国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于元分析的新疆膜下滴灌棉田精量施氮研究

2024-05-29 19:34許琪宋在金李朝陽董曉梅黃童童宋戰(zhàn)肖飛楊玉輝
棉花學(xué)報 2024年1期
關(guān)鍵詞:元分析膜下滴灌通徑分析

許琪 宋在金 李朝陽 董曉梅 黃童童 宋戰(zhàn) 肖飛 楊玉輝

摘要:【目的】明確施氮對棉花產(chǎn)量及其構(gòu)成因子的影響,并為氮肥的精量施用及棉花高產(chǎn)提供理論借鑒?!痉椒ā恳孕陆は碌喂嗝尢餅檠芯繉ο?,采用元分析(meta-analysis,meta分析)和通徑分析,研究不同施氮量、施氮方案、氣候條件等對棉花產(chǎn)量的綜合效應(yīng)及影響機(jī)制?!窘Y(jié)果】與不施氮相比,施氮能顯著提高棉花產(chǎn)量,增產(chǎn)效應(yīng)為43.38%。施氮量為360~480 kg·hm-2時,對棉花的增產(chǎn)效應(yīng)最大;施氮量超過此范圍,棉花產(chǎn)量不再顯著增加,本研究推薦的經(jīng)濟(jì)施氮量為360~420 kg·hm-2?;?0%,追肥80%且按照6%、8%、22%、25%、12%、7%的比例隨水滴施6次的施氮方案對棉花的增產(chǎn)效應(yīng)最大。對于年蒸發(fā)量>2 000 mm、年降水量<60 mm、年日照時間<2 864 h、年有效積溫>4 000 ℃、無霜期>200 d的地區(qū),且土壤為砂質(zhì)土、土壤初始有機(jī)碳含量<5.8 g·kg-1、初始速效氮含量≤60 mg·kg-1的棉田,施氮的增產(chǎn)效應(yīng)最明顯。通徑分析結(jié)果表明,施氮通過提高土壤硝態(tài)氮含量,從而增加棉花葉面積指數(shù),對棉花產(chǎn)量的提升貢獻(xiàn)最顯著。【結(jié)論】建議新疆植棉區(qū)施氮量為360~420 kg·hm-2,采用上述優(yōu)化方案合理施氮,可以實(shí)現(xiàn)膜下滴灌棉田的高產(chǎn)并降低環(huán)境風(fēng)險。

關(guān)鍵詞:精量施氮;施氮方案;膜下滴灌;棉花產(chǎn)量;元分析;通徑分析

A study on precise nitrogen fertilization in drip irrigation cotton field under film in Xinjiang based on meta-analysis

Abstract: [Objective] The effect of nitrogen application on cotton yield and its constituent factors is clarified, aiming to provide theoretical reference for the precise application of nitrogen fertilizer and high cotton yield. [Methods] The comprehensive effects and influencing mechanisms of different nitrogen application rates, nitrogen application schemes, and climatic conditions on cotton yield are studied by meta-analysis and path analysis in Xinjiang. [Results] Compared with no nitrogen application, nitrogen application could significantly increase cotton yield with 43.38%. Nitrogen application of 360-480 kg·hm-2 had the greatest effect on cotton yield. Nitrogen application exceeding this range no longer increased cotton yield significantly, and the recommended economic nitrogen application rate in this study was 360-420 kg·hm-2. The nitrogen application scheme of 20% of basic fertilizer, 80% of supplementary fertilizer and 6 times of drip application with water at the rate of 6%, 8%, 22%, 25%, 12%, and 7% had the greatest effect on cotton yield. The greatest yield increase was achieved by the nitrogen fertilization program. The most obvious effect of nitrogen application was found in cotton fields with annual evaporation >2 000 mm, annual precipitation <60 mm, annual sunshine time <2 864 h, annual effective cumulative temperature >4 000 ℃, and frost-free period >200 d, and in fields with sandy soil, initial soil organic carbon content <5.8 g·kg-1, and initial soil available nitrogen content ≤60 mg·kg-1 . The results of the pathway analysis showed that nitrogen application contributed most significantly to the enhancement of cotton yield by increasing the soil nitrate nitrogen content, thereby increasing the cotton leaf area index. [Conclusion] It is suggested that nitrogen application rate of 360 - 420 kg·hm-2 with the above optimization scheme should be used in Xinjiang cotton area to achieve high cotton yield and reduce environmental risk in drip irrigation cotton fields under film.

