活動(dòng),在短時(shí)間內(nèi)消耗土壤大量氧氣形成厭氧環(huán)境,促進(jìn)反硝化N2O轉(zhuǎn)化率。反硝化細(xì)菌中絕大多數(shù)為化能異養(yǎng)型,外源添加的有機(jī)物質(zhì)保證了充足的電子供體與能量供應(yīng),加劇反硝化作用進(jìn)程而促進(jìn)N2O排放[42]。本研究中,? S0F0.8較S0F1、S1F1處理顯著降低種植系統(tǒng)溫室氣體排放強(qiáng)度,這可能是S1F0.8較S0F1、S1F1處理顯著降低N2O累積排放量并提高作物周年產(chǎn)量導(dǎo)致的。 3.4 秸稈還田和施肥對(duì)生產(chǎn)效益的影響 作物高產(chǎn)、生態(tài)環(huán)境良好和高經(jīng)濟(jì)效應(yīng)是農(nóng)業(yè)生產(chǎn)的重要目標(biāo)。多數(shù)研究者在衡量農(nóng)業(yè)生產(chǎn)效益時(shí),僅考慮生產(chǎn)成本投入,而忽視由溫室氣體排放造成的環(huán)境修復(fù)成本[43]。本研究通過對(duì)作物籽粒收益、生產(chǎn)成本以及N2O環(huán)境修復(fù)成本綜合分析發(fā)現(xiàn),秸稈還田配施化肥處理顯著提高生產(chǎn)效益??赡苁歉魈幚鞱2O環(huán)境修復(fù)成本較低,各處理對(duì)生產(chǎn)效益的影響主要受生產(chǎn)成本和籽粒收益的共同作用。 4 結(jié)? 論 秸稈還田配施化肥處理不僅能夠培肥地力,還能獲得良好的生產(chǎn)效益。S1F0.8處理提高土壤肥力314.24%~317.12%,提高周年產(chǎn)量? 59.54%~68.63%,提高生產(chǎn)效益75.09%~? 75.88%。S1F1處理提高土壤肥力330.58%~? 382.98%,提高周年產(chǎn)量62.92%~79.22%,提高生產(chǎn)效益67.54%~114.23%。S1F0.8和S1F1顯著提高土壤N2O累積排放量和種植系統(tǒng)溫室氣體排放強(qiáng)度,但S1F0.8較S1F1處理降低土壤N2O累積排放量和種植系統(tǒng)溫室氣體排放強(qiáng)度12.93%~17.17%,7.21%~14.85%。因此,秸稈還田配合常規(guī)施肥(S1F1)是關(guān)中地區(qū)土壤培肥的推薦處理;但從國(guó)家降低化肥施用和生產(chǎn)效益角度來看,秸稈還田配合減量施肥? (S1F0.8)是關(guān)中地區(qū)冬小麥-夏大豆輪作系統(tǒng)增產(chǎn)、減排、提高收益的推薦方式。 參考文獻(xiàn) Reference: [1] CUI ZH? L,YUE SH CH,WANG G L,et al.In-season root-zone N management for mitigating greenhouse gas?? emission? and reactive N losses in intensive wheat production[J].Environmental Science & Technology,2013,47(11):6015-6022. [2]JIANG ZH H,ZHONG Y M,YANG J P,et al.Effect of nitrogen fertilizer rates on carbon footprint and ecosystem service of carbon sequestration in rice production[J].Science of the Total Environment,2019,670:210-217. [3]BHANDAR M,MA Y,MEN M X,et al.Response of winter wheat yield and soil N2O emission to nitrogen fertilizer reduction and nitrapyrin application in North China Plain[J].Communications in Soil Science and Plant Analysis,2020,51(4):554-565. [4]LIU ZH,MA F Y,HU T X,et al.Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices[J].Agricultural Water Management,2020,229:105933. [5]徐 虎,蔡岸冬,周懷平,等.長(zhǎng)期秸稈還田顯著降低褐土底層有機(jī)碳儲(chǔ)量[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2021,27(5):768-776. XU? H,CAI A D,ZHOU H P,et al.Long-term straw incorporation significantly reduced subsoil organic carbon stock in cinnamon?? soil[J].Journal of Plant Nutrition and Fertilizers,2021,27(5):768-776. [6]LIMON-ORTEGA A,SAYRE K? D,F(xiàn)RANCIS C? A.Wheat and maize yields in response to straw management and nitrogen under a bed planting system[J].Agronomy Journal,2000,92(2):295-302. [7]CHEN Y? L,XIN L,LIU J T,et al.Changes in bacterial community of soil induced by long-term straw returning[J].Scientia Agricola,2017,74(5):349-356. [8]NAFIE,WEBBER H,DANSO I,et al.Soil tillage,residue management and site interactions affecting nitrogen use efficiency in maize and cotton in the Sudan Savanna of Africa[J].Field Crops Research,2019,244:107629. [9]FRIMPONGKA,BAGGS E M.Do combined applications of crop residues and inorganic fertilizer lower emission of N2O from soil?[J].Soil Use and Management,2010,? 