許競(jìng)文 浣發(fā)祥 楊石霞
摘要:赭石是考古發(fā)現(xiàn)中一類(lèi)較為常見(jiàn)的礦物顏料。遺址中的礦物顏料研究對(duì)于解讀中更新世以來(lái)人類(lèi)行為的演化與發(fā)展以及人群的遷徙和交流互動(dòng)具有重要意義。目前,我國(guó)出土和被識(shí)別的赭石相關(guān)考古發(fā)現(xiàn)日益增多,但研究程度還有待深入,舊石器時(shí)代考古發(fā)現(xiàn)中相關(guān)材料的識(shí)別和解讀較為有限。如何綜合利用多學(xué)科測(cè)試分析方法建立起完善的研究方案,深度挖掘赭石顏料利用所指示的人類(lèi)行為發(fā)展模式和民族學(xué)意義,還需要我們進(jìn)行系統(tǒng)性地總結(jié)和思考。因此,本文通過(guò)梳理現(xiàn)有的考古學(xué)、地球物理、地球化學(xué)和民族學(xué)等各領(lǐng)域的國(guó)內(nèi)外研究成果,歸納了舊石器時(shí)代考古遺址中出土的赭石及相關(guān)遺物的主要研究?jī)?nèi)容——成分定性、產(chǎn)地溯源和加工技術(shù)分析,以及各自適用的分析方法。綜合多項(xiàng)研究案例,我們認(rèn)為在性質(zhì)、產(chǎn)地和技術(shù)分析的基礎(chǔ)上,需要結(jié)合民族學(xué)方法、生態(tài)環(huán)境背景才能更有效地解讀和復(fù)原史前人類(lèi)的行為模式及社會(huì)學(xué)、民族學(xué)意義。
關(guān)鍵詞:舊石器時(shí)代;赭石;理化分析;人類(lèi)學(xué)
1 引言
隨著考古發(fā)掘技術(shù)和科技測(cè)試手段的不斷提高,國(guó)內(nèi)外舊石器時(shí)代遺址中除石器和骨器以外的諸多文化遺物也逐漸被發(fā)現(xiàn),并得到深入研究,如顏料、藥物、特殊飾品等。這些具有特殊內(nèi)涵的文化遺存進(jìn)一步揭示了史前人類(lèi)對(duì)自然資源的認(rèn)知程度與開(kāi)發(fā)能力,以及意識(shí)形態(tài)發(fā)展水平,對(duì)于深入認(rèn)識(shí)漫長(zhǎng)且復(fù)雜的人類(lèi)行為演化歷程具有重要意義[1]。作為最易獲取的天然礦物顏料之一,赭石是較早被識(shí)別和確認(rèn)的與人類(lèi)意識(shí)形態(tài)活動(dòng)相關(guān)的物質(zhì)文化遺存,為史前藝術(shù)提供了鮮明的紅色系顏料。
赭石是一種天然的地質(zhì)礦物,富含鐵的氧化物或氫氧化物,如針鐵礦FeO(OH)、赤鐵礦Fe2O3 和磁鐵礦Fe3O4 等[2]。赭石中含鐵組分的類(lèi)別、含量及其晶體形態(tài)的變化決定了其條痕的色相、飽和度和明度[3]。故而采集不同類(lèi)型的赭石能夠生產(chǎn)出或暗或明的黃色至紅棕色粉末,以滿足史前人類(lèi)對(duì)紅色系“顏料”的需求。
史前人類(lèi)利用赭石的歷史可以追溯到距今30~50 萬(wàn)年前[4,5],隨后在全球各地發(fā)現(xiàn)了古人類(lèi)更加豐富和多樣化的赭石利用行為[6-9]。史前遺址中赭石的出土形式通常包括:1) 保留了加工痕跡的碎塊或粉末,如加工成蠟筆狀的赭石、殘留在石磨盤(pán)上的紅色痕跡等[10-13];2)象征行為的直接證據(jù),如巖畫(huà)、個(gè)人裝飾品上的涂色、埋葬中的赭石粉末等[14-22];3) 功能性利用的間接證據(jù),如附著在石器末端的赭石碎屑?xì)埩簟Ⅳ魇樾寂c牛奶的混合物,以及殘留在鹿牙裝飾品上的赭石、木炭和動(dòng)物油脂混合物[23-26]。保存良好的赭石染色遺物遺跡相對(duì)稀少,全球各地分布零星,難以追蹤赭石使用模式的歷時(shí)性。盡管如此,記錄赭石加工技術(shù)的演變對(duì)于全面了解舊石器時(shí)代的赭石開(kāi)發(fā)策略和族群文化面貌是至關(guān)重要的。
在通過(guò)土壤微形態(tài)分析等輔助手段排除原生埋藏地層受沉積期后改變的前提下,本文將總結(jié)如何綜合利用不同的測(cè)試方案,準(zhǔn)確評(píng)估遺址中是否存在赭石顏料的利用及其利用方式和程度,并說(shuō)明在文化習(xí)俗、宗教信仰、審美與社會(huì)等級(jí)制度等人類(lèi)學(xué)研究方面,赭石的考古學(xué)研究所扮演的重要角色。
2 赭石的考古學(xué)分析方法及案例
認(rèn)識(shí)赭石的理化性質(zhì)、分析赭石的開(kāi)發(fā)策略,是目前舊石器時(shí)代遺址考古中赭石研究的主要研究方向。目前應(yīng)用于考古出土中赭石及相關(guān)遺物的具體分析方法包含表觀顯微分析和理化性質(zhì)分析這兩個(gè)層次。表觀顯微分析是指利用顯微鏡觀測(cè)赭石表面的微痕,如坑疤、線性痕等。理化性質(zhì)分析則是指對(duì)赭石進(jìn)行物相或化學(xué)成分組成的測(cè)試分析以達(dá)到鑒定赭石所包含的礦物成分的目的。顯微鏡觀測(cè)、光譜學(xué)分析和巖石磁學(xué)等測(cè)試手段在研究實(shí)踐中可以實(shí)現(xiàn)以上兩個(gè)層次的分析,并有效地獲取赭石的礦物成分、產(chǎn)源及人類(lèi)對(duì)其加工利用程度等信息。獲取考古遺址出土赭石的具體信息,有助于我們最終認(rèn)識(shí)其所反映的當(dāng)時(shí)人群流動(dòng)性、資源獲取能力和象征行為等。
2.1 礦物成分分析
通過(guò)分析疑似樣品的物理化學(xué)性質(zhì),即礦物的元素百分比組合、晶體或分子結(jié)構(gòu)和磁性特征,我們可以檢測(cè)出樣品的礦物成分[27,28],進(jìn)而判斷樣品是否為赭石。筆者統(tǒng)計(jì)了已發(fā)表的54 例舊石器時(shí)代遺址中出土赭石及其相關(guān)遺物的研究方法[5,10-71],數(shù)據(jù)統(tǒng)計(jì)結(jié)果表明,分析礦物元素組合的常用測(cè)試手段包括X 射線熒光光譜分析(X-ray fluorescence,XRF) 和電感耦合等離子體質(zhì)譜(Inductively coupled plasma mass spectrometry, ICP-MS)等;用于分析礦物晶形或分子結(jié)構(gòu)的常用測(cè)試手段則包括X 射線衍射(X-ray diffraction,XRD)、拉曼光譜分析(Raman)、紅外光譜分析(Infrared spectrometer, IR)、X 射線吸收近邊結(jié)構(gòu)分析(X-ray absorption near edge structure, XANES) 和偏光顯微鏡觀察(Polarizedlight microscopy, PLM) 等(圖1: a)。另外,赭石的本質(zhì)即含鐵礦物,其磁性特征由磁鐵礦、赤鐵礦、磁赤鐵礦的含量和粒度決定[72-74]。王法崗等人通過(guò)巖石磁學(xué)將下馬碑遺址中的樣品定性為赭石,這是中國(guó)近期在考古出土赭石的研究中應(yīng)用巖石磁學(xué)的一項(xiàng)成功案例[13]。
除了上述所提到的測(cè)試手段之外,掃描電鏡耦合能譜分析技術(shù)(SEM-EDS) 也是一種常用的理化分析手段(圖1: a)。掃描電鏡能譜分析技術(shù)具有很強(qiáng)的綜合性分析能力,可以耦合X 射線能譜儀、陰極熒光光譜分析等對(duì)赭石樣品的元素組成和晶體結(jié)構(gòu)進(jìn)行分析[75,76]。例如,澳大利亞北部的達(dá)拉肯加拉爾1 號(hào)(Dalakngalarr 1) 遺址[63] 發(fā)現(xiàn)了巖畫(huà)遺跡,在巖畫(huà)上采集少量的黃色、紅色和紫色碎屑樣品并用于掃描電鏡觀測(cè),耦合能量色散X 射線光譜(EDS) 及拉曼光譜(Raman) 分析,確認(rèn)了這三種顏色的微碎屑均為赭石(圖2)。
2.2 產(chǎn)地溯源分析