Keywords: precise nitrogen application; nitrogen application scheme; drip irrigation cotton under film; cotton yield; meta-analysis;? path analysis

棉花是世界上重要的經(jīng)濟(jì)作物,在世界農(nóng)業(yè)發(fā)展中占據(jù)重要地位[1]。中國的棉花種植主要分布在長江流域、黃河流域以及西北內(nèi)陸地區(qū)。近年來,隨著長江流域和黃河流域棉花種植面積的減少,新疆已成為我國最大的植棉區(qū)[2],新疆棉花產(chǎn)量約占全國總產(chǎn)量的90.2%[3]。棉花膜下滴灌是將滴灌技術(shù)和覆膜技術(shù)相結(jié)合,保證棉花生長適宜的水熱環(huán)境,使棉花生育期提前,顯著提高棉花產(chǎn)量[4]。肥料的投入是保證棉花高產(chǎn)的重要手段,不合理的氮肥施用導(dǎo)致氮素流失加劇、環(huán)境負(fù)擔(dān)加重,不利于棉花的生長和產(chǎn)量形成[5]。精量施氮就是在經(jīng)濟(jì)的基礎(chǔ)上采取最優(yōu)的施氮方案實(shí)現(xiàn)棉花的高質(zhì)高產(chǎn),同時減少溫室效應(yīng)和地下水污染等環(huán)境問題,精量施氮作為精準(zhǔn)農(nóng)業(yè)的核心在可持續(xù)發(fā)展中發(fā)揮重要作用[6]。因此,研究精量施氮對棉花產(chǎn)量的影響及其關(guān)鍵作用因子對實(shí)現(xiàn)棉花高產(chǎn)具有重要意義。

施氮量對膜下滴灌棉花產(chǎn)量的影響已有眾多研究,但由于種植地點(diǎn)和評價方法的多樣性導(dǎo)致研究結(jié)論不一。在新疆阿瓦提縣試驗(yàn)站的研究表明,當(dāng)施氮量為0~220 kg·hm-2時,隨著施氮量的增加,棉花對氮素養(yǎng)分的吸收量和產(chǎn)量顯著增加[7]。在塔里木大學(xué)農(nóng)學(xué)試驗(yàn)站的研究表明,施氮量為317~395 kg·hm-2時,棉花的氮素累積量隨施氮量的增加而顯著增加;根據(jù)皮棉產(chǎn)量與施氮量的二次方程計(jì)算發(fā)現(xiàn)皮棉產(chǎn)量最高的施氮量為361.2 kg·hm-2 [8];在石河子大學(xué)農(nóng)學(xué)院試驗(yàn)站的研究表明,施氮能顯著提高作物對氮素的吸收積累,棉花的合理施氮量為360 kg·hm-2 [9]。周燕等[10]通過元分析(meta-analysis,meta分析)方法評價了棉花產(chǎn)量和氮素吸收量對施氮的響應(yīng),但未對棉花的施氮方案及其他影響因素進(jìn)行深入挖掘。眾多研究中對于適宜施氮量的結(jié)論不一,為了探明施氮量對土壤理化特性、棉花生長及產(chǎn)量的影響,需要1種綜合的分析方法對已有研究進(jìn)行深度挖掘,以得到更加科學(xué)、準(zhǔn)確且適用性強(qiáng)的結(jié)論。