26(4):412-424. [10] SHAN? J,YAN X Y.Effects of crop residue returning on nitrous oxide emissions in agricultural soils[J].Atmospheric Environment,2013,71:170-175. [11]WU? Y,LIN S,LIU T,et al.Effect of crop residue returns on N2O emissions from red soil in China[J].Soil Use and Management,2016,32(1):80-88. [12]楊慧敏,楊云馬,黃少輝,等.優(yōu)化施肥對(duì)小麥-玉米輪作體系產(chǎn)量、養(yǎng)分平衡與生態(tài)環(huán)境效益的影響[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào)(中英文):2023,31(5):699-700. YANG H M,YANG Y M,HUANG SH H,et al.Effect of the optimized fertilization on yield,nutrient balance,and eco-environmental bennfits of wheat-maize rotation system[J].Chinese Journal of Eco-Agriculture,2023,31(5):699-700. [13]鮑士旦.土壤農(nóng)化分析(第三版)[M].北京:中國(guó)農(nóng)業(yè)出版社,2000. BAO SH D.Soil and Agricultural Chemistry Analysis (Third version) [M].Beijing:China Agriculture Press,2000. [14]李穎慧,姜小三,王振華,等.基于土壤肥力和重金屬污染風(fēng)險(xiǎn)的農(nóng)用地土壤質(zhì)量綜合評(píng)價(jià)研究-以山東省博興縣為例[J].土壤通報(bào),2021,52(5):1052-1062. LI Y? H,JIANG X S,WANG ZH H,et al.Comprehensive evaluation of soil quality of agricultural land based on soil fertility and heavy metal pollution risk:a case study of boxing county,shandong province[J].Chinese Journal of Soil Science,2021,52(5):1052-1062. [15]王德彩,常慶瑞,劉 京,等.土壤空間數(shù)據(jù)庫支持的陜西土壤肥力評(píng)價(jià)[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2008,36(11):105-110. WANG D C,CHANG Q R,LIU J,et al.Evaluation of soil fertility in Shaanxi on soil space database[J].Journal of Northwest A & F University(Natural Science Edition),2008,36(11):105-110. [16]MOSIER A? R,HALVORSON A D,REULE C A,et al.Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado[J].Journal of Environmental Quality,2006,35,1584-1598. [17]ZHANG X,QIAN H Y,HUA K K,et al.Organic amendments increase crop yield while mitigating greenhouse gas emissions from the perspective of carbon fees in a soybean-wheat system[J].Agriculture,Ecosystems and Environment,2022,325,107736. [18]王 應(yīng),袁建國(guó).秸稈還田對(duì)農(nóng)田土壤有機(jī)質(zhì)提升的探索研究[J].山西農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2007(S2):120-121,126. WANG Y,YUAN J G.Straw on the soil organic matter enhance the exploration and research soil and fertilizer[J].Journal of Shanxi Agricultural University(Natural Science Edition),2007(S2):120-121,126. [19]房靜靜,丁維婷,武雪萍,等.長(zhǎng)期秸稈配施化肥對(duì)土壤養(yǎng)分及小麥產(chǎn)量、品質(zhì)的影響[J].中國(guó)土壤與肥料,2020(5):141-146. FANG J J,DING W T,WU X P,et al.Effects of long-term straw and fertilizer combined application on soil nutrient,wheat yield and quality[J].Soil and Fertilizer Sciences in China,2020(5):141-146. [20]高麗超,鄭文魁,郭新送,等.控釋肥配施玉米秸稈對(duì)麥季土壤酶活性及養(yǎng)分的影響[J].水土保持學(xué)報(bào),2022,? 36(6):356-363. GAO L? CH,ZHENG W K,GUO X S,et al.Effects of controlled release fertilizer combined maize straw on soil enzyme activities and ntrients in wheat season[J].Journal of Soil and Water Conservation,2022,36(6):356-363. [21]LIAO P,HUANG SH,GESTEL N C,et al.Liming and straw retention interact to increase nitrogen uptake and grain yield in a double rice-cropping system[J].Field Crops Research,2018,216:217-224. [22]蓋霞普,劉宏斌,翟麗梅,等.