在確認(rèn)研究樣品為赭石后,對(duì)礦物元素組合的量化和特征晶形的示蹤進(jìn)行物源分析也是史前赭石的一個(gè)重點(diǎn)研究方向[77-80]。在溯源研究前,需要對(duì)遺址周邊進(jìn)行地質(zhì)調(diào)查,對(duì)所有大量產(chǎn)出含鐵礦物的地質(zhì)區(qū)域進(jìn)行定位,且采樣工作應(yīng)盡可能地覆蓋整個(gè)露頭延伸的范圍[81,82]。本文統(tǒng)計(jì)了Fumane、Tagliente、Roc-de-Combe、Diepkloof、Tito Bustillo、MonteCastillo、Blombos、Hohle Fels、Vogelherd、Es-Skhul、Torajunga、El Mirón 等遺址[5,29,36-39,42,46,59,62]對(duì)赭石的產(chǎn)地溯源分析所采用的測(cè)試手段,其數(shù)據(jù)表明拉曼光譜、X 射線衍射分析、傅里葉紅外光譜和偏光顯微鏡等實(shí)驗(yàn)?zāi)軌驕y(cè)試礦物的特征晶形以示蹤赭石樣品的產(chǎn)地,而X射線熒光光譜分析、電感耦合等離子體質(zhì)譜和掃描電鏡能譜分析技術(shù)則是通過(guò)量化赭石中的礦物元素組合從而進(jìn)行溯源分析(圖1: b)。其中,偏光顯微鏡(PLM) 的原理是利用晶體光學(xué)的性質(zhì)對(duì)礦物進(jìn)行巖相鑒定與分析[83]。該方法雖然能夠通過(guò)礦物的組構(gòu)分析揭示其成礦原因,但是其溯源能力有限,目前僅有Cavallo 等人[62] 對(duì)Fumane 洞穴遺址和Tagliente 巖廈遺址利用此方法獲得了較好的溯源成效。值得補(bǔ)充的是,偏光顯微鏡觀測(cè)需要將巖石或礦物進(jìn)行磨片處理,對(duì)考古樣品來(lái)說(shuō)有巨大的損耗,因此研究者需謹(jǐn)慎選擇適用于該方法的赭石樣品,并在實(shí)驗(yàn)前做好樣品的記錄工作。
Dayet 等人對(duì)位于南非開(kāi)普的迪普克魯夫巖廈(Diepkloof Rock Shelter)遺址開(kāi)展了系統(tǒng)的赭石溯源研究[37]。他們?cè)谶z址舊石器時(shí)代中期Howiesons Poort 工業(yè)的堆積中發(fā)現(xiàn)了數(shù)千塊赭石,通過(guò)X 射線衍射和微區(qū)拉曼測(cè)試并比對(duì)其黏土礦物的結(jié)構(gòu),準(zhǔn)確識(shí)別出了較為可靠的遠(yuǎn)距離源區(qū)。對(duì)比研究進(jìn)一步顯示迪普克魯夫遺址的赭石開(kāi)發(fā)模式與周邊其他同時(shí)期的遺址存在差異[41],具有一定的區(qū)域性特征,并可能與遠(yuǎn)距離的人群互動(dòng)和文化交流相關(guān)[69, 86-89]??傊?,通過(guò)赭石的溯源分析來(lái)指示人群的活動(dòng)范圍,能夠判斷是否存在遠(yuǎn)距離運(yùn)輸,并窺探史前人群的社會(huì)規(guī)模和結(jié)構(gòu)[84,85]。
2.3 加工方式及其利用程度分析
史前人類(lèi)對(duì)自然資源的認(rèn)知水平不斷提高,其表現(xiàn)形式包括開(kāi)發(fā)出赭石的多樣用途、通過(guò)提取不同顏料的色素進(jìn)行其意識(shí)的表達(dá)與刻畫(huà)等[7, 27,28, 68, 90-92],這些相關(guān)信息均可在對(duì)赭石的考古研究中獲得,因此舊石器時(shí)代考古出土赭石的另一個(gè)重點(diǎn)研究方向即復(fù)原人類(lèi)對(duì)赭石的加工方式及利用程度。筆者通過(guò)統(tǒng)計(jì)Klasies River Cave、Hohle Fels、周口店、鴿子山第十地點(diǎn)、下馬碑、Altamira、Sibudu、Roc-de-Combe、Diepkloof、Porc-Epic、Blombos、Qafzeh、Bushman、Jerimalai、Fumane、Rose Cottage Cave、水洞溝第二地點(diǎn)等38個(gè)遺址應(yīng)用于研究赭石使用與加工方式的測(cè)試手段[6,11-13,15,16,24-26,27-35,40,41,43,45,47-53,55-59, 63,66,68,70],將該研究方向的內(nèi)容總結(jié)為微痕及微形態(tài)分析、殘留物分析和熱加工分析(圖3)。此外,根據(jù)赭石在遺址中不同的出土形式,可通過(guò)表觀顯微分析和理化性質(zhì)分析來(lái)分步驟確定其功能。
顯微結(jié)構(gòu)分析是在考古文物工藝研究中不可或缺的一種手段。顯微鏡觀測(cè)在赭石研究中的應(yīng)用分為三種情況:一是直接對(duì)赭石碎塊進(jìn)行表觀微痕分析;二是對(duì)人工制品表面微區(qū)的殘留物進(jìn)行電鏡掃描,觀察其上是否具有赭石粉末的殘留;三是對(duì)赭石碎塊、人工制品或巖畫(huà)上的赭石染色殘留物進(jìn)行透射電鏡掃描,通過(guò)其物相來(lái)判斷赭石是否由熱加工生成。在第一種情況中,表觀微痕分析(Usewear analysis) 是指利用顯微鏡觀測(cè)赭石表面的磨損痕跡,再通過(guò)比對(duì)實(shí)驗(yàn)室的實(shí)驗(yàn)結(jié)果,推測(cè)史前人類(lèi)對(duì)其的加工使用方式[93,94]。赭石碎塊表面出現(xiàn)定向的平行擦痕意味著古人類(lèi)曾通過(guò)在石磨盤(pán)等堅(jiān)硬的器具上摩擦赭石以取得紅色粉末[95];較深的切槽說(shuō)明古人類(lèi)利用石器或骨器等工具對(duì)赭石進(jìn)行刮削取粉[70];在其表面觀測(cè)到打擊點(diǎn)及坑疤,則可以推測(cè)古人類(lèi)為便于摩擦取粉,在使用前將其敲擊成碎塊[29]。而掃描電子顯微鏡(SEM) 和透射電子顯微鏡(TEM) 的分辨率極高,具有較大的放大倍數(shù),足以用于檢測(cè)人工制品上是否殘存赭色微碎屑[59,60,75,82]。掃描電鏡與透射電鏡的不同點(diǎn)在于:掃描電鏡只能得到樣品表面形態(tài)的信息;而透射電鏡依靠電子束成像,得到的是晶體中原子或原子團(tuán)在特定方向上結(jié)構(gòu)投影的信息,從而確定其晶體結(jié)構(gòu)。透射電鏡的這一特點(diǎn)尤其適合運(yùn)用于考古出土中赭石的受熱分析,即第三種情況。
對(duì)于埋葬中人工制品和巖畫(huà)上的赭石粉末遺存來(lái)說(shuō),利用掃描電鏡耦合能譜、拉曼光譜和氣相質(zhì)譜等理化分析手段,可以對(duì)考古樣品進(jìn)行殘留物的成分分析,進(jìn)而對(duì)其來(lái)源和應(yīng)用情況進(jìn)行推理(圖3)[25,26,96]。周口店山頂洞史前穿孔飾品的再研究提供了一個(gè)可靠案例:通過(guò)掃描電鏡能譜分析技術(shù)檢測(cè)到三枚穿孔獾牙上的紅色殘留物均為赭石;同時(shí),赭石染色的微區(qū)位置指示著穿孔獾牙可能曾被縫制于被赭石鞣制過(guò)的皮革衣物上[12](圖4)。更為有趣的是,獾牙飾品1、2 與獾牙飾品3 上殘余的赭石成分不同,加之穿孔加工技法不同,可能暗示了飾品是由不同個(gè)體或群體制作的。
此外,史前人類(lèi)在舊石器時(shí)代晚期就已意識(shí)到加熱赭石能使其產(chǎn)生不同顏色[97]。赭石在受熱后,F(xiàn)e-O 和O-O 鍵長(zhǎng)會(huì)發(fā)生改變,其對(duì)稱(chēng)性八面體結(jié)構(gòu)扭曲,從而導(dǎo)致顏色加深[98]。因此,對(duì)赭石樣品的赤鐵礦分子結(jié)構(gòu)進(jìn)行測(cè)試后,便能夠得知其是否受過(guò)高溫作用。能夠進(jìn)行該項(xiàng)測(cè)試的手段包括但不限于X 射線吸收近邊結(jié)構(gòu)分析、紅外光譜分析、X射線衍射、熱釋光分析、透射電子顯微鏡、巖石磁學(xué)和拉曼光譜分析(圖3)。但是,我們?nèi)孕杞Y(jié)合其他輔助方法以排除地質(zhì)所導(dǎo)致的受熱因素,才能判定赤鐵礦分子結(jié)構(gòu)的扭曲是否源于古人類(lèi)的熱加工處理。在赭石研究中,對(duì)遺址進(jìn)行土壤微形態(tài)分析,能夠更直觀地判斷考古埋藏中的赭石及石器上的紅色殘留是否源于自然埋藏過(guò)程的影響,如鐵質(zhì)淋濾、原生磁性礦物的風(fēng)化與搬運(yùn)等。土壤微形態(tài)分析(Micromorphology Analysis) 對(duì)土壤進(jìn)行顯微形態(tài)觀測(cè)和描述,通過(guò)顯微鏡鑒定土壤剖面的礦物組成、風(fēng)化狀況等層相特征,排除遺址內(nèi)地層后期擾動(dòng)構(gòu)造對(duì)遺存所造成的影響。該種方法一般需要在剖面上連續(xù)采樣,精準(zhǔn)地評(píng)估微區(qū)環(huán)境演變對(duì)遺址形成的影響,分析考古遺存與古人類(lèi)活動(dòng)的關(guān)系[99,100]。