獨(dú)立的田間試驗(yàn)難以準(zhǔn)確評價施氮對棉花產(chǎn)量的綜合效應(yīng),且關(guān)于深入挖掘棉花產(chǎn)量影響因素的研究還鮮有報道。本研究以新疆膜下滴灌棉田為研究對象,基于meta分析方法,系統(tǒng)研究施氮量對膜下滴灌棉田土壤理化特性、棉花生理生長及產(chǎn)量的影響;利用線性回歸模型進(jìn)行通徑分析,明確土壤氮素含量、棉花干物質(zhì)積累量、氮素吸收量等指標(biāo)對產(chǎn)量影響的相對重要性,確定適宜施氮量及施氮方案,為氮肥的精量施用及棉花高產(chǎn)提供理論借鑒。

1 材料與方法

1.1 數(shù)據(jù)來源

本研究采納的文獻(xiàn)數(shù)據(jù)來源于中國知網(wǎng)(www.cnki.net)和Web of Science(www.webofscience.com),在中國知網(wǎng)中采用主題詞高級檢索,文獻(xiàn)檢索關(guān)鍵詞為:“棉花”AND“膜下滴灌+滴灌”AND“棉花產(chǎn)量+產(chǎn)量”;在Web of Science中采用主題詞高級檢索,文獻(xiàn)檢索關(guān)鍵詞為:cotton + cotton yield + drip irrigation。排除咸水、微咸水、磁化水等灌水水質(zhì),篩選1960年1月1日-2022年12月31日學(xué)者發(fā)表的期刊論文及碩博士學(xué)位論文。根據(jù)研究主題的需要,文獻(xiàn)篩選納入需符合以下標(biāo)準(zhǔn)[11-15]:(1)試驗(yàn)為新疆的田間試驗(yàn),盆栽及室內(nèi)試驗(yàn)不考慮在內(nèi),試驗(yàn)對象為棉花。(2)試驗(yàn)重復(fù)數(shù)≥3。(3)文獻(xiàn)中需包含不施氮處理作為對照。(4)研究案例中所記錄的棉花產(chǎn)量為籽棉產(chǎn)量。(5)相同處理下的多次重復(fù)觀測取平均值。(6)當(dāng)試驗(yàn)中有附加因子影響的研究,則認(rèn)為是獨(dú)立的試驗(yàn)單獨(dú)納入數(shù)據(jù)庫。(7)對于文獻(xiàn)中同一地區(qū)的多年試驗(yàn)研究,認(rèn)為是相互獨(dú)立的試驗(yàn)單獨(dú)納入數(shù)據(jù)庫。文獻(xiàn)中的表格數(shù)據(jù)直接提取,柱狀圖和折線圖中的數(shù)據(jù)采用軟件Get Data 2.20將圖像數(shù)值化后再提取。按照以上標(biāo)準(zhǔn),篩選得到41篇文獻(xiàn)和1 262組數(shù)據(jù)。

1.2 分組分析

由于氣候條件、土壤肥力、品種等對棉花產(chǎn)量的影響較大,同時施氮量和施氮方案等諸多因素均對棉花產(chǎn)量有影響。因此本研究對文獻(xiàn)數(shù)據(jù)進(jìn)行分組:施氮量[16-18]、施氮方案、品種[7, 16, 19-24]、土壤質(zhì)地[20, 25-27]、土壤速效氮含量[28]、土壤有機(jī)碳含量[28-29]、年降水量[30-31]、年蒸發(fā)量[32]、無霜期[33]、年有效積溫[32]和年日照時間[34],檢驗(yàn)這些因素對棉花產(chǎn)量的影響(表1)。

1.3 數(shù)據(jù)分析

為了確保研究的可靠性,本研究以權(quán)重響應(yīng)比(response ratio, RR)為統(tǒng)計(jì)學(xué)指標(biāo),以權(quán)重響應(yīng)比的自然對數(shù)(lnRR)表示某一驅(qū)動因子的影響程度,計(jì)算公式如下[35]:

