国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

氣-液復(fù)合液滴撞擊超疏水壁面的實(shí)驗(yàn)研究

2024-06-19 00:00:00姚程煒田遠(yuǎn)思李二強(qiáng)

收稿日期:2021-11-15""" 修回日期:2022-03-01

基金項(xiàng)目:國家自然科學(xué)基金資助項(xiàng)目(No.11972339;11772327)

通信作者:田遠(yuǎn)思。E-mail:ystian@ustc.edu.cn

引用格式:

姚程煒,田遠(yuǎn)思,李二強(qiáng).氣-液復(fù)合液滴撞擊超疏水壁面的實(shí)驗(yàn)研究[J].應(yīng)用力學(xué)學(xué)報(bào),2024,41(3):698-707.

YAO Chengwei,TIAN Yuansi,LI Erqiang.Experimental study of air-liquid compound droplet impact on a super-hydrophobic surface[J].Chinese journal of applied mechanics,2024,41(3):

698-707.

文章編號(hào):1000-4939(2024)03-0698-10

摘" 要:采用實(shí)驗(yàn)方法研究了氣-液復(fù)合液滴撞擊超疏水表面的動(dòng)力學(xué)過程,考察了撞擊過程中復(fù)合液滴內(nèi)部空腔破裂的臨界條件,及其鋪展系數(shù)最大值和動(dòng)態(tài)變化的特性,并分析了其與單相液滴撞擊現(xiàn)象的區(qū)別。實(shí)驗(yàn)結(jié)果表明:發(fā)生空腔破裂的臨界閾值隨液體黏度的增加和氣-液直徑比的減小而增加。最大鋪展系數(shù)隨液體黏度和空腔尺寸的增加而減小,推導(dǎo)出了復(fù)合液滴空腔破裂臨界閾值的理論公式,以及適用于氣-液復(fù)合液滴最大鋪展系數(shù)的理論模型。此外也研究了復(fù)合液滴撞擊后的接觸時(shí)間,發(fā)現(xiàn)在3種氣-液直徑比下,復(fù)合液滴的接觸時(shí)間均小于單相液滴,并提出了無量綱接觸時(shí)間隨直徑比變化的理論公式。

關(guān)鍵詞:氣-液復(fù)合液滴;超疏水表面;鋪展系數(shù);接觸時(shí)間

中圖分類號(hào):O351" 文獻(xiàn)標(biāo)志碼:A

DOI:10.11776/j.issn.1000-4939.2024.03.024

Experimental study of air-liquid compound dropletimpact on a super-hydrophobic surface

YAO Chengwei1,TIAN Yuansi1,2,LI Erqiang1

(1.School of Engineering Science,University of Science and Technology of China,230026 Hefei,China;

2.School of Construction Machinery,Changan University,710064 Xian,China)

Abstract:The hydrodynamics of air-liquid compound droplet impact on the super-hydrophobic surface was experimentally studied. We investigated the critical conditions of cavity rupture,the maximum spreading coefficient,and the temporal evolution of the spreading coefficient during impact. The difference between the compound and single-phase droplet impact was analyzed. The experimental results show that the critical threshold of cavity rupture increases with the increase of liquid viscosity and the decrease of air-liquid diameter ratio. The maximum spreading coefficient of compound droplets decreases with the increase of both liquid viscosity and cavity size. We derived the theoretical formula for the critical condition of cavity rupture,and the theoretical model of maximum spreading coefficient for the air-liquid compound droplet impact. In addition,we also studied the contact time of compound droplets after impact,which is smaller than that of the single-phase droplet under three kinds of air-liquid diameter ratio. A theoretical formula of dimensionless contact time with diameter ratio is proposed.

Key words:air-liquid compound droplet; super-hydrophobic surface; spreading coefficient; contact time

液滴撞擊現(xiàn)象在自然界中普遍存在,且在工業(yè)界有著廣泛的應(yīng)用[1]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"AnnualReviewofFluidMechanics\",\"id\":\"ITEM-1\",\"issue\":\"1\",\"issued\":{\"date-parts\":〗},\"page\":\"365-391\",\"title\":\"DropImpactonaSolidSurface\",\"type\":\"article-journal\",\"volume\":\"48\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"},例如雨滴擊打地面[2]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"NatureCommunications\",\"id\":\"ITEM-1\",\"issue\":\"May2014\",\"issued\":{\"date-parts\":〗},\"page\":\"1-9\",\"publisher\":\"NaturePublishingGroup\",\"title\":\"Aerosolgenerationbyraindropimpactonsoil\",\"type\":\"article-journal\",\"volume\":\"6\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"},噴墨打?。?]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"CurrentOpinioninColloidandInterfaceScience\",\"id\":\"ITEM-1\",\"issued\":{\"date-parts\":〗},\"page\":\"20-27\",\"publisher\":\"ElsevierLtd\",\"title\":\"Dropdynamicsintheinkjetprintingprocess\",\"type\":\"article-journal\",\"volume\":\"36\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}以及醫(yī)學(xué)鑒定[4]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"JournalofForensicSciences\",\"id\":\"ITEM-1\",\"issue\":\"1\",\"issued\":{\"date-parts\":〗},\"page\":\"65-69\",\"title\":\"Ablindtrialevaluationofacrimescenemethodologyfordeducingimpactvelocityanddropletsizefromcircularbloodstains\",\"type\":\"article-journal\",\"volume\":\"52\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}等。近年來也不斷出現(xiàn)了以“復(fù)合液滴”為載體的新興技術(shù),如制備聚合物泡沫材料[5]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"AdvancedMaterials\",\"id\":\"ITEM-1\",\"issue\":\"46\",\"issued\":{\"date-parts\":〗},\"page\":\"1-8\",\"title\":\"ArchitectedPolymerFoamsviaDirectBubbleWriting\",\"type\":\"article-journal\",\"volume\":\"31\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}、細(xì)胞打印[6]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"PhysicsofFluids\",\"id\":\"ITEM-1\",\"issue\":\"8\",\"issued\":{\"date-parts\":〗},\"page\":\"082103\",\"title\":\"Impactofacompounddropletonaflatsurface:Amodelforsinglecellepitaxy\",\"type\":\"article-journal\",\"volume\":\"22\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}和乳化燃料[7]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"PhysicsofFluids\",\"id\":\"ITEM-1\",\"issue\":\"10\",\"issued\":{\"date-parts\":〗},\"title\":\"Physicsofpuffingandmicroexplosionofemulsionfueldroplets\",\"type\":\"article-journal\",\"volume\":\"26\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}等。這里的“復(fù)合液滴”區(qū)別于單相液滴,它往往包含了不同組分,通常是一個(gè)較大的外液滴內(nèi)部包裹了諸如固體顆粒、空氣、一種或多種不相溶液體的小液滴等物質(zhì),使液滴撞擊過程呈現(xiàn)更為豐富的物理特性[8-ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"CurrentOpinioninColloidandInterfaceScience\",\"id\":\"ITEM-1\",\"issued\":{\"date-parts\":〗},\"page\":\"101389\",\"publisher\":\"ElsevierLtd\",\"title\":\"Impactofcompounddrops:aperspective\",\"type\":\"article-journal\",\"volume\":\"51\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}9]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"科學(xué)通報(bào)\",\"id\":\"ITEM-1\",\"issue\":\"34\",\"issued\":{\"date-parts\":〗},\"page\":\"3349-3366\",\"title\":\"流場中復(fù)雜液滴的變形運(yùn)動(dòng)與吸附\",\"type\":\"article-journal\",\"volume\":\"60\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}。