2.4 小結(jié)
綜上所述,對(duì)赭石開(kāi)發(fā)策略的研究主要從產(chǎn)地溯源和加工方式及其利用程度這兩個(gè)角度出發(fā),以地球物理化學(xué)測(cè)試手段和微觀顯微鑒定相結(jié)合的方法為主(圖5)。在眾多的地球物理化學(xué)測(cè)試手段中,XRF、ICP-MS 和Raman 等無(wú)損或微損分析測(cè)試手段得到了較為廣泛的使用。它們的優(yōu)勢(shì)在于功能多樣化,不僅可以用于赭石的產(chǎn)地溯源,還能有效地揭示古人類(lèi)對(duì)赭石資源的開(kāi)發(fā)利用程度。而微觀顯微鑒定是考古學(xué)研究中的重要常規(guī)方法之一,該方法結(jié)合實(shí)驗(yàn)?zāi)軌蚝芎玫赝茢圄魇砻嫖⒑鄣漠a(chǎn)生原因。
近年來(lái),愈來(lái)愈多的學(xué)者嘗試拓寬地球物理、地球化學(xué)與考古學(xué)的交叉研究和應(yīng)用。例如,下馬碑遺址的研究將巖石磁學(xué)的測(cè)試手段引入赭石的考古學(xué)定性分析中[13],朱弗里洞穴(Jufri Cave) 遺址研究中應(yīng)用XANES 分析法判斷赭石是否受到過(guò)熱加工作用等[30]。只有綜合利用不同的測(cè)試方法建立起適合的綜合研究方案,明確考古發(fā)現(xiàn)中赭石的原料經(jīng)濟(jì)及其開(kāi)發(fā)利用程度,才能最大程度地接近并復(fù)原史前人類(lèi)的行為模式和社會(huì)文化。
3 赭石研究的人類(lèi)學(xué)思考
史前人類(lèi)對(duì)自然資源的認(rèn)知發(fā)展最終催生出不同色彩的使用和裝飾品的制作等一系列超出基本生存需求的意識(shí)行為[101]。顏料與裝飾品等物質(zhì)文化作為史前藝術(shù)的表現(xiàn)形式,隱含著人類(lèi)對(duì)自我、他者關(guān)系的認(rèn)知程度,承載著人類(lèi)的精神文化和自我認(rèn)知[102]。此外,作為身份和族群的標(biāo)志,色彩和裝飾品既體現(xiàn)了不同族群的藝術(shù)創(chuàng)作和文化發(fā)展的水平,亦可能隱含各族群之間的關(guān)系 [103,104]。赭石是獲取“色彩”的重要物質(zhì)資料,對(duì)赭石的研究是了解人類(lèi)行為模式及族群文化的重要介質(zhì)之一,其研究方法既借助了自然科學(xué)的理化分析,又緊密聯(lián)系社會(huì)科學(xué)中民族學(xué)、文化人類(lèi)學(xué)等其他領(lǐng)域的解析理論。在前文中已經(jīng)對(duì)各類(lèi)自然科學(xué)分析方法及其應(yīng)用情況進(jìn)行了深入的解析,而此處我們將嘗試闡述如何建立起自然科學(xué)方法與社會(huì)學(xué)理論之間的關(guān)聯(lián)。
3.1 理化分析與行為重建
自然科學(xué)為考古發(fā)現(xiàn)中的無(wú)機(jī)顏料研究提供了豐富的定性及定量的理化分析手段[67,105],幫助研究者重建古人類(lèi)的顏料使用行為模式。在此基礎(chǔ)上,學(xué)者可以廣泛地關(guān)注古代顏料,如赭石、朱砂、炭黑、青金石和孔雀石等,嘗試通過(guò)史前和古代藝術(shù)創(chuàng)作材料在時(shí)空上的變化去探究不同地理環(huán)境和歷史條件下各族群的意識(shí)形態(tài)[106]。例如,在西班牙阿達(dá)爾洞穴遺址(Cueva de Ardales),Afica Pitarch Martí 等人[11] 通過(guò)X 射線衍射測(cè)試發(fā)現(xiàn)洞壁上出現(xiàn)兩層不同源區(qū)的染色圖層,利用鈾系測(cè)年(U-Th) 得知其染色時(shí)間相隔兩萬(wàn)年。這一行為被解釋成古人類(lèi)對(duì)“祖先”地盤(pán)的標(biāo)記,意味著早在4 萬(wàn)年前古人類(lèi)就已經(jīng)在思考自我關(guān)系等哲學(xué)問(wèn)題。
此外,地球物理化學(xué)常被用于古氣候環(huán)境的重建[107,108],可以有效地幫助恢復(fù)考古遺址區(qū)域內(nèi)的古環(huán)境。棲息地的氣候環(huán)境、生態(tài)背景與人口規(guī)模和社會(huì)形態(tài)息息相關(guān),是解釋人類(lèi)行為模式的重要部分。環(huán)境背景直接影響區(qū)域內(nèi)自然巖礦資源的可獲得性,以及人類(lèi)獲取資源、交換資源的路徑[109]。在具體的研究中,地球物理、化學(xué)方法與考古研究相結(jié)合,有助于將生態(tài)適應(yīng)、生產(chǎn)技術(shù)和人群擴(kuò)散等因素串聯(lián)起來(lái),為探討不同時(shí)空下人群和文化間的相互交流模式、活動(dòng)空間變化提供更加全面且合理的解析[92,102,110],進(jìn)而,這些綜合研究能夠更為恰當(dāng)?shù)亟忉尛h(huán)境因素在人類(lèi)行為演化進(jìn)程中所扮演的角色。
3.2 民族學(xué)與社會(huì)文化的闡釋
舊石器時(shí)代遺址中赭石的利用是人類(lèi)象征行為的考古學(xué)證據(jù),亦被解釋為人類(lèi)演化史中行為現(xiàn)代性的關(guān)鍵要素[91]。利用現(xiàn)代民族學(xué)材料的相關(guān)記錄是揭示赭石的史前用途及其加工過(guò)程的有效方法[111,112]。Rosso[70] 在研究埃塞俄比亞Proc-Epic 洞穴遺址中赭石粉末的粒度分析時(shí),分別采集辛巴(Ova Himba) 部落和哈莫爾(Hamer) 部落用于涂抹頭發(fā)及身體和服飾的赭石粉末樣品,并開(kāi)展了微痕實(shí)驗(yàn)和量化分析,最終通過(guò)借鑒現(xiàn)代民族學(xué)研究直接重建了4 萬(wàn)年前的赭石加工操作鏈。由于該遺址的地層序列跨時(shí)長(zhǎng)達(dá)4500 年,出土赭石的標(biāo)本量多至四千件,通過(guò)對(duì)不同類(lèi)型的赭石及其處理方式的空間量化分析,有效地驗(yàn)證了東非地區(qū)赭石的加工模式具有連續(xù)且漸進(jìn)的變化。
不拘泥于某個(gè)遺址中赭石的具體用途,而是更多地關(guān)注赭石所指示的行為和文化內(nèi)涵—— 在時(shí)空維度的變化和在人類(lèi)生產(chǎn)生活各層面的應(yīng)用,是進(jìn)行赭石研究的最終目的。在考古學(xué)背景下,顏料和其他象征物都承載著人類(lèi)的風(fēng)俗習(xí)尚、生業(yè)方式與社會(huì)結(jié)構(gòu)等文化演變與發(fā)展規(guī)律的重要信息[104]。解讀象征行為在人類(lèi)族群分化與互動(dòng)中的意義,離不開(kāi)多學(xué)科相結(jié)合的方法及自然科學(xué)與社會(huì)科學(xué)的融通。
4 結(jié)語(yǔ)