整合分析每個研究的權(quán)重響應(yīng)比進(jìn)行加權(quán),得出平均加權(quán)響應(yīng)(weighted response ratio, RR++)。另外,方差(variance, V)、權(quán)重系數(shù)(weighted factor, W)、RR++標(biāo)準(zhǔn)差和95%的置信區(qū)間(confidence interval, CI)通過以下公式計(jì)算獲得。

公式(3)中,m為分組數(shù),例如不同土壤類型或不同施肥量的分組數(shù),ki代表第i個分組的數(shù)據(jù)對數(shù)。公式(4)中,SDe2和SDc2代表施氮試驗(yàn)組和不施氮對照組的標(biāo)準(zhǔn)差,對于文獻(xiàn)中缺失的SD值,以平均值的1/10進(jìn)行代替;Ne和Nc代表試驗(yàn)組和對照組的樣本數(shù)[37]。為了更好地理解meta分析的結(jié)果,95%CI通過(eRR++-1)×100%轉(zhuǎn)化為變化百分?jǐn)?shù),當(dāng)95%CI遠(yuǎn)離零線時,表明處理組的研究指標(biāo)與對照組有顯著差異(P<0.05);當(dāng)95%CI與零線交集時,表明處理組的研究指標(biāo)與對照組沒有顯著差異(P≥0.05)。

本研究利用線性回歸模型,以棉花產(chǎn)量為因變量,以數(shù)據(jù)庫中的土壤無機(jī)氮含量、土壤硝態(tài)氮含量、土壤銨態(tài)氮含量、干物質(zhì)積累量、氮素吸收量、葉面積指數(shù)、凈光合速率和株高等數(shù)據(jù)為自變量,按照meta分析中施氮量的不同亞組將上述指標(biāo)進(jìn)行分組開展通徑分析,發(fā)掘?qū)崿F(xiàn)棉花高產(chǎn)的關(guān)鍵影響因素[38]。對于上述指標(biāo)存在一項(xiàng)研究中不同時期(苗期、蕾期、花鈴期等)的多個觀測值,本研究在多元回歸分析中將每一項(xiàng)研究的不同觀測值進(jìn)行平均值處理。首先,利用逐步回歸法對上述自變量與因變量(棉花產(chǎn)量)進(jìn)行多元線性回歸分析[39]。為了全面概括影響產(chǎn)量的關(guān)鍵因素,本研究將P<0.1(顯著)的指標(biāo)全部納入進(jìn)行分析。通徑分析中間接通徑系數(shù)計(jì)算公式[40]為:

Pij=rij×Pjy(8)

式中,Pij為間接通徑系數(shù)(自變量i通過自變量j作用于因變量y),rij為i與j的相關(guān)系數(shù),Pjy為j與因變量y的標(biāo)準(zhǔn)化系數(shù)(通徑系數(shù))。

對數(shù)據(jù)進(jìn)行卡方檢驗(yàn),明確各研究之間是否存在明確的異質(zhì)性。若P>0.05,說明各研究結(jié)果無明顯差異,采用固定效應(yīng)模型進(jìn)行計(jì)算;否則采用隨機(jī)效應(yīng)模型進(jìn)行計(jì)算。采用失安全系數(shù)法(fail-safe number,Nfs)進(jìn)行偏倚性檢驗(yàn),若Nfs>5n+10,n為數(shù)據(jù)對數(shù),則說明不存在發(fā)表偏倚,結(jié)論可信[41]。

1.4 統(tǒng)計(jì)分析

采用Microsoft Office 2016辦公軟件完成數(shù)據(jù)庫的建立以及部分?jǐn)?shù)據(jù)的計(jì)算;使用MetaWin 2.1采用隨機(jī)效應(yīng)模型的meta分析;使用GraphPad Prism 8和Origin 2021完成圖形繪制;使用IBM SPSS Statistics 27進(jìn)行線性回歸分析。