近年來,國內(nèi)外學(xué)者對復(fù)合液滴撞擊現(xiàn)象開展了廣泛研究。GULYAEV等[10ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"TechnicalPhysicsLetters\",\"id\":\"ITEM-1\",\"issue\":\"10\",\"issued\":{\"date-parts\":〗},\"page\":\"885-888\",\"title\":\"Hydrodynamicfeaturesoftheimpactofahollowsphericaldroponaflatsurface\",\"type\":\"article-journal\",\"volume\":\"35\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}-11]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"ExperimentsinFluids\",\"id\":\"ITEM-1\",\"issue\":\"1\",\"issued\":{\"date-parts\":〗},\"page\":\"1432\",\"title\":\"Hollowdropletsimpactingontoasolidsurface\",\"type\":\"article-journal\",\"volume\":\"54\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}實(shí)驗(yàn)探究了中空甘油液滴撞擊固面的過程,首次發(fā)現(xiàn)了撞擊過程中出現(xiàn)的中心法向射流,顯著區(qū)別于單相液滴的撞擊現(xiàn)象。ZHU等[12]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"PhysicsofFluids\",\"id\":\"ITEM-1\",\"issue\":\"4\",\"issued\":{\"date-parts\":〗},\"page\":\"041705\",\"publisher\":\"AIPPublishing,LLC\",\"title\":\"Impactofanair-in-liquidcompounddropontoaliquidsurface\",\"type\":\"article-journal\",\"volume\":\"32\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}實(shí)驗(yàn)研究了空心液滴撞擊液池的動(dòng)力學(xué)過程,劃分了氣泡演化的3種模態(tài)。其結(jié)果表明,氣泡的破裂時(shí)間隨外相液體黏度的增加而推遲,其原因?yàn)轲ば砸鸬妮^大潤滑壓力能使氣泡保持較長時(shí)間的穩(wěn)定性。ZHANG等[13]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"JournalofFluidMechanics\",\"id\":\"ITEM-1\",\"issued\":{\"date-parts\":〗},\"page\":\"A46\",\"title\":\"Fineradialjettingduringtheimpactofcompounddrops\",\"type\":\"article-journal\",\"volume\":\"883\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}在實(shí)驗(yàn)中觀察到了包裹多個(gè)內(nèi)液滴的復(fù)合液滴在撞擊固面時(shí)產(chǎn)生的精細(xì)徑向射流,并通過改變內(nèi)液滴數(shù)量、外相液體黏度、內(nèi)外相液體密度差等參數(shù),系統(tǒng)研究了射流產(chǎn)生的原理和條件。BLANKEN等[14]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"ScienceAdvances\",\"id\":\"ITEM-1\",\"issue\":\"11\",\"issued\":{\"date-parts\":〗},\"page\":\"eaay3499\",\"title\":\"Reboundofself-lubricatingcompounddrops\",\"type\":\"article-journal\",\"volume\":\"6\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}實(shí)驗(yàn)討論了內(nèi)液滴位置對復(fù)合液滴底部液膜破裂的影響。在數(shù)值方面,帶移動(dòng)接觸線的三相流動(dòng)模型已經(jīng)被應(yīng)用于復(fù)合液滴在平板上鋪展、變形等研究[15-ADDINCSL_CITATION{\"citationItems\":,\"id\":\"ITEM-1\",\"issued\":{\"date-parts\":〗},\"number-of-pages\":\"1-120\",\"publisher\":\"中國科學(xué)技術(shù)大學(xué)\",\"title\":\"多相接觸線模型及復(fù)合液滴動(dòng)力學(xué)研究\",\"type\":\"thesis\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}17]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"工程熱物理學(xué)報(bào)\",\"id\":\"ITEM-1\",\"issue\":\"12\",\"issued\":{\"date-parts\":〗},\"page\":\"2636-2640\",\"title\":\"壁面吸附復(fù)合液滴的變形與運(yùn)動(dòng)\",\"type\":\"article-journal\",\"volume\":\"38\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}。DEKA等[18]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"JournalofFluidMechanics\",\"id\":\"ITEM-1\",\"issued\":{\"date-parts\":〗},\"page\":\"R2\",\"title\":\"Coalescencedynamicsofacompounddroponadeepliquidpool\",\"type\":\"article-journal\",\"volume\":\"866\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}通過數(shù)值方法研究了含氣泡的復(fù)合液滴與液池融合時(shí)的動(dòng)力學(xué)過程。SARKER等[19]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"PhysicsofFluids\",\"id\":\"ITEM-1\",\"issue\":\"10\",\"issued\":{\"date-parts\":〗},\"page\":\"102103\",\"publisher\":\"AIPPublishingLLC\",\"title\":\"Theroleofcompounddropletsizeontransitionfromjettingtobubbleentrapmentduringitsimpactonliquid\",\"type\":\"article-journal\",\"volume\":\"33\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}發(fā)現(xiàn)氣泡的相對尺寸大小,是影響氣-液復(fù)合液滴在撞擊液池過程中發(fā)生模態(tài)轉(zhuǎn)換的重要因素。KUMAR等[20]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"SurfaceandCoatingsTechnology\",\"id\":\"ITEM-1\",\"issued\":{\"date-parts\":〗},\"page\":\"164-169\",\"publisher\":\"ElsevierB.V.\",\"title\":\"StudyofimpingementofhollowZrO2dropletsontoasubstrate\",\"type\":\"article-journal\",\"volume\":\"220\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}通過VOF方法,捕捉到了空心液滴撞擊固面時(shí)的細(xì)節(jié),發(fā)現(xiàn)更快的撞擊速度引起氣泡的更早破裂。

鄭志偉等[21]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"WuliXuebao/ActaPhysicaSinica\",\"id\":\"ITEM-1\",\"issue\":\"1\",\"issued\":{\"date-parts\":〗},\"title\":\"Numericalanalysisofhollowdropletimpactonaflatsurface\",\"type\":\"article-journal\",\"volume\":\"66\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}考慮了壁面潤濕性對液滴鋪展的影響,發(fā)現(xiàn)隨著撞擊速度的提高,浸潤性的影響逐漸減小,即液滴在親水壁面上與疏水壁面上的鋪展系數(shù)接近。WEI 等[22]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"PhysicsofFluids\",\"id\":\"ITEM-1\",\"issue\":\"6\",\"issued\":{\"date-parts\":〗},\"page\":\"1-10\",\"publisher\":\"AIPPublishingLLC\",\"title\":\"Maximumspreadingofanimpactingair-in-liquidcompounddrop\",\"type\":\"article-journal\",\"volume\":\"33\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}運(yùn)用數(shù)值模擬發(fā)現(xiàn),氣泡的破裂對液滴的最大鋪展直徑影響較小,且修正了LEE等[23]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"JournalofFluidMechanics\",\"id\":\"ITEM-1\",\"issued\":{\"date-parts\":〗},\"page\":\"R41-R411\",\"title\":\"Universalrescalingofdropimpactonsmoothandroughsurfaces\",\"type\":\"article-journal\",\"volume\":\"786\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}關(guān)于單相液滴最大鋪展系數(shù)的理論公式,使之適用于氣-液復(fù)合液滴。此外,ZHAO等[24]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"PhysicsofFluids\",\"id\":\"ITEM-1\",\"issue\":\"1\",\"issued\":{\"date-parts\":〗},\"publisher\":\"AIPPublishing,LLC\",\"title\":\"Jettingfromanimpactingdropcontainingaparticle\",\"type\":\"article-journal\",\"volume\":\"32\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}實(shí)驗(yàn)研究了液體-固體顆粒復(fù)合液滴撞擊固壁時(shí)液-固分離和產(chǎn)生射流的動(dòng)力學(xué)過程。