近幾年理化分析技術(shù)測(cè)試手段不斷被應(yīng)用于考古學(xué)科,擴(kuò)寬了赭石等物質(zhì)遺存研究的內(nèi)涵,提高了考古研究工作的定性和定量化水平。除了對(duì)單個(gè)遺址的報(bào)道,關(guān)于赭石使用這一現(xiàn)象的綜合性匯總及系統(tǒng)性分析也顯得尤為關(guān)鍵。分析不同區(qū)域多個(gè)遺址內(nèi)赭石歷時(shí)性使用情況的異同,為我們探討生態(tài)環(huán)境與生計(jì)模式、人口規(guī)模等文化元素互動(dòng)的結(jié)果帶來(lái)了不同的視角。綜上所述,赭石考古的內(nèi)容并不僅限于分析礦物成分、產(chǎn)地溯源及具體用途,其蘊(yùn)含的行為信息對(duì)于闡釋史前人類(lèi)的交流遷徙與文化發(fā)展規(guī)律等內(nèi)容有重要意義。目前而言,中國(guó)境內(nèi)舊石器時(shí)代赭石利用的證據(jù)較為有限,有待未來(lái)開(kāi)展更多更深入、更系統(tǒng)的識(shí)別與研究,以全面解讀東亞地區(qū)赭石顏料開(kāi)發(fā)策略的歷時(shí)性發(fā)展和區(qū)域性特征。
致謝:感謝日本東北大學(xué)林乃如、中國(guó)科學(xué)院地質(zhì)與地球物理研究所沈中山博士、中國(guó)科學(xué)院古脊椎動(dòng)物與古人類(lèi)研究所岳健平博士、中國(guó)科學(xué)院古脊椎動(dòng)物與古人類(lèi)研究所侯亞梅研究員在文章寫(xiě)作過(guò)程中進(jìn)行的討論和提出的寶貴建議。
參考文獻(xiàn)
[1] Foley RA, Martin L, Lahr MM, et al. Major transitions in human evolution[J]. Philosophical Transactions of the Royal Society B,2016, 371: 20150229
[2] Cornell RM, Schwertmann U. The iron oxides: structure, properties, reactions, occurrences and uses[M]. Wiley-VCH. 2003
[3] Nicola M, Mastrippolito C, Masic A. Iron Oxide-Based pigment and their use in history[A]. In Faivre D. Iron oxide: from nature to applications[C]. New Jersey: Wiley Press. 2016: 544-566
[4] Watts I, Chazan M, Wilkins J. Early evidence for brilliant ritualized display: specularite use in the Northern Cape (South Africa)between similar to 500 and similar to 300 Ka[J]. Current Anthropology, 2016, 57(3): 287-310
[5] Brooks AS, Yellen JE, Potts Richard, et al. Long-distance stone transport and pigment use in the earliest Middle Stone Age[J].Science, 2018, 360(6384): 90-94
[6] 楊石霞,許競(jìng)文,浣發(fā)祥.古人類(lèi)對(duì)赭石的利用行為在其演化中的意義[J]. 人類(lèi)學(xué)學(xué)報(bào),2022, 41(4): 649-658
[7] Barham LS. Systematic pigment use in the Middle Pleistocene of South-Central Africa[J]. Current Anthropology, 2002, 43(1): 181-190
[8] 周玉端,翟天民,李桓.舊石器時(shí)代人類(lèi)對(duì)赭石的利用[J]. 江漢考古,2017(2): 43-51
[9] 申艷茹.中國(guó)舊石器時(shí)代遺址中赭石的功能[J]. 南方文物,2020(1): 187-192
[10] DErrico F, Moreno RC, Rifkin RF. Technological, elemental and colorimetric analysis of an engraved ochre fragment from the Middle Stone Age levels of Klasies River Cave 1, South Africa[J]. Journal of Archaeological Science, 2012, 39(4): 942-952
[11] Velliky EC, Porr M, Conard NJ. Ochre and pigment use at Hohle Fels cave: results of the first systematic review of ochre and ochre-related artefacts from the Upper Palaeolithic in Germany[J]. PLoS One, 2018, 13(12): e0209874
[12] D'Errico F, Pitarch Martí A, Wei Y. Zhoukoudian Upper Cave personal ornaments and ochre: rediscovery and reevaluation[J].Journal of human evolution, 2021, 161: 103088
[13] Wang FG, Yang SX, Ge JY, et al. Innovative ochre processing and tool use in China 40,000 years ago[J]. Nature, 2022, 603(7900): 284-289
[14] Marean CW, Bar-Matthews M, Bernatchez J, et al. Early human use of marine resources and pigment in South Africa during the Middle Pleistocene[J]. Nature, 2007, 449(7164): 905-908
[15] Cuenca-Solana D, Gutiérrez-Zugasti I, Ruiz-Redondo A, et al. Painting Altamira Cave? Shell tools for ochre-processing in the Upper Palaeolithic in northern Iberia[J]. Journal of Archaeological Science, 2016, 74: 135-151
[16] Pitarch Martí A, Zilh?o J, dErrico F, et al. The symbolic role of the underground world among Middle Paleolithic Neanderthals[J].Proceedings of the National Academy of Sciences, 2021, 118: 33
[17] Bar-Yosef Mayer DE, Vandermeersch B, Bar-Yosef O. Shells and ochre in Middle Paleolithic Qafzeh Cave, Israel: indications for modern behavior[J]. Journal of Human Evolution, 2009, 56(3): 307-314
[18] Song YH, Cohen DJ, Shi JM. Diachronic change in the utilization of Ostrich Eggshell at the Late Paleolithic Shizitan Site, North China[J]. Frontiers in Earth Science, 2022
[19] Aldhouse-Green S, Pettitt P. Paviland Cave: contextualizing the ‘Red Lady[J]. Antiquity, 1998, 72(278): 756-772