2 結(jié)果與分析

2.1 施氮對棉田土壤、棉花生理生長及產(chǎn)量的效應(yīng)分析

由圖1可知,本研究數(shù)據(jù)的異質(zhì)性檢驗(yàn)結(jié)果顯示,P值均小于0.05,說明不同研究之間存在異質(zhì)性,故采用隨機(jī)效應(yīng)模型進(jìn)行分析。圖1中各指標(biāo)失安全系數(shù)均大于5n+10,圖2中棉花產(chǎn)量效應(yīng)值的頻數(shù)分布基本服從正態(tài)分布,說明本研究結(jié)果受發(fā)表偏倚的影響較小,結(jié)論可信。

如圖1所示,與不施氮相比,施氮能顯著增加土壤無機(jī)氮含量、土壤硝態(tài)氮含量和土壤銨態(tài)氮含量,效應(yīng)值分別為43.80%(95%CI:34.66%~52.93%)、72.18%(95%CI:65.36%~79.00%)、10.72%(95%CI:0.39%~21.05%)。與不施氮相比,施氮能顯著增加棉花干物質(zhì)積累量、氮素吸收量、葉面積指數(shù)、凈光合速率和株高,效應(yīng)值分別為27.26%(95%CI:23.54%~30.99%)、51.68%(95%CI:47.33%~56.03%)、28.78%(95%CI:26.32%~31.25%)、16.65%(95%CI:14.00%~19.30%)和17.73%(95%CI:14.97%~20.49%)。與不施氮相比,施氮能顯著增加棉花單株鈴數(shù)和產(chǎn)量,效應(yīng)值分別為27.45%(95%CI:23.95%~30.95%)和43.38%(95%CI:40.44%~46.33%)。綜上所述,施氮對棉田土壤氮素含量、棉花生理生長及產(chǎn)量等指標(biāo)均有顯著促進(jìn)效果。

2.2 棉花產(chǎn)量對施氮的響應(yīng)及因素分析

不同施氮量對棉花增產(chǎn)的效應(yīng)存在差異。施氮量為360~480 kg·hm-2時,施氮的效應(yīng)值(48.54%,95%CI:41.50%~55.57%)高于施氮量為0~240 kg·hm-2的效應(yīng)值(39.38%,95%CI:34.14%~44.62%)和施氮量為240~360 kg·hm-2的效應(yīng)值(47.56%,95%CI:42.57%~52.56%);進(jìn)一步增加施氮量(超過480 kg·hm-2),施氮對棉花增產(chǎn)的效應(yīng)值反而降低(圖3)。因此,施氮量為360~480 kg·hm-2的增產(chǎn)效應(yīng)最明顯。

對于不同棉花品種,施氮的增產(chǎn)效果也存在差異(圖3)。施氮對新陸中26號的增產(chǎn)效應(yīng)(81.83%,95%CI:63.83%~99.83%)高于其對中棉所49(77.82%,95%CI:63.38%~92.26%)、新陸中66號(64.66%,95%CI:50.57%~78.74%)和新陸早45號(43.00%,95%CI:30.79%~55.20%)的增產(chǎn)效應(yīng),而施氮對新陸早50號、新陸早84號、新陸中65號和新陸中88號的產(chǎn)量效應(yīng)相對較小,分別為24.51%、23.68%、21.45%和12.51%。綜合來看,施氮對新陸中26號的增產(chǎn)效應(yīng)最明顯,但由于新陸中26號育成時間較早,根據(jù)國家農(nóng)作物優(yōu)良品種推廣目錄(2023年)和中棉所49的品種特性[42-43],結(jié)合研究結(jié)果篩選出中熟棉品種中棉所49和新陸中66號適宜新疆中早熟棉區(qū)種植。