通過對上述復(fù)合液滴撞擊研究的總結(jié),發(fā)現(xiàn)在實(shí)驗(yàn)研究中,復(fù)合液滴撞擊的表面一般為液池[12]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"PhysicsofFluids\",\"id\":\"ITEM-1\",\"issue\":\"4\",\"issued\":{\"date-parts\":〗},\"page\":\"041705\",\"publisher\":\"AIPPublishing,LLC\",\"title\":\"Impactofanair-in-liquidcompounddropontoaliquidsurface\",\"type\":\"article-journal\",\"volume\":\"32\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}或未經(jīng)處理的普通壁面等[10-11,13,25-26];在數(shù)值研究中,往往對復(fù)合液滴模型做理想化處理,例如將內(nèi)外液滴/氣泡做同心化處理,使液滴整體呈現(xiàn)高度的對稱性[16,18-20,22],從而大大簡化問題的復(fù)雜度。本研究采用實(shí)驗(yàn)方法,研究了液體包裹氣泡的復(fù)合液滴撞擊超疏水表面的動(dòng)力學(xué)過程,推導(dǎo)了碰撞過程中液滴頂部液膜破裂的理論模型,考察了液滴鋪展系數(shù)動(dòng)態(tài)特性,并提出了最大值βm隨氣泡大小、外相液體黏度等特征參數(shù)變化的理論公式,同時(shí)也關(guān)注了液滴內(nèi)部空腔破裂的臨界閾值和液滴的接觸時(shí)間,以期為復(fù)合液滴相關(guān)應(yīng)用提供參考。

1" 實(shí)驗(yàn)操作

本研究搭建了基于高速成像系統(tǒng)的實(shí)驗(yàn)平臺(tái),裝置圖如圖1所示,利用高速相機(jī)(Photron Mini AX200)以22 500幀/秒的拍攝幀率對撞擊過程進(jìn)行觀測,每一幀的時(shí)間間隔約為0.04 ms,因此能夠捕捉到液滴撞擊過程中更多動(dòng)態(tài)細(xì)節(jié)。分光紙的作用是將LED光源射出的強(qiáng)光通過紙面的漫反射分散成均勻的柔光,以減少曝光過度的可能性。

復(fù)合液滴的外相液體為水/甘油混合溶液,內(nèi)相為空氣,我們采用一種相對簡單的方法來進(jìn)行制備。首先通過注射泵(chemyx inc,fusion 200)輸送外相液體直至在玻璃管下方形成一個(gè)懸掛液滴,然后將拉針儀(sutter instrument,model P-1000)處理過的毛細(xì)管尖端插入懸垂液滴中,通過注射器向內(nèi)推送空氣形成一定尺寸的氣泡,最后抽出毛細(xì)管尖端,使液滴在重力作用下自然掉落,形成所需的復(fù)合液滴。其中氣泡的直徑為Dbubble,整體液滴的直徑為Do,定義兩者的直徑比α=Dbubble/Do來刻畫氣泡的相對大小。其中氣泡直徑可通過空腔破裂前后液相的體積之差來近似計(jì)算;無空腔破裂的情況,通過捕捉復(fù)合液滴在撞擊前的圖像,測量氣泡的界面在復(fù)合液滴中的位置,并和已知直徑比的液滴進(jìn)行比較,來大致判斷該次實(shí)驗(yàn)中注射的氣泡尺寸是否滿足要求,若偏差較大,則重新進(jìn)行實(shí)驗(yàn)。

為了使撞擊表面呈現(xiàn)出超疏水性,需要對玻璃片(fisher,75mm×25mm)進(jìn)行相應(yīng)的處理。首先進(jìn)行玻璃片的清洗,在連續(xù)水流下將表面的大部分灰塵沖洗掉之后,置于裝有去離子水的潔凈容器中,放入超聲清洗儀中(fisher scientific)進(jìn)行20min的清洗。取出后分別放入丙酮、異丙醇和去離子水的環(huán)境中,使用超聲清洗儀清洗20min,去除表面殘留的微小顆粒物,保證了玻璃片較為理想的清潔度。隨后通過提拉鍍膜機(jī)將干燥玻璃片在疏水溶劑中(glaco mirror coat zero)浸漬2~3次,使表面鍍上一層厚度均勻的疏水涂層,最后在馬弗爐(thermal scientific)中加熱烘干以獲得更加穩(wěn)定的表面結(jié)構(gòu)。實(shí)驗(yàn)中使用的超疏水表面,測得的液滴靜止接觸角約為157°,達(dá)到超疏水效果。實(shí)驗(yàn)中通過調(diào)節(jié)水和甘油的配比來配置不同黏度的外相溶液,其物性參數(shù)如表1所示。

2" 結(jié)果與討論

2.1" 流動(dòng)特征

圖2展示了復(fù)合液滴在撞擊固面時(shí)的流動(dòng)細(xì)節(jié)。其中外相液體黏度μ為35cP,氣泡直徑與整體液滴直徑之比α約為0.70,以接觸固面的前一時(shí)刻為0時(shí)刻。本研究改變液滴的撞擊速度(U0=0.3~2.0m/s)以展示撞擊現(xiàn)象的差異。

圖2(a)描述的是氣-液復(fù)合液滴在低速下的撞擊(U0=0.80m/s,α=0.70),可以看到在撞擊初期底部發(fā)生明顯的變形,而液滴頂部則保持原來的形狀。液滴在慣性的作用下繼續(xù)向下運(yùn)動(dòng),逐漸變得扁平,并且與基底的接觸面積不斷增大。而在隨后的形態(tài)演化中,則表現(xiàn)出與單相液滴的

差異性。從結(jié)構(gòu)上看,氣-液復(fù)合液滴在上方存在一個(gè)空腔,使得在撞擊的過程中,主要由空腔下方的外相流體參與鋪展,同時(shí)包裹空腔的液殼也能向下輸送流體,因此在整個(gè)鋪展過程中,空腔周圍的液殼在不斷變薄。在2.44ms時(shí)刻,整體液滴達(dá)到最大鋪展直徑,隨后在毛細(xì)力的作用下發(fā)生回縮。氣液界面的變化表明空腔在復(fù)合液滴回縮階段跟隨外相液體向豎直方向收縮,最終,復(fù)合液滴脫離超疏水表面,并沿豎直方向發(fā)生回彈。將這樣的現(xiàn)象稱為液滴的“完全反彈”。