[20] Trinkets E, Buzhilova AP. The death and burial of sunghir 1[J]. International Journal of Osteoarchaeology, 2010, 22(6): 655-666
[21] Vanhaeren M, dErrico F, Stringer C, et al. Middle Paleolithic shell beads in Israel and Algeria[J]. Science, 2006, 312(5781): 1785-1788
[22] Bouzouggar A, Barton N, Vanhaeren M, et al. 82,000-year-old shell beads from North Africa and implications for the origins of modern human behavior[J]. Anthropology, 2007, 104(24):9964-9969
[23] Wadley L, Hodgskiss T, Grant M. Implications for complex cognition from the hafting of tools with compound adhesives in the Middle Stone Age, South Africa[J]. Proceedings of the National Academy of Sciences, 2009, 106(24): 9590-9594
[24] Wojcieszak M, Wadley L. Raman spectroscopy and scanning electron microscopy confirm ochre residues on 71000-year-old bifacial tools from Sibudu, South Africa[J]. Archaeometry, 2018, 60(5): 1062-1076
[25] Villa P, Pollarolo L, Degano I, et al. A milk and ochre paint mixture used 49,000 years ago at Sibudu, South Africa[J]. PLoS One,2015, 10(6): e0131273
[26] Zhang Y, Doyon L, Peng F, et al. An Upper Paleolithic perforated red deer canine with geometric engravings from QG10, Ningxia,Northwest China[J]. Frontiers in Earth Science, 2022, 10:814761
[27] Dayet L, dErrico F, García-Diez M, et al. Critical evaluation of in situ analyses for the characterisation of red pigments in rock paintings: a case study from El Castillo, Spain[J]. PLoS One, 2022, 17(1): e0262143
[28] Kurniawan R, Kadja GTM, Setiawan P, et al. Chemistry of prehistoric rock art pigments from the Indonesian island of Sulawesi[J].Microchemical Journal, 2019, 146: 227-233
[29] Dayet L, d Errico F, Garcia-Moreno R. Searching for consistencies in Ch?telperronian pigment use[J]. Journal of Archaeological Science, 2014, 44: 180-193
[30] Maryanti E, Ilmi MM, Nurdini N, et al. Hematite as unprecedented black rock art pigment in Jufri Cave, East Kalimantan,Indonesia: the microscopy, spectroscopy, and synchrotron X-ray-based investigation[J]. Archaeological and Anthropological Sciences, 2022, 14: 122
[31] Rifkin RF, Prinsloo LC, Dayet L, et al. Charaterising pigments on 30 000-year-old portable art from Apollo 11 Cave, Karas Region,southern Namibia[J]. Journal of Archaeological Science: Reports, 2016, 5: 336-347
[32] Gomes H, Martins AA, Nash G, et al. Pigment in western Iberian schematic rock art: An analytical approach[J]. Mediterranean Archaeology and Archaeometry, 2015, 15(1)
[33] Rigon C, Izzo FC, Pascual MLVD?, et al. New results in ancient Maya rituals researches: The study of human painted bones fragments from Calakmul archaeological site (Mexico)[J]. Journal of Archaeological Science: Reports, 2020, 32: 102418
[34] Hodgskiss T, Wadley L. How people used ochre at Rose Cottage Cave, South Africa: Sixty thousand years of evidence from the Middle Stone Age[J]. PLoS One, 2017, 12(4): e0176317
[35] Huntley J, Aubert M, Ross J, et al. One colour, (at least) two minerals: a study of mulberry rock art pigment and a mulberry pigment ‘quarry from the Kimberley, Northern Australia[J]. Archaeometry, 2015, 57(1): 77-99
[36] Behera PK, Thakur N. Late Middle Palaeolithic Red Ochre Use at Torajunga, an Open-Air Site in the Bargarh Upland, Odisha,India: Evidence for Long Distance Contact and Advanced Cognition[J]. Heritage: Journal of Multidisciplinary Studies in Archaeology, 2018, 6: 129-147
[37] Dayet L, Le Bourdonnec FX, Daniel F, et al. Ochre provenance and procurement strategies during the Middle Stone Age at Diepkloof Rock Shelter, South Africa[J]. Archaeometry, 2015, 58(5): 807-829