長(zhǎng)期增施有機(jī)肥/秸稈還田對(duì)土壤氮素淋失風(fēng)險(xiǎn)的影響[J].中國(guó)農(nóng)業(yè)科學(xué),2018,? 51(12):2336-2347. GAI X P,LIU H B,ZHAI L M,et al.Effects of long-term additional application of organic manure or straw incorporation on soil? nitrogen leaching risk[J].Scientia Agricultura Sinica,2018,51(12):2336-2347. [23]靳玉婷,李先藩,蔡 影,等.秸稈還田配施化肥對(duì)稻-油輪作土壤酶活性及微生物群落結(jié)構(gòu)的影響[J].環(huán)境科學(xué),2021,42(8):3985-3996. JIN Y? T,LI X F,CAI Y,et al.Effects of straw returning with chemical fertilizer on soil enzyme activities and microbial community structure in rice-rape rotation[J].Environmental Science,2021,42(8):3985-3996. [24]BANAYO N P M C,BUENO C S,HAEFELE S M,et al.Site-specific nutrient management enhances sink size,a major yield constraint in rainfed lowland rice[J].Field Crops Research,2018,224:76-79. [25]SHENG H J,NIU D,SUN G Y,et al.Research progress of effect of direct straw returning on soil microorganism,physical and chemical characteristics and enzyme activities[J].Hans Journal of Soil Science,2016,4(2):19-26. [26]吳科生,車宗賢,包興國(guó),等.河西綠洲灌區(qū)灌漠土長(zhǎng)期秸稈還田土壤肥力和作物產(chǎn)量特征分析[J].草業(yè)學(xué)報(bào),2021,30(12):59-70. WU K SH,CHE Z X,BAO X G,et al.Analysis of soil fertility and crop yield characteristics following long-tern straw return to the field in a Hexi oasis irrigated area[J].Acta Prataculturae Sinica,2021,30(12):59-70. [27]趙小軍,李志洪,劉 龍,等.種還分離模式下玉米秸稈還田對(duì)土壤磷有效性及其有機(jī)磷形態(tài)的影響[J].水土保持學(xué)報(bào),2017,31(1):243-247. ZHAO X J,LI ZH H,LIU L,et al.Effects of maize straw returning on soil phosphorus availibility and organic phosphorus forms under the mode of planting and returning[J].Journal of Soil and Water Conservation,2017,? 31(1):243-247. [28]SOLTANGHEISI A,RODRIGUES M,COELHO M J A,et al.Changes in soil phosphorus lability promoted by phosphate sources and cover crops[J].Soil and Tillage Research,2018,179:20-28. [29]趙 秋,張新建,寧曉光,等.天津地區(qū)不同冬綠肥培肥土壤的效果[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2022,28(7):1228-1237. ZHAO Q,ZHANG X J,NING X G,et al.Effects of different winter green manure on soil fertility in Tianjin[J].Journal of Plant Nutrition and Fertilizers,2022,28(7):1228-1237. [30]王維鈺.秸稈周年投入與施肥對(duì)小麥—玉米輪作溫室氣體排放效應(yīng)及農(nóng)田生產(chǎn)力的影響[D].陜西楊凌:西北農(nóng)林科技大學(xué),2019. WANG W Y.Impact of annual straw management and fertilizer on agriculture ecosystem greenhous gas emissions and productivity in wheat-maize rotation system[D].Yangling Shaanxi:Northwest A&F University,2019. [31]劉學(xué)軍,趙紫娟,巨曉棠,等.基施氮肥對(duì)冬小麥產(chǎn)量、氮肥利用率及氮平衡的影響[J].生態(tài)學(xué)報(bào),2002,22(7):1122-1128. LIU X J,ZHAO Z? J,JU X T,et al.Effect of N application as basal fertilizer on grain yield of winter wheat,fertilizer N recovery and N balance[J].Acta Ecologica Sinica,2002,22(7):1122-1128. [32]劉 歡,陳苗苗,孫志梅,等.氮肥調(diào)控對(duì)小麥/玉米產(chǎn)量、氮素利用及農(nóng)田氮素平衡的影響[J].