施氮對棉花產(chǎn)量的影響效果與土壤條件密切相關(guān)。施氮條件下,棉田為砂質(zhì)土?xí)r增產(chǎn)效應(yīng)最優(yōu),效應(yīng)值為58.92%(95%CI:50.34%~67.50%),棉田為壤土和中壤土?xí)r增產(chǎn)效應(yīng)相近,分別為33.31%(95%CI:28.81%~37.81%)和30.75%(95%CI:25.05%~36.45%)。隨著土壤初始有機(jī)碳含量的增加,施氮較不施氮處理對棉花產(chǎn)量的效應(yīng)值降低,具體表現(xiàn)為:土壤有機(jī)碳含量≤5.8 g·kg-1時增產(chǎn)效應(yīng)為53.30%(95%CI:47.29%~59.31%)、土壤有機(jī)碳含量為5.8~11.6 g·kg-1時增產(chǎn)效應(yīng)為44.02%(95%CI:39.83%~48.22%)。隨著土壤初始速效氮含量的增加,施氮較不施氮處理對棉花產(chǎn)量的提升效應(yīng)顯著降低,具體表現(xiàn)為:土壤速效氮含量≤60 mg·kg-1時增產(chǎn)效應(yīng)為52.91%(95%CI:48.62%~57.21%),土壤速效氮含量為60~120 mg·kg-1時增產(chǎn)效應(yīng)為38.41%(95%CI:33.37%~43.46%)。因此,在土壤為砂質(zhì)土、初始有機(jī)碳含量≤5.8 g·kg-1和初始速效氮含量≤60 mg·kg-1的棉田,施氮的增產(chǎn)效應(yīng)最明顯(圖4)。

施氮對棉花產(chǎn)量的影響效果與氣候條件密切相關(guān)。隨著年蒸發(fā)量的增加,與不施氮相比,施氮對棉花產(chǎn)量的提升效應(yīng)呈顯著增加趨勢,具體表現(xiàn)為:年蒸發(fā)量為1 500~2 000 mm時,施氮的產(chǎn)量效應(yīng)值為39.16%(95%CI:35.41%~42.91%);年蒸發(fā)量≥2 000 mm時,施氮的產(chǎn)量效應(yīng)值為71.90%(95%CI:64.59%~79.20%)。隨著年降水量的增加,與不施氮相比,施氮對棉花產(chǎn)量的提升效應(yīng)呈顯著降低的趨勢,具體表現(xiàn)為:年降水量<60 mm時,施氮的產(chǎn)量效應(yīng)值為53.66%(95%CI:47.11%~60.21%),年降水量為60~200 mm時,施氮的產(chǎn)量效應(yīng)值為35.83%(95%CI:29.94%~41.72%)。隨著年平均日照時間的延長,與不施氮相比,施氮對棉花產(chǎn)量的提升效應(yīng)呈顯著降低趨勢,具體表現(xiàn)為:年平均日照時間<2 864 h時,施氮的產(chǎn)量效應(yīng)值為53.52%(95%CI:46.12%~60.93%);年平均日照時間≥2 864 h時,施氮的產(chǎn)量效應(yīng)值為39.32%(95%CI:35.82%~42.82%)。隨著年有效積溫的增加,施氮對棉花產(chǎn)量的提升效應(yīng)顯著增加,具體表現(xiàn)為:年有效積溫為3 000~4 000 ℃時,施氮的產(chǎn)量效應(yīng)值為34.02%(95%CI:30.86%~37.18%);年有效積溫>4 000 ℃時,施氮的產(chǎn)量效應(yīng)值為64.66%(95%CI:57.08%~72.24%)。隨著無霜期的增加,與不施氮相比,施氮對棉花產(chǎn)量的效應(yīng)值略微增加,但差異不顯著,具體表現(xiàn)為:無霜期為150~200 d時,施氮的產(chǎn)量效應(yīng)值為40.56%(95%CI:37.20%~43.92%);無霜期>200 d時,施氮的產(chǎn)量效應(yīng)值為41.93%(95%CI:36.84%~47.02%)。因此,在年蒸發(fā)量>2 000 mm、年降水量<60 mm、年平均日照時間<2 864 h、年有效積溫>4 000 ℃、無霜期>200 d條件下,施氮的增產(chǎn)效應(yīng)最明顯(圖5)。