[38] Iriarte E, Foyo A, Sánchez MA, et al. The origin and geochemical characterization of red ochres from the Tito Bustillo and Monte Castillo Caves (Northern Spain) [J]. Archaeometry, 2009, 51(2): 231-251
[39] Moyo S, Mphuthi D, Cukrowska E, et al. Blombos Cave: Middle Stone Age ochre differentiation through FTIR, ICP OES, ED XRF and XRD[J]. Quaternary International, 2016, 404: 20-29
[40] Hovers E, Ilani Shimon, Bar-Yosef O, et al. An Early Case of Color Symbolism: Ochre Use by Modern Humans in Qafzeh Cave[J].Current Anthropology, 2003, 44(4): 491-522
[41] Dayet Bouillot L, Wurz S, Daniel F. Ochre resources, behavioural complexity and regional patterns in the Howiesons Poort: new insights from Klasies River main site, South Africa [J]. Journal of African Archaeology, 2017, 15(1): 20-41
[42] Velliky EC, MacDonald BL, Porr M, et al. First large-scale provenance study of pigments reveals new complex behavioural patterns during the Upper Palaeolithic of south-western Germany[J]. Archaeometry, 2021, 63(1): 173-193
[43] Cavallo G, Fontana F, Gonzato F, et al. Sourcing and processing of ochre during the late upper Palaeolithic at Tagliente rock-shelter (NE Italy) based on conventional X-ray powder diffraction analysis[J]. Archaeological and Anthropological Sciences, 2017, 9: 763-775
[44] Darchuk L, Tsybrii Z, Worobiec A, et al. Argentinean prehistoric pigments study by combined SEM/EDX and molecular spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2010, 75(5): 1398-1402
[45] Charrié-Duhaut A, Porraz G, Cartwright C, et al. First molecular identification of a hafting adhesive in the Late Howiesons Poort at Diepkloof Rock Shelter (Western Cape, South Africa)[J]. Journal of Archaeological Science, 2012, 40(9): 3506-3518
[46] Dayet L, Texier PJ, Daniel F, et al. Ochre resources from the Middle Stone Age sequence of Diepkloof Rock Shelter, Western Cape,South Africa[J]. Journal of Archaeological Science, 2013, 40: 3492-3505
[47] Mortimore JL, Marshall LJR, Almond MJ, et al. Analysis of red and yellow ochre samples from Clearwell Caves and ?atalh?yük by vibrational spectroscopy and other techniques[J]. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 2004,60(5): 1179-1188
[48] Henshilwood CS, dErrico F, van Niekerk KL, et al. An abstract drawing from the 73,000-year-old levels at Blombos Cave, South Africa[J]. Nature, 2018, 562: 115-118
[49] DErrico F, Vanhaeren M, van Niekerk K, et al. Assessing the accidental versus deliberate colour modification of shell beads: a case study on perforated Nassarius kraussianus from Blombos Cave Middle Stone Age levels[J].. Archaeometry, 57(1): 51-76
[50] Henshilwood CS, dErrico F, van Niekerk KL, et al. A 100,000-year-old ochre-processing workshop at Blombos Cave, South Africa[J]. Science, 2011, 334(6053): 219-222
[51] Dayet L, Erasmus RM, Val A, et al. Beads, pigments and early Holocene ornamental traditions at Bushman Rock Shelter, South Africa[J]. Journal of Archaeological Science: Reports, 2017, 13(24): 635-651
[52] Langley MC, OConnor S, Piotto E. 42,000-year-old worked and pigment-stained Nautilus shell from Jerimalai (Timor-Leste):Evidence for an early coastal adaptation in ISEA[J]. Journal of Human Evolution, 2016, 97: 1-16
[53] Peresani M, Vanhaeren M, Quaggiotto E, et al. An Ochered Fossil Marine Shell From the Mousterian of Fumane Cave, Italy[J].PLoS One, 2013, 8(7): e68572
[54] Cortés-Sánchez M, Riquelme-Cantal JA, Simón-Vallejo MD, et al. Pre-Solutrean rock art in southernmost Europe: Evidence from Las Ventanas Cave (Andalusia, Spain) [J]. PLoS One 13(10): e0204651.