當(dāng)撞擊速度提高到1.51m/s,α=0.68時(shí),如圖2(b)所示,發(fā)現(xiàn)在空腔內(nèi)部產(chǎn)生豎直方向的液柱。這是由于空腔的存在,液殼中的流體在進(jìn)入近壁面的流動(dòng)層時(shí),一部分向外流動(dòng)參與鋪展,另一部分則向中心運(yùn)動(dòng)匯聚成縱向液柱。在2.31ms時(shí)可以觀察到空腔表面顯著的彩色條紋,這是光線在液殼上發(fā)生了薄膜干涉所引起,說明此時(shí)液殼的厚度和初始狀態(tài)相比已大幅減小。同時(shí)空腔已出現(xiàn)破口,在表面張力的作用下液殼迅速向后回縮(2.35ms,2.40ms),并發(fā)生完全的破裂,通過測量得到的回縮速度約為15.84m/s,根據(jù)Taylor-Culick速度2σo/ρoh可以預(yù)測空腔破裂初期的液膜厚度約為369nm。在隨后的過程中,鋪展的液膜逐漸回縮,和突起的液柱合并形成紡錘形(12.40ms),最后在殘余動(dòng)能的作用下脫離壁面。雖然在這里液滴也能發(fā)生回彈,但它的主要特征是撞擊過程中空腔的破裂,因此可以歸為另一種模態(tài)。

2.2" 空腔破裂

在上一小節(jié)中,不同的撞擊速度下,區(qū)分了完全反彈和空腔破裂兩種模態(tài),當(dāng)改變外相液體黏度,或者氣泡與整體液滴的直徑比α?xí)r,仍然出現(xiàn)類似現(xiàn)象,然而形成反彈和發(fā)生破裂的臨界閾值卻存在差異。為探究對破裂臨界閾值的影響,改變黏度和直徑比進(jìn)行了進(jìn)一步實(shí)驗(yàn),得到了液滴撞擊后模態(tài)關(guān)于We以及α的相圖,如圖3所示。

由于復(fù)合液滴的結(jié)構(gòu)具有特殊性,這里的We計(jì)算不能再采用單相液滴的公式,從其定義出發(fā),We=Ek/Es,其中Ek~ρo(1-α3)U20D3o為液滴動(dòng)能,Es~σo(1+α2)D2o為液滴的表面能,修正得到適合于氣-液復(fù)合液滴的韋伯?dāng)?shù)表達(dá)式為We=ρoDo(1-α3)U20/[σo(1+α2)]。類似地,根據(jù)雷諾數(shù)的一般形式Re=ρoDoU0/μ,將其中的密度替換成復(fù)合液滴的等效密度ρo(1-α3),得到修正雷諾數(shù)為Re=ρoDo(1-α3)U0/μ。其中內(nèi)相黏度遠(yuǎn)小于外相液體黏度,因此復(fù)合液滴黏度可近似為外相黏度μ。在下面的分析中,無量綱參數(shù)均使用修正的形式。

從圖3中可以看到,在保持外相溶液黏度不變的情況下,隨著氣泡直徑的增加,液滴發(fā)生空腔破裂的臨界韋伯?dāng)?shù)Wec呈下降的趨勢。隨后改變?nèi)芤旱酿ざ?/p>

Wec

得到了不同的空腔破裂臨界值曲線。同時(shí)也注意到黏度增加使得破裂臨界閾值增大。其中的原因可能是,包裹空腔的液殼內(nèi)的液體在撞擊過程中向下流動(dòng),使得液殼逐漸變薄,最后在薄膜間作用力(例如范德華力)下發(fā)生破裂[27]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"Langmuir\",\"id\":\"ITEM-1\",\"issue\":\"21\",\"issued\":{\"date-parts\":〗},\"page\":\"5908-5918\",\"title\":\"Free-RisingBubblesBounceMoreStronglyfromMobilethanfromImmobileWater-AirInterfaces\",\"type\":\"article-journal\",\"volume\":\"36\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}。若外相液體黏度更大,則液殼內(nèi)流體向下運(yùn)動(dòng)并變薄的速率相對減緩,在相同的時(shí)間尺度內(nèi),液殼的厚度與低黏度相比就會(huì)更厚,需要提高撞擊動(dòng)能促進(jìn)液殼內(nèi)更快的排膜,使之達(dá)到破裂的臨界厚度,因此具有更高的破裂閾值。

下面從模型角度分析空腔破裂與各參數(shù)之間的關(guān)系。為簡化問題分析的復(fù)雜性,對物理模型做如下假設(shè)。

1)盡管實(shí)驗(yàn)中最小的直徑比僅為0.26(對應(yīng)的氣泡直徑約為700μm),使得氣泡尺寸小于毛細(xì)長度lc,其中l(wèi)c=σo/Δρg=2.27mm,但由于液滴撞擊過程中空腔主要在液體慣性的作用下發(fā)生形變,認(rèn)為慣性相比于表面張力更占主導(dǎo)作用,因此在這里忽略表面張力對液殼排膜過程的影響。

2)同時(shí),在實(shí)驗(yàn)中觀察到空腔總是在液滴鋪展到最大直徑附近時(shí)發(fā)生破裂。因?yàn)閺?fù)合液滴撞擊過程并非靜止?fàn)顟B(tài),為利用模型[28]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"Science\",\"id\":\"ITEM-1\",\"issue\":\"5357\",\"issued\":{\"date-parts\":〗},\"page\":\"1704-1707\",\"title\":\"Thelifeanddeathof'bare'viscousbubbles\",\"type\":\"article-journal\",\"volume\":\"279\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}分析氣泡上浮的排膜速度,將液滴從接觸固面開始到結(jié)束向外鋪展的物理過程看成是在一個(gè)等效的重力場g*中,從而將復(fù)合液滴等效為靜止在固面上,內(nèi)部的氣泡在等效浮力作用下上浮,液殼不斷排膜的過程,此等效重力場約為g*=U20/Do。

3)認(rèn)為初始的液殼厚度ho和發(fā)生破裂時(shí)的厚度hb對于每個(gè)直徑比的復(fù)合液滴都是相同的,且液殼在水平環(huán)向的厚度均勻。

4)認(rèn)為液殼兩側(cè)均是可滑移邊界,因此液殼內(nèi)的速度在徑向均勻分布,即u/r=0,如圖4所示。

液膜內(nèi)的排膜速度可由下式給出[28]: u(θ)=C(θ)ρog*R2bubble/μ,其中g(shù)*為等效重力常數(shù),C(θ)是與θ相關(guān)的參數(shù)。假定液殼內(nèi)的流動(dòng)為不可壓縮流,并結(jié)合質(zhì)量守恒,得到下式[29]

1Rbubble(uh)θ+ht=0(1)

將速度u的表達(dá)式代入守恒方程,以空腔頂端(θ=0)為例,可以得到液殼厚度隨時(shí)間變化的關(guān)系式

dhdtθ=0=-1CghρoU20RbubbleμDo(2)

從液殼的初始厚度ho逐漸變化到發(fā)生破裂的臨界厚度hb,所需的時(shí)間tb可通過上式積分得到

tb=Cglnhohb2μρoU20α(3)

式中:Cg為常數(shù)。從式(2~3)可以看到,外相液體的黏度μ越大,厚度h的變化速率就越小,同理,增加空腔的尺寸或增加撞擊速度都有助于提高液殼厚度的變化率,使得空腔能在更短的時(shí)間尺度內(nèi)發(fā)生破裂,這與實(shí)驗(yàn)相圖中撞擊模態(tài)的變化趨勢一致。