2.3 膜下滴灌棉田施氮方案的優(yōu)化分析

由圖3可知,施氮量為360~480 kg·hm-2時,施氮對棉花產(chǎn)量的效應(yīng)值最大;施氮量在240~360 kg·hm-2時對棉花增產(chǎn)的效應(yīng)值與其相近,精量施氮要求將施氮量控制在1個較窄的范圍以實(shí)現(xiàn)最高產(chǎn)量[44-45]。因此本研究繼續(xù)優(yōu)化施氮量進(jìn)行亞組分析(表2),施氮量360~420 kg·hm-2對棉花產(chǎn)量的效應(yīng)值為53.42%(95%CI:42.34%~64.50%)大于施氮量420~480 kg·hm-2對棉花產(chǎn)量的效應(yīng)值43.60%(95%CI:32.48%~54.73%)。因此,在施氮量360~480 kg·hm-2范圍內(nèi),最優(yōu)的施氮量為360~420 kg·hm-2。

施氮方案同樣影響棉花對氮肥的吸收利用,新疆植棉區(qū)的棉花施肥多以隨水滴施為主,對不同施氮方案進(jìn)行亞組分析,結(jié)果表明,氮肥20%基施能夠有效提高棉花產(chǎn)量,棉花增產(chǎn)效應(yīng)值為59.18%(95%CI:35.54%~82.81%),高于不設(shè)基肥和氮肥30%基施處理。用240~360 kg·hm-2施氮量的施氮方案進(jìn)行亞組分析用于驗(yàn)證[46],結(jié)果表明,氮肥20%基施處理能夠有效提高棉花產(chǎn)量,且棉花增產(chǎn)效應(yīng)值比不設(shè)基肥和氮肥30%基施處理高。對不同追肥比例進(jìn)行亞組分析,結(jié)果表明,棉花生育期追肥6次且每次追肥比例分別為6%、8%、22%、25%、12%、7%對棉花產(chǎn)量的效應(yīng)值最大。綜合來看,氮肥20%基施,其余80%分6次按6%、8%、22%、25%、12%、7%的比例隨水滴施效果最好。

2.4 施氮對棉花產(chǎn)量影響因素的通徑分析

眾多研究中對于棉花產(chǎn)量的影響因素結(jié)論不一,多數(shù)研究僅探討了施氮對棉花產(chǎn)量及個別指標(biāo)的影響[27, 47],未對棉花產(chǎn)量的影響因素進(jìn)行深度挖掘與全面概括。本研究采用線性回歸模型開展通徑分析,探究棉花高產(chǎn)的關(guān)鍵影響因素,通徑分析結(jié)果如表3所示,對棉花產(chǎn)量影響顯著的指標(biāo)分別為葉面積指數(shù)、干物質(zhì)積累量、土壤無機(jī)氮含量、土壤硝態(tài)氮含量和凈光合速率。計(jì)算過程中逐步引入葉面積指數(shù)、干物質(zhì)積累量、土壤無機(jī)氮含量、土壤硝態(tài)氮含量和凈光合速率,回歸方程決定系數(shù)r2為1.000,說明回歸擬合效果較好,對棉花產(chǎn)量有影響的自變量引入較為完善。比較直接通徑系數(shù)可知,葉面積指數(shù)對棉花產(chǎn)量的直接影響最大,干物質(zhì)積累量對產(chǎn)量的直接影響最小。