[55] Pitarch Martí A, Wei Y, Gao X, et al. The earliest evidence of coloured ornaments in China: The ochred ostrich eggshell beads from Shuidonggou Locality 2[J]. Journal of Anthropological Archaeology, 2017, 48(1): 102-113
[56] Li ZY, Doyon L, Li H, et al. Engraved bones from the archaic hominin site of Lingjing, Henan Province[J]. Antiquity, 2019,93(370): 886-900
[57] Pitarch Martí A, Zilh?o J, Mu?oz J R, et al. Geochemical characterization of the earliest Palaeolithic paintings from southwestern Europe: Ardales Cave, Spain[R]. The Art of Prehistoric Societies, VI Internacional Doctoral and Postdoctoral Meeting, 2019
[58] Ward I, Watchman A L, Cole N, et al. Identification of minerals in pigments from aboriginal rock art in the Laura and Kimberley regions, Australia[J]. Rock Art Research, 2001, 18(1): 15-23
[59] DErrico F, Salomon H, Vjgnaud C, et al. Pigments from the Middle Palaeolithic levels of Es-Skhul (Mount Carmel, Israel)[J].Journal of Archaeological Science, 2010, 37(12): 3099-3110
[60] Salomon H, Vignaud C, Lahlil S, et al. Solutrean and Magdalenian ferruginous rocks heat-treatment: acciental and/or deliberate action[J]. Journal of Archaeological Science, 2015, 55: 100-112
[61] Gialanella S, Belli R, Dalmeri G, et al. Artificial or natural origin of hematite-based red pigments in archaeological contexts: the case of Riparo Dalmeri(Ternto, Italy)[J]. Archaeometry, 2011, 53(5): 950-962
[62] Cavallo G, Fontana F, Gonzato F, et al. Textural, microstructural, and compositional characteristics of Fe-based geomaterials and Upper Paleolithic ocher in the Northeast Italy: implications for provenance studies[J]. Geoarchaeology, 2017, 32(4): 437-455
[63] Hunt A, Thomas P, James D, et al. The characterisation of pigments used in X-ray rock art at Dalakngalarr 1, central-western Arnhem Land[J]. Microchemical Journal, 2016, 126: 524-529
[64] De Faria DLA, Ven?ncio Silva S, de Oliveira MT. Raman microspectroscopy of some iron oxides and oxyhydroxides[J]. Journal of Raman Spectroscopy, 1997, 28(11): 873-878
[65] Bersani D, Lottici PP, Montenero A. Micro-Raman investigation of iron oxide films and powders produced by sol-gel syntheses[J].Journal of Raman Spectroscopy, 1999, 30(5): 355-360
[66] Needham A, Croft S, Kr?ger R, et al. The application of micro-Raman for the analysis of ochre artefacts from Mesolithic palaeolake Flixton[J]. Journal of Archaeological Science: Reports, 2018, 17: 650-656
[67] Stuart BH, Thomas PS. Pigment characterisation in Australian rock art: a review of modern instrumental methods of analysis[J].Heritage Science, 2017, 5: 10
[68] Wojcieszak M, Wadley L. A Raman micro-spectroscopy study of 77,000 to 71,000 year old ochre processing tools from Sibudu,KwaZulu-Natal, South Africa [J]. Heritage Science, 2019, 7: 24
[69] Texier PJ, Porraz G, Parkington J, et al. A Howiesons Poort tradition of engraving ostrich eggshell containers dated to 60,000 years ago at Diepkloof Rock Shelter, South Africa [J]. Anthropology, 2010, 107(14): 6180-6185
[70] Rosso DE, d Errico F, Queffelec A. Patterns of change and continuity in ochre use during the late Middle Stone Age of the Horn of Africa: The Porc-Epic Cave record [J]. PLoS One, 2017, 12(5): e0177298
[71] Lofrumento C, Ricci M, Bachechi L, et al. The first spectroscopic analysis of Ethiopian prehistoric rock painting[J]. Journal of Raman Spectroscopy, 2011, 43(6): 809-816
[72] 劉青松,鄧成龍,潘永信.磁鐵礦和磁赤鐵礦磁化率的溫度和頻率特性及其環(huán)境磁學(xué)意義[J]. 第四紀(jì)研究,2007, 27(6): 955-962
[73] Stacey FD, Banerjee SK. The physical principles of rock magnetism[M]. Amsterdam: Elsevier, 1974, 1-195
[74] Mooney SD, Geiss C, Smith MA. The use of mineral magnetic parameters to characterize archaeological ochres[J]. Journal of Archaeological Science, 2003, 30(5): 511-523
[75] McPherron SP. Lithics[M]. Richards MP, Britton K. Archaeological Science: an Introduction. Cambridge: Cambridge University Press. 2020: 387-404
[76] 趙叢蒼.科技考古學(xué)概論[M]. 北京:高等教育出版社,2018: 291-359
[77] MacDonald BL, Hancock RGV, Cannon A, et al. Geochemical characterization of ochre from central coastal British Columbia,Canada[J]. Journal of Archaeological Science, 2011, 38(12): 3620-3630
[78] MacDonald BL, Hancock RGV, Cannon A, et al. Elemental analysis of ochre outcrops in southern British Columbia, Canada[J].Archaeometry, 2013, 55(6): 1020-1033
[79] Popelka-Filcoff RS, Robertson JD, Glascock MD, et al. Trace element characterization of ochre from geological sources[J]. Journal of Radioanalytical and Nuclear Chemistry, 2007, 272(1): 17-27
[80] Popelka-Filcoff RS, Miksa EJ, Robertson JD, et al. Elemental analysis and characterization of ochre sources from southern Arizona[J]. Journal of Archaeological Science, 2008, 35(3): 752-762
[81] 喬治 R,克里斯托弗 LH.地質(zhì)考古學(xué):地球科學(xué)方法在考古學(xué)中的應(yīng)用[M]. 譯者:楊石霞,趙克良,李小強(qiáng).北京:科學(xué)出版社, 2020
[82] 倫福儒 C,巴恩 P.考古學(xué):理論方法與實(shí)踐[M]. 譯者:陳淳.第6 版.上海:上海古籍出版社,2015