對于式(3),做如下處理

tb=Cglnhohb2μρoU20α=2Cglnhohb1-α3α(1+α2)Doμσo1We(4)

并且認(rèn)為在撞擊過程中,液滴經(jīng)過特征時(shí)間ερo(1-α3)D3o/σo后發(fā)生空腔破裂,其中ε為常數(shù),可以得到如下的關(guān)系式。

2Cglnhohb1-α3α(1+α2)Doμσo1We<ερo(1-α3)D3o/σo(5)

化簡可得

K1-α3α(1+α2)μρoDoσo<We(6)

式中:K為常數(shù),對于同一黏度μ的外相液體ρo、σo相同,對于不同直徑比α的液滴,其整體直徑Do差別較小,因此認(rèn)為奧內(nèi)佐格數(shù)(Oh)相同,這樣可以得到空腔破裂時(shí)We和α的關(guān)系式

G1-α3α(1+α2)lt;We(7)

式中:G為常數(shù),圖3(a~c)中G分別為25.2、26.5和69.6。值得注意的是,完全反彈和空腔破裂的臨界韋伯?dāng)?shù)對內(nèi)部氣泡在復(fù)合液滴中的位置較為敏感,尤其當(dāng)液相黏度較小時(shí),為實(shí)驗(yàn)數(shù)據(jù)帶來一定誤差范圍。同時(shí),考慮到在3組實(shí)驗(yàn)中唯一改變的參數(shù)為外相液體黏度,本研究認(rèn)為式(7)可以正確預(yù)測空腔破裂的臨界閾值。

2.3" 最大鋪展系數(shù)

最大鋪展系數(shù)βm是液滴撞擊動(dòng)力學(xué)的一個(gè)重要參數(shù),它的定義為撞擊過程中液滴最大鋪展直徑Dmax與液滴初始直徑Do的比值,βm=Dmax/Do。本研究采用不同外相黏度的液滴進(jìn)行實(shí)驗(yàn),統(tǒng)計(jì)了βm隨We的變化曲線,如圖5所示。可以看到在同一黏度下,最大鋪展系數(shù)α

=0.4~0.6的復(fù)合液滴和單相液滴較為接近,而當(dāng)α增加到0.7左右時(shí),βm明顯減小。另一個(gè)明顯的趨勢是,對于同一We,隨著黏度的增加,βm逐漸減小。例如在We約為60時(shí),對于直徑比為0.7,黏度分別為10、35、100cP的復(fù)合液滴,所對應(yīng)的鋪展系數(shù)依次為2.2、1.9、1.7。這是因?yàn)轲ば栽黾邮沟靡旱卧谧矒暨^程中黏性耗散增加,降低了用于鋪展的動(dòng)能,因此相應(yīng)地減小了最大鋪展系數(shù)。

關(guān)于最大鋪展系數(shù)的研究大多集中于單相液滴,得到的普遍結(jié)論是,在液滴黏性和撞擊速度較大時(shí),液滴的動(dòng)能完全轉(zhuǎn)化為黏性耗散,通過能量守恒和體積守恒得到的最大鋪展系數(shù)和雷諾數(shù)的1/5次方成正比[30]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"ProceedingsoftheRoyalSocietyA:Mathematical,PhysicalandEngineeringSciences\",\"id\":\"ITEM-1\",\"issue\":\"2022\",\"issued\":{\"date-parts\":〗},\"page\":\"1411-1430\",\"title\":\"Normalimpactofaliquiddroponadrysurface:Modelforspreadingandreceding\",\"type\":\"article-journal\",\"volume\":\"458\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}。當(dāng)液體黏性較小時(shí),動(dòng)能可認(rèn)為完全轉(zhuǎn)化為表面能,此時(shí)得到的βm和韋伯?dāng)?shù)的1/2次方成正比[31]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"JournalofMaterialsScience\",\"id\":\"ITEM-1\",\"issue\":\"8\",\"issued\":{\"date-parts\":〗},\"page\":\"3677-3682\",\"title\":\"Splat-quenchsolidificationoffreelyfallingliquid-metaldropsbyimpactonaplanarsubstrate\",\"type\":\"article-journal\",\"volume\":\"25\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}。LEE等[23]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"JournalofFluidMechanics\",\"id\":\"ITEM-1\",\"issued\":{\"date-parts\":〗},\"page\":\"R41-R411\",\"title\":\"Universalrescalingofdropimpactonsmoothandroughsurfaces\",\"type\":\"article-journal\",\"volume\":\"786\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}提出的關(guān)系式(β2m-β20)·Re-1/5=We1/2(A+We1/2)將兩個(gè)區(qū)域的尺度律統(tǒng)一,其中β0為撞擊速度接近于0時(shí)液滴的鋪展系數(shù),約為1.2,A為擬合系數(shù)。GULYAEV等[11]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"ExperimentsinFluids\",\"id\":\"ITEM-1\",\"issue\":\"1\",\"issued\":{\"date-parts\":〗},\"page\":\"1432\",\"title\":\"Hollowdropletsimpactingontoasolidsurface\",\"type\":\"article-journal\",\"volume\":\"54\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}從理論角度分析了空心液滴撞擊時(shí)的最大鋪展系數(shù),通過

求解能量方程式關(guān)于時(shí)間t的微分-積分耦合方程,得到了鋪展系數(shù)隨時(shí)間變化的關(guān)系式。但是由于方程較為復(fù)雜,使得數(shù)值求解的難度增加。

本研究參照單相液滴的分析方式,并結(jié)合LEE等[23]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"JournalofFluidMechanics\",\"id\":\"ITEM-1\",\"issued\":{\"date-parts\":〗},\"page\":\"R41-R411\",\"title\":\"Universalrescalingofdropimpactonsmoothandroughsurfaces\",\"type\":\"article-journal\",\"volume\":\"786\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}的公式,得到了適用于氣-液復(fù)合液滴最大鋪展系數(shù)的理論公式。從能量守恒的角度出發(fā),在毛細(xì)力占主導(dǎo)時(shí)忽略液滴撞擊過程中的黏性耗散,動(dòng)能Ek~ρo(D3o-D3bubble)U20完全轉(zhuǎn)化為達(dá)到最大鋪展時(shí)的表面能Es~σoD2max。由于液滴在鋪展時(shí)一部分液體向空腔中匯聚形成隆起而未參與向外的鋪展,還需要對動(dòng)能作修正。WEI等[22]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"PhysicsofFluids\",\"id\":\"ITEM-1\",\"issue\":\"6\",\"issued\":{\"date-parts\":〗},\"page\":\"1-10\",\"publisher\":\"AIPPublishingLLC\",\"title\":\"Maximumspreadingofanimpactingair-in-liquidcompounddrop\",\"type\":\"article-journal\",\"volume\":\"33\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}采用數(shù)值模擬發(fā)現(xiàn)實(shí)際參與鋪展的液相體積與直徑比之間存在1-α3的關(guān)系,因此能量關(guān)系式可以寫成

(1-α3)ρoD3o(1-α3)U20~σoD2max(8)

得到如下關(guān)系式

βm~(1+α2)(1-α3)We(9)

在黏性力占主導(dǎo)時(shí),認(rèn)為初始動(dòng)能Ek完全被黏性所消耗Eν~μ(U0/δ)D3max,δ為鋪展液層的厚度。同樣需要對黏性耗散引入一個(gè)修正系數(shù)f(α),得到的能量關(guān)系式為