華北農(nóng)學(xué)報(bào),2016,31(1):232-238. LIU H,CHEN M M,SUN ZH M,et al.Effects of different nitrogen management practice on crop yield,N utilization and N apparent balance in wheat/maize rotation system[J].Acta Agriculturae Boreali-Sinica,2016,31(1):232-238. [33]SHAN A? Q,PAN J Q,KANG K J,et al.Effects of straw return with N fertilizer reduction on crop yield,plant diseases and pests and potential heavy metal risk in a Chinese rice paddy:A field study of 2 consecutive wheat-rice cycles[J].Environmental Pollution,2021,288:117741. [34]高中超,蕭長(zhǎng)亮,孫 磊,等.瘠薄亞表層施磷對(duì)大豆生長(zhǎng)及產(chǎn)量的影響[J].大豆科學(xué),2018,37(2):258-262. GAO ZH CH,XIAO CH L,SUN L,et al.Effect of barren subsurface application of phosphorus on soybean growth and yield[J].Soybean Science,2018,37(2):258-262. [35]FAN Y? F,GAO J L,LIU J Y,et al.Effect of straw returning and potassium fertilizer application on root characteristics and yield of spring maize in China inner mongolia[J].Agronomy Journal,2021,113:4369-4385. [36]SUI P X,TIAN P,LIAN H L,et al.Straw incorporation management affects maize grain yield through regulating nitrogen uptake,water use efficiency,and root distribution[J].Agronomy-Basel,2020,10:324. [37]L? F L,YANG X Y,XU H H,et al.Effect of organic?? amendments on yield-scaled N2O emissions from winter wheat-summer maize cropping systems in Northwest China[J].Environmental Science and Pollution Research,2020,27(25):31933-31945. [38]CHI Y B,YANG P L,REN SH M,et al.Finding the optimal fertilizer type and rate to balance yield and soil GHG emissions under reclaimed water irrigation[J].Science of the Total Environment,2020,729(10):138954. [39]XIAO? R,CHEN B Z,LIU Y J,et al.Higher abundance of ammonia oxidizing archaea than ammonia oxidizing bacteria and their communities in tibetan alpine meadow soils under long-term nitrogen fertilization[J].Geomicrobiology Journal,2014,31(7):597-604. [40]GIGUERE AT,TAYLOR A E,SUWA Y,et al.Uncoupling of ammonia oxidation from nitrite oxidation:Impact upon nitrous oxide production in non-cropped Oregon soils[J].Soil Biology and Biochemistry,2017,104:30-38. [41]KRAVCHENKO A N,TOOSI E R,GUBER A K,et al.Hotspots of soil N2O emission enhanced through water absorption by plant residue[J].Nature Geoscience,2017,10(7):450-496. [42]趙苗苗,張文忠,裴 瑤,等.農(nóng)田溫室氣體N2O排放研究進(jìn)展[J].作物雜志,2013(4):25-31. ZHAO M M,ZHANG W ZH,PEI Y,et al.Research advances on N2O emission in agricultural soil[J].Crops,2013(4):25-31. [43]王 良,劉元元,錢 欣,等.單季麥秸還田促進(jìn)小麥-玉米周年碳效率和經(jīng)濟(jì)效益協(xié)同提高[J].中國(guó)農(nóng)業(yè)科學(xué),2022,55(2):350-364. WANG L,LIU Y Y,QIAN X,et al.The single season wheat straw returning to promote the synergistic lmprovement of carbon efficiency and economic benefit in wheat-maize double cropping system[J].Scientia Agricultura Sinica,2022,55(2):350-364. Effects of Straw Returning and Fertilization on Soil Fertility and Production Efficiency in Winter Wheat/Summer Soybean Rotation System XU Xiyang1,2,SONG Jiajie1,2,YU Qi1,2,BAI Jinze1,2,JIAO Xiaoying1,2, ZHANG Zhihao1,2,REN Guangxin1,2 and FENG Yongzhong1,2 (1.College of Agronomy, Northwest A&F University,Yangling? Shaanxi 712100, China; 2.Shaanxi Engineering Research Center of Circular Agriculture,Yangling? Shaanxi 712100, China) Abstract To investigate effects of straw