[83] 王德滋,謝磊.光性礦物學(xué)[M]. 北京:科學(xué)出版社,2008: 1-26
[84] Erlandson JM, Robertson JD, Descantes C. Geochemical analysis of eight red ochres from western North America[J]. American Antiquity, 1999, 64(3): 517-526
[85] Jacobs Z, Roberts RG, Galbraith RF, et al. Ages for the Middle Stone Age of southern Africa: implications for human behavior and dispersal[J]. Science, 2008, 322(5902): 733-735
[86] Chase BM. South African palaeoenvironments during marine oxygen isotope stage 4: a context for the Howiesons Poort and Still Bay industries[J]. Journal of Archaeological Science, 2010, 37(6): 1359-1366
[87] Mackay A. Nature and significance of the Howiesons Poort to post-Howiesons Poort transition at Klein Kliphuis rockshelter, South Africa[J]. Journal of Archaeological Science, 2011, 38(7): 1430-1440
[88] Porraz G, Texier PJ, Archer W, et al. Technological successions in the Middle Stone Age sequence of Diepkloof Rock Shelter,Western Cape, South Africa[J]. Journal of Archaeological Science, 2013, 40(9): 3376-3400
[89] Tobias PV. From tools to symbols: from early hominids to modern humans[M]. In: dErrico F and Backwell L(eds). Johannesburg:Wits University Press, 2005
[90] Rifkin RF. The symbolic and functional exploitation of ochre during the South African Middle Stone Age[M]. Johannesburg: Wits University Press, 2013
[91] Wreschner EE, Bolton R, Butzer KW, et al. Red ochre and human evolution: a case for discussion[J]. Current Anthropology, 1980,21(5): 631-644
[92] Mcbrearty S, Brooks AS. The revolution that wasn't: a new interpretation of the origin of modern human behavior[J]. Journal of Human Evolution, 2000, 39(5): 453-563
[93] Keeley LH. Experimental determination of stone tool uses[M]. Chicago: The University of Chicago Press, 1980
[94] Rifkin RF. Processing ochre in the Middle Stone Age: testing the inference of prehistoric behaviours from actualistically derived experimental data[J]. Journal of Anthropological Archaeology, 2012, 31(2): 174-195
[95] Hodgskiss T. Ochre use in the Middle Stone Age[J]. Oxford Research Encyclopedia of Anthropology, 2020
[96] Kozowyk PRB, Langejans GHJ, Poulis JA. Lap Shear and impact testing of ochre and beeswax in experimental Middle Stone Age compound adhesives[J]. PLoS One, 2016, 11(3): e0150436
[97] Siddall R. Mineral pigments in archaeology: Their analysis and the range of available materials. Minerals, 2018, 8(5): 201
[98] Ismunandar, Nurdini N, Ilmi MM, et al. Investigation on the crystal structures of hematite pigments at different sintering temperatures[J]. Key Engineering Materials, 2021, 874: 20-27
[99] 靳桂云.土壤微形態(tài)分析及其在考古學(xué)中的應(yīng)用[J]. 地球科學(xué)進(jìn)展,1999, 14(2): 197-200
[100] 張海,莊奕杰,方燕明,等.河南禹州瓦店遺址龍山文化壕溝的土壤微形態(tài)分析[J]. 華夏考古,2016, 4: 86-95,I0009-I0014
[101] 魏屹,d'Errico F,高星.舊石器時(shí)代裝飾品研究:現(xiàn)狀與意義[J]. 人類(lèi)學(xué)學(xué)報(bào),2016, 35(1): 132-148
[102] Klein RG. Out of Africa and the evolution of human behavior[J]. Evolutionary Anthropology: Issues, News, and Reviews, 2008,17(6): 267-281
[103] 黃淑娉,龔佩華.文化人類(lèi)學(xué)理論方法研究(第3 版)[M]. 廣州:廣東高等教育出版社,2004
[104] 莊孔韶.人類(lèi)學(xué)通論[M]. 太原:山西教育出版社,2005
[105] Scott DA, Scheerer S, Reeves DJ. Technical examination of some rock art pigments and encrustations from the Chumash Indian site of San Emigdio, California[J]. Studies in Conservation, 2002, 47(3): 184-194
[106] DErrico F, Vanhaeren M. Evolution or Revolution? New evidence for the origin of symbolic behaviour in and out of Africa[M].Mellars P, Boyle K, Bar-Yosef O, et al. Rethinking the human revolution: new behavioural and biological perspectives on the origin and dispersal of modern humans[C]. Cambridge: McDonald Institute for Archaeological Research, 2007: 257-286
[107] Wang C, Lu HY, Zhang JP, et al. Prehistoric demographic fluctuations in China inferred from radiocarbon data and their linkage with climate change over the past 50,000 years[J]. Quaternary Science Reviews, 2014, 98: 45-59
[108] Feng Y, Wang Y. The environmental and cultural contexts of early pottery in south China from the perspective of behavioral diversity in the Terminal Pleistocene[J]. Quaternary International, 2022, 608-609: 33-48
[109] Yang SX, Zhang YX, Li YQ, et al. Environmental change and raw material selection strategies at Taoshan: a terminal Late Pleistocene to Holocene site in north-eastern China[J]. Journal of Quaternary science, 2017, 32(5): 553-563
[110] Bae CJ, Douka K, Petraglia MD. On the origin of modern humans: Asian perspectives[J]. Science, 2017, 358(6368): eaai9067.
[111] Rifkin RF. Ethnographic insight into the prehistoric significance of red ochre[J]. Digging stick, 2015, 32(2): 7-10
[112] Huntley J. Australian Indigenous Ochres: Use, Sourcing, and Exchange[A]. In: Ian J, Bruno D(Eds). The Oxford Handbook of the Archaeology of Indigenous Australia and New Guinea[C]. Oxford University Press, 2018, 1-33
基金項(xiàng)目:自然科學(xué)基金項(xiàng)目(42177424);;中國(guó)科學(xué)院青年促進(jìn)會(huì)研究項(xiàng)目(No. 2020074)