(1-α3)2ρoD3oU20~f(α)μU0D5maxD3o(10)

WEI等[22]通過統(tǒng)計(jì)黏性耗散與直徑比之間的關(guān)系,得到f(α)的形式為

f(α)~1-α3H(1-α2)(11)

式中:H=0.83是擬合常數(shù)。結(jié)合公式(10)和(11),得到βm的表達(dá)式為

βm~[0.83(1-α2)Re]1/5(12)

式(9)和(12)分別得到了毛細(xì)力區(qū)域和黏性力區(qū)域最大鋪展系數(shù)βm關(guān)于無量綱參數(shù)的尺度律關(guān)系。令Rem=0.83(1-α2)Re,Wem=(1+α2)(1-α3)We,需要注意的是,這里的We和Re為適用于氣-液復(fù)合液滴的修正形式。結(jié)合LEE等[23]的分析方式,得到的最大鋪展系數(shù)表達(dá)式為

(β2m-β20)1/2(Re-1/5m)=We1/2m/(N+We1/2m)(13)

式中,常數(shù)N=3.97。

令Θ=(β2m-β20)1/2Re-1/5m,得到式(13)和實(shí)驗(yàn)數(shù)據(jù)的對比,從圖6(a)中可看到,對于不同直徑比和黏

度的液滴,能較好地由上述表達(dá)式描述,從實(shí)驗(yàn)上說明了修正后的最大鋪展系數(shù)表達(dá)式適用于復(fù)合液滴的計(jì)算。但是當(dāng)和WEI等[22]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"PhysicsofFluids\",\"id\":\"ITEM-1\",\"issue\":\"6\",\"issued\":{\"date-parts\":〗},\"page\":\"1-10\",\"publisher\":\"AIPPublishingLLC\",\"title\":\"Maximumspreadingofanimpactingair-in-liquidcompounddrop\",\"type\":\"article-journal\",\"volume\":\"33\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}的結(jié)果對比時(shí),發(fā)現(xiàn)數(shù)值模擬的擬合曲線與實(shí)驗(yàn)擬合曲線偏差較大,這可能是因?yàn)樵谀M中采用單相液滴的形式計(jì)算空心液滴的We和Re所致。然而當(dāng)本研究將實(shí)驗(yàn)的數(shù)據(jù)點(diǎn)也看成單相液滴計(jì)算時(shí),發(fā)現(xiàn)仍然和數(shù)值模擬結(jié)果有明顯的區(qū)別,說明這樣的處理對結(jié)果并無太大影響,實(shí)驗(yàn)和數(shù)值模擬結(jié)果的差異可能來自其他因素。WEI等[22]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"PhysicsofFluids\",\"id\":\"ITEM-1\",\"issue\":\"6\",\"issued\":{\"date-parts\":〗},\"page\":\"1-10\",\"publisher\":\"AIPPublishingLLC\",\"title\":\"Maximumspreadingofanimpactingair-in-liquidcompounddrop\",\"type\":\"article-journal\",\"volume\":\"33\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}在數(shù)值中采用的液滴模型為同心結(jié)構(gòu),與本實(shí)驗(yàn)中氣泡懸浮于液滴頂端的復(fù)合液滴結(jié)構(gòu)不同,因此有必要對內(nèi)相位置對最大鋪展系數(shù)產(chǎn)生的影響進(jìn)行討論。

對于氣-液復(fù)合液滴來說,在實(shí)驗(yàn)中較難調(diào)整氣泡的位置,為此本研究采用密度更大(ρi=1.71g/mL)的全氟己烷(PP1)充當(dāng)內(nèi)相液滴,被包裹在水/甘油混合溶液中形成液-液復(fù)合液滴來進(jìn)行實(shí)驗(yàn),此時(shí)內(nèi)液滴沉積在底部。圖7為不同黏度下βm隨We的變化,可以觀察到在直徑比α較小的情況下,復(fù)合液滴的最大鋪展系數(shù)和單相液滴沒有明顯的區(qū)別,這與LIU等[16]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"JournalofFluidMechanics\",\"id\":\"ITEM-1\",\"issued\":{\"date-parts\":〗},\"page\":\"R6\",\"title\":\"Onthemaximalspreadingofimpactingcompounddrops\",\"type\":\"article-journal\",\"volume\":\"854\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}對同心復(fù)合液滴的數(shù)值模擬結(jié)果一致。當(dāng)把直徑比α增大到0.78左右時(shí),仍然發(fā)現(xiàn)和單相液滴的最大鋪展系數(shù)幾乎重合在一起,如圖8所示。然而在LIU等[16]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"JournalofFluidMechanics\",\"id\":\"ITEM-1\",\"issued\":{\"date-parts\":〗},\"page\":\"R6\",\"title\":\"Onthemaximalspreadingofimpactingcompounddrops\",\"type\":\"article-journal\",\"volume\":\"854\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}的結(jié)果中,在We=15附近單相液滴的βm比α≈ 0.8的復(fù)合液滴高出約7.3%。從這一對比中本研究得出了定性的結(jié)論:內(nèi)液滴的相對位置會(huì)影響復(fù)合液滴的最大鋪展系數(shù)。雖然在氣-液復(fù)合液滴的實(shí)驗(yàn)和模擬中氣泡的位置是頂部和中心的區(qū)別,但仍可以通過上例說明位置變化的影響。當(dāng)然上述液-液和氣-液復(fù)合液滴在內(nèi)外相密度差,黏度比等方面存在差異,因此僅改變空腔的位置是否能像液-液復(fù)合液滴一樣對βm造成影響,還需進(jìn)一步深入研究。例如采用數(shù)值模擬研究偏心復(fù)合液滴撞擊,來與實(shí)驗(yàn)結(jié)果進(jìn)行比較,揭示內(nèi)相位置對撞擊結(jié)果的定量影響。

2.4" 鋪展系數(shù)的動(dòng)態(tài)變化

除了最大鋪展系數(shù),本研究也關(guān)注了液滴撞擊過程中鋪展系數(shù)隨時(shí)間的變化特性。在保持修正We相同的情況下,改變直徑比α得到了β-t的變化曲線,如圖9所示。當(dāng)液滴接觸固面時(shí)開始發(fā)生變形,液滴直徑相比初始狀態(tài)有所增加,因此鋪展系數(shù)從1開始變化。隨著鋪展的進(jìn)行,液滴動(dòng)能轉(zhuǎn)化為表面能和黏性耗散,用于鋪展的動(dòng)能減少,使得液滴前端的鋪展速度逐漸減小,達(dá)到βm后停止鋪展。隨后液滴表面能轉(zhuǎn)化為動(dòng)能,使液滴發(fā)生回縮,最終在殘余動(dòng)能的作用下脫離固體表面。