returning combined with fertilizer on field fertility and production efficiency in winter wheat-summer soybean rotation system,field trials were conducted in Guanzhong Plain from 2020 to 2022. Four treatments were set:no straw returning with no fertilizer (S0F0), no straw returning with traditional fertilizer (S0F1), straw returning with traditional fertilizer (S1F1) and straw returning with reduced fertilizer (S1F0.8). Soil N2O emission rates were monitored using the static chamber-chromatography method. Soil nutrients, crop yield and soil N2O emission were comprehensively analyzed to assess the effect of straw returning with fertilizer on soil fertility, yield and emission reduction. The results showed that straw returning and fertilization enhanced soil fertility by means of significantly increasing the content of organic matter (SOM), total nitrogen (TN), total phosphorus (TP), nitrate nitrogen (NO-3-N), ammonium nitrogen (NH+4-N) and available phosphorus (AP). Compared to S0F0 treatment, the comprehensive soil fertility of S1F0.8 and S1F1 treatment significantly increased by 314.24%-317.12% and 330.58%-384.98%, respectively. Correspondingly, S1F0.8 and S1F1 treatment significantly increased the yield of winter wheat by 80.29%-101.25% and 82.50%-107.66%, and increased the yield of summer soybean by?? 25.31%-34.72% and 36.93%-45.20%. S0F1, S1F0.8 and S1F1 treatment significantly increased cumulative N2O emissions and greenhouse gases (GHG). However, compared with S0F1 and S1F1 treatments, S1F0.8 significantly reduced cumulative N2O emissions and greenhouse gas intensity (GHGI). Compared with S0F0, S1F0.8 and S1F1 treatment significantly increased production efficiency by 75.09%-75.88% and 67.54%-114.23%. In conclusion, straw returning with traditional fertilization (S1F1) improves soil nutrient content, which is an effective method for enhancing soil fertility in winter wheat-summer soybean rotation system in Guanzhong Plain. However, in according with the national requirement to reduce the application of chemical fertilizer, straw returning with reduced fertilizer (S1F0.8) is the recommended to increase yield, decrease N2O emissions and enhance production efficiency in Guanzhong Plain. Key words Soil fertility; Straw returning; N2O emission; Winter wheat and summer soybean rotation Received? 2023-01-01??? Returned 2023-03-22 Foundation item The National Natural Science Foundation of China(No.31971859); Science and Technology Innovation Drive Project of Shaanxi Province:Construction and Demonstration of Eco-Cycle Agricultural Technology Model in Shaanxi Province (No.NYKJ-2022-YL(XN)34); the Key Research and Development Project of Ningxia Hui Autonomous Region(No.2019BBF02007). First author XU Xiyang,female,master student.Research area:efficient farming system.E-mail:2535903841@qq.com Corresponding?? author REN Guangxin,male,Ph.D,associate professor.Research area:agroecology,agricultural regional development and circular agriculture.E-mail:rengx@nwsuaf.edu.cn (責(zé)任編輯:成 敏 Responsible editor:CHENG? Min)