系數(shù)隨時(shí)間的演化過程

從圖9可以看到,在撞擊的初期,4條曲線幾乎完全重合在一起,這是因?yàn)闅馀輵腋≡趶?fù)合液滴的頂部,早期階段只有空腔下方的液體參與鋪展階段,底部液體向外流動(dòng)形成鋪展的液盤,空腔的存在不會(huì)對其產(chǎn)生影響。隨著鋪展的進(jìn)行,空腔被壓縮,包裹空腔的液殼中的液體開始向下運(yùn)動(dòng),補(bǔ)充到鋪展的液盤中,但是其中的液體體積有限,且只有一部分液體參與向外的流動(dòng),因此雖然鋪展系數(shù)依舊不斷增加,但是鋪展的速度逐漸減小。直徑比越大,復(fù)合液滴越快進(jìn)入慢速鋪展階段,在圖中體現(xiàn)為在更早的時(shí)刻出現(xiàn)曲線的偏離。α≈ 0.40,0.55的液滴幾乎在同一時(shí)刻達(dá)到最大鋪展,這可能是由于兩者的直徑比較為接近所導(dǎo)致,與α ≈ 0.70 的液滴相比較,則能明顯地觀察到空腔較大的液滴更快達(dá)到最大鋪展。而將單相液滴加入對比時(shí),這樣的差異更為顯著。

2.5" 接觸時(shí)間

液滴的接觸時(shí)間tc定義為液滴撞擊時(shí)從接觸固面到完全脫離固面所經(jīng)歷的時(shí)間,前人也基于單相液滴對此開展了深入研究。BIRD等[32]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"Nature\",\"id\":\"ITEM-1\",\"issue\":\"7476\",\"issued\":{\"date-parts\":〗},\"page\":\"385-388\",\"title\":\"Reducingthecontacttimeofabouncingdrop\",\"type\":\"article-journal\",\"volume\":\"503\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\",\"previouslyFormattedCitation\":\"lt;supgt;lt;/supgt;\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}通過在超疏水表面加入微米尺度和納米尺度的多重結(jié)構(gòu)來促進(jìn)液滴的非對稱回縮,減小了液滴的接觸時(shí)間。LIU等[33]ADDINCSL_CITATION{\"citationItems\":,\"container-title\":\"NaturePhysics\",\"id\":\"ITEM-1\",\"issue\":\"7\",\"issued\":{\"date-parts\":〗},\"page\":\"515-519\",\"title\":\"Pancakebouncingonsuperhydrophobicsurfaces\",\"type\":\"article-journal\",\"volume\":\"10\"},\"uris\":}〗,\"mendeley\":{\"formattedCitation\":\"lt;supgt;lt;/supgt;\",\"plainTextFormattedCitation\":\"\"},\"properties\":{\"noteIndex\":0},\"schema\":\"https://github.com/citation-style-language/schema/raw/master/csl-citation.json\"}同樣修飾撞擊面的結(jié)構(gòu),能夠使液滴在未發(fā)生回縮的情況下發(fā)生回彈,因此大大縮短了接觸時(shí)間。而對于復(fù)合液滴而言,目前則沒有相關(guān)的文獻(xiàn)報(bào)道,本研究從實(shí)驗(yàn)角度關(guān)注了復(fù)合液滴在撞擊過程中的接觸時(shí)間。

本研究沒有采用文獻(xiàn)中研究最廣泛的純水,其原因是水的黏度較低,氣泡在較低的撞擊速度下就會(huì)發(fā)生破裂。如果選用的液體黏度較高,則在撞擊超疏水表面時(shí)表面的疏水層容易被液滴破壞而發(fā)生液體的黏附,使得接觸時(shí)間的測量產(chǎn)生偏差。因此為了獲得完整的反彈復(fù)合液滴并擴(kuò)大參數(shù)域,本研究利用黏度為10cP的液體來生成復(fù)合液滴。

本研究首先統(tǒng)計(jì)了直徑比α≈0.6的復(fù)合液滴和相同尺寸的單相液滴在不同速度下撞擊表面后的接觸時(shí)間tc,其中撞擊速度范圍是0.27~1.15m/s,如圖10所示。

從圖中可以看到對于不同的撞擊速度,兩種液滴的接觸時(shí)間都基本保持一致。散點(diǎn)為實(shí)驗(yàn)數(shù)據(jù),虛線為平均值,分別為tc=16.13、11.63ms。隨后改變液滴的直徑比,同樣發(fā)現(xiàn)類似的結(jié)果,圖10(b)中α≈ 0.5,0.7的復(fù)合液滴,平均值為12.58ms和11.09ms。從中觀察到的另一個(gè)明顯的趨勢是,隨著直徑比的增大,接觸時(shí)間不斷下降,且與單相液滴相比都有約25%的減少。

通過對撞擊過程中慣性力和毛細(xì)力的平衡,可以得到一個(gè)特征時(shí)間尺度τ=ρR3/σ(其中R為復(fù)合液滴半徑),對于復(fù)合液滴,ρ=(1-α3)ρo,在這里將實(shí)際接觸時(shí)間與τ作無量綱化來表征關(guān)于特征時(shí)間的相對大小。對于單相液滴以及α≈ 0.5,0.6,0.7的復(fù)合液滴,分別為tc =2.42τ, 2.30τ,2.16τ, 1.99τ,仍然發(fā)現(xiàn)無量綱時(shí)間隨直徑比的增加有下降趨勢。本研究將實(shí)驗(yàn)中的α和無量綱時(shí)間作擬合,得到兩者的關(guān)系式為

tc/τ=a(1-α3)1/2(14)

式中:a =2.44為擬合參數(shù),可以看到曲線與數(shù)據(jù)點(diǎn)吻合較好。

tc/τ and diameter ratio α

復(fù)合液滴在撞擊過程中,由于空腔的存在使得液殼中僅有一部分液體參與鋪展,降低了液滴的慣性鋪展程度,而在回縮階段也相應(yīng)減少了回縮所需的時(shí)間,因此隨著氣泡尺寸的增大,液滴的接觸時(shí)間減小。如前文所述,此處為擴(kuò)大撞擊速度的范圍,只采用了10cP的外相溶液進(jìn)行實(shí)驗(yàn)。在相同的物性下,復(fù)合液滴鋪展和回縮過程主要由空腔尺寸造成的鋪展慣性控制。表面張力的影響有待后續(xù)工作進(jìn)一步研究。

3" 結(jié)" 論

本研究通過實(shí)驗(yàn)研究了氣-液復(fù)合液滴撞擊超疏水固壁的動(dòng)力學(xué)過程,展現(xiàn)了液滴在撞擊過程中的流動(dòng)特點(diǎn),關(guān)注了液滴的完整反彈與發(fā)生氣泡破裂的臨界閾值,鋪展系數(shù)以及接觸時(shí)間等主要物理特征,其主要結(jié)論如下。

1)觀察到液滴在不同撞擊速度下呈現(xiàn)完整反彈和氣泡破裂2種主要模態(tài),通過改變外相溶液黏度和直徑比得到了模態(tài)相圖,并提出了復(fù)合液滴空腔破裂臨界閾值的理論模型。

2)得到了在不同的黏度和直徑比下的最大鋪展系數(shù)隨We的變化曲線,并理論推導(dǎo)了適用于氣-液復(fù)合液滴的最大鋪展系數(shù)關(guān)系式,將數(shù)據(jù)點(diǎn)能較好地歸一化。同時(shí),獲得了修正的最大鋪展系數(shù)公式,適用于氣-液復(fù)合液滴。

3)關(guān)注了復(fù)合液滴在撞擊過程中的接觸時(shí)間,發(fā)現(xiàn)與單相液滴相比能較大幅度地降低接觸時(shí)間,并提出了公式tc/τ=2.44(1-α3)1/2,將無量綱接觸時(shí)間與直徑比之間的關(guān)系較好地聯(lián)系起來。

參考文獻(xiàn):

[1]" JOSSERAND C,THORODDSEN S T. Drop impact on a solid surface[J]. Annual review of fluid mechanics,2016,48:365-391.

[2]" JOUNG Y S,BUIE C R. Aerosol generation by raindrop impact on soil[J]. Nature communications,2015,6(1):6083.

[3]" WIJSHOFF H. Drop dynamics in the inkjet printing process[J]. Current opinion in colloid amp; interface science,2018,36:20-27.

[4]" HULSE-SMITH L,ILLES M. A blind trial evaluation of a crime scene methodology for deducing impact velocity and droplet size from circular bloodstains[J]. Journal of forensic sciences,2007,52(1):65-69.

[5]" VISSER C W,AMATO D N,MUELLER J,et al. Architected polymer foams via direct bubble writing[J]. Advanced materials,2019,31(46):1904668.

[6]" TASOGLU S,KAYNAK G,SZERI A J,et al. Impact of a compound droplet on a flat surface:a model for single cell epitaxy[J]. Physics of fluids,2010,22(8):082103.

[7]" SHINJO J,XIA J,GANIPPA L C,et al. Physics of puffing and microexplosion of emulsion fuel droplets[J]. Physics of fluids,2014,26(10):103302.

[8]" BLANKEN N,SALEEM M S,THORAVAL M J,et al. Impact of compound drops:a perspective[J]. Current opinion in colloid amp; interface science,2021,51:101389.

[9]" 白博峰,駱政園. 流場中復(fù)雜液滴的變形運(yùn)動(dòng)與吸附[J]. 科學(xué)通報(bào),2015,60(34):3349-3366.

BAI Bofeng,LUO Zhengyuan. Deformation,motion and adhesion of complex droplets under flow[J]. Chinese science bulletin,2015,60(34):3349-3366(in Chinese).

[10]GULYAEV I P,SOLONENKO O P,GULYAEV P Y,et al. Hydrodynamic features of the impact of a hollow spherical drop on a flat surface[J]. Technical physics letters,2009,35(10):885-888.

[11]GULYAEV I P,SOLONENKO O P. Hollow droplets impacting onto a solid surface[J]. Experiments in fluids,2012,54(1):1432.

[12]ZHU S Q,KHERBECHE A,F(xiàn)ENG Y M,et al. Impact of an air-in-liquid compound drop onto a liquid surface[J]. Physics of fluids,2020,32(4):041705.

[13]ZHANG J M,LI E Q,THORODDSEN S T. Fine radial jetting during the impact of compound drops[J]. Journal of fluid mechanics,2020,883:A46.

[14]BLANKEN N,SALEEM M S,ANTONINI C,et al. Rebound of self-lubricating compound drops[J]. Science advances,2020,6(11):eaay3499.

[15]張春雨. 多相接觸線模型及復(fù)合液滴動(dòng)力學(xué)研究[D]. 合肥:中國科學(xué)技術(shù)大學(xué),2018.

[16]LIU H R,ZHANG C Y,GAO P,et al. On the maximal spreading of impacting compound drops[J]. Journal of fluid mechanics,2018,854:R6.

[17]尚興隆,白博峰. 壁面吸附復(fù)合液滴的變形與運(yùn)動(dòng)特性[J]. 工程熱物理學(xué)報(bào),2017,38(12):2636-2640.

SHANG Xinglong,BAI Bofeng. Deformation and motion of compound droplet adhering to wall[J]. Journal of engineering thermophysics,2017,38(12):2636-2640(in Chinese).

[18]DEKA H,BISWAS G,SAHU K C,et al. Coalescence dynamics of a compound drop on a deep liquid pool[J]. Journal of fluid mechanics,2019,866:R2.

[19]SARKER A,BORUAH M P,RANDIVE P R,et al. The role of compound droplet size on transition from jetting to bubble entrapment during its impact on liquid[J]. Physics of fluids,2021,33(10):102103.

[20]KUMAR A,GU S,TABBARA H,et al. Study of impingement of hollow ZrO2 droplets onto a substrate[J]. Surface and coatings technology,2013,220:164-169.

[21]鄭志偉,李大樹,仇性啟,等. 中空液滴碰撞水平壁面數(shù)值分析[J]. 物理學(xué)報(bào),2017,66(1):235-244.

ZHENG Zhiwei,LI Dashu,QIU Xingqi,et al. Numerical analysis of hollow droplet impact on a flat surface[J].Acta physica Sinica,2017,66(1):235-244(in Chinese).

[22]WEI Y,THORAVAL M J. Maximum spreading of an impacting air-in-liquid compound drop[J]. Physics of fluids,2021,33(6):061703.

[23]LEE J B,LAAN N,DE BRUIN K G,et al. Universal rescaling of drop impact on smooth and rough surfaces[J]. Journal of fluid mechanics,2016,786:R4.

[24]ZHAO W W,LIN S J,CHEN L Q,et al. Jetting from an impacting drop containing a particle[J]. Physics of fluids,2020,32(1):011704.

[25]LIU D D,TRAN T. Emergence of two lamellas during impact of compound droplets[J]. Applied physics letters,2018,112(20):203702.

[26]LIU D D,TRAN T. The ejecting lamella of impacting compound droplets[J]. Applied physics letters,2019,115(7):073702.d

[27]VAKARELSKI I U,YANG F,THORODDSEN S T. Free-rising bubbles bounce more strongly from mobile than from immobile water-air interfaces[J]. Langmuir,2020,36(21):5908-5918.

[28]DEBRGEAS G,DE GENNES P G,BROCHARD-WYART F. The life and death of “bare” viscous bubbles[J]. Science,1998,279(5357):1704-1707.

[29]NGUYEN C T,GONNERMANN H M,CHEN Y,et al. Film drainage and the lifetime of bubbles[J].Geochemistry,geophysics,geosystems,2013,14(9):3616-3631.

[30]ROISMAN I V,RIOBOO R,TROPEA C.Normal impact of a liquid drop on a dry surface:model for spreading and receding[J].Proceedings of the royal society of london.series a:mathematical,physical and engineering sciences,2002,458(2022):1411-1430.

[31]COLLINGS E W,MARKWORTH A J,MCCOY J K,et al. Splat-quench solidification of freely falling liquid-metal drops by impact on a planar substrate[J]. Journal of materials science,1990,25(8):3677-3682.

[32]BIRD J C,DHIMAN R,KWON H M,et al. Reducing the contact time of a bouncing drop[J].Nature,2013,503(7476):385-388.

[33]LIU Y H,MOEVIUS L,XU X P,et al. Pancake bouncing on superhydrophobic surfaces[J].Nature physics,2014,10(7):515-519.

(編輯" 呂茵)

富平县| 蒲城县| 贡觉县| 东乡| 石屏县| 伊川县| 河北区| 长子县| 玉林市| 龙泉市| 忻城县| 越西县| 永吉县| 稻城县| 延津县| 台前县| 隆回县| 越西县| 巴塘县| 赣州市| 梁山县| 张家界市| 长海县| 湖口县| 胶南市| 洪江市| 顺昌县| 凤台县| 肃南| 那曲县| 吉林省| 北辰区| 阳谷县| 扎囊县| 岢岚县| 容城县| 凤城市| 凌源市| 益阳市| 建水县| 义马市|