為深入探討施氮對棉花產(chǎn)量的影響途徑,按照“施氮通過提高土壤氮素含量,從而促進(jìn)棉花生理生長進(jìn)而提高棉花產(chǎn)量”的邏輯,利用公式(8)計(jì)算土壤氮素指標(biāo)與棉花生理生長指標(biāo)的間接通徑系數(shù)。計(jì)算結(jié)果如表4所示,施氮通過提高土壤硝態(tài)氮含量,從而增加棉花葉面積指數(shù),對棉花產(chǎn)量的提升貢獻(xiàn)最顯著。

3 討論

氮素對于作物產(chǎn)量的形成具有關(guān)鍵作用,合理施用氮肥是作物高產(chǎn)的重要措施[48-49]。施氮能促進(jìn)土壤無機(jī)氮含量的增加,土壤銨態(tài)氮和土壤硝態(tài)氮作為良好氮源是棉花吸收利用的主要無機(jī)氮[50],氮素是促進(jìn)植株生長發(fā)育最重要的營養(yǎng)元素。因此,增施氮肥能顯著促進(jìn)棉花生長并提高鈴數(shù)和產(chǎn)量[51-52]。

精量施肥強(qiáng)調(diào)應(yīng)根據(jù)不同類型的土壤、天氣條件等因素,采用不同的施肥方法和施肥制度及施用量[53]。施氮在砂質(zhì)土棉田的增產(chǎn)效果最優(yōu)、黏土質(zhì)地棉田次之。砂質(zhì)土壤具有透氣性能好、透水性強(qiáng)的優(yōu)點(diǎn),在砂質(zhì)土壤中施氮能顯著改善土壤環(huán)境[54],提高作物產(chǎn)量;黏土保肥性能強(qiáng),能夠?qū)︷B(yǎng)分進(jìn)行吸附固定,這可能是黏土增產(chǎn)高效的原因。不同的土壤初始肥力對棉花產(chǎn)量影響顯著,土壤初始肥力過高會導(dǎo)致土壤中微生物活動旺盛,進(jìn)而消耗土壤氧氣,降低棉花產(chǎn)量,本研究表明在土壤初始有機(jī)碳含量≤5.8 g·kg-1、初始速效氮含量≤60 mg·kg-1時增產(chǎn)效應(yīng)最明顯。新疆植棉區(qū)氣候?yàn)榈湫偷臏貛Т箨懶愿珊禋夂?,降水少、蒸發(fā)量大,棉花具有較強(qiáng)的耐旱性。較高的氣溫環(huán)境有利于棉花的生長,低溫會延長棉花生育期導(dǎo)致產(chǎn)量下降[55]。光照在棉花生長階段具有重要作用,充足的光照有利于作物的光合作用、增加光合產(chǎn)物從而促進(jìn)作物生長[56],在降水量適宜的情況下,施氮能顯著提高棉花產(chǎn)量;降水過多會導(dǎo)致土壤氮素淋失、土壤水分蒸發(fā)增加。這均與本研究結(jié)論一致,本研究結(jié)果表明,在年蒸發(fā)量>2 000 mm、年降水量<60 mm、年平均日照時間<2 864 h、年有效積溫>4 000 ℃和無霜期>200 d的情況下,施氮的增產(chǎn)效應(yīng)最明顯。

本研究結(jié)果表明,施氮量為360~480 kg·hm-2時,施氮對棉花增產(chǎn)的效應(yīng)值最大,超過此范圍棉花產(chǎn)量不再顯著增加,本研究推薦的經(jīng)濟(jì)施氮量為360~420 kg·hm-2。徐海江等[18]在南疆阿瓦提縣的研究表明,過量施氮不利于提高棉花產(chǎn)量,當(dāng)施氮量超過450 kg·hm-2時棉花產(chǎn)量不再顯著增加,經(jīng)氮肥效應(yīng)方程計(jì)算出最高產(chǎn)量下的施氮量為427.832 kg·hm-2。李志強(qiáng)等[57]在北疆石河子進(jìn)行的研究表明,施氮過量或者過低均難以獲得高產(chǎn),施氮量為360 kg·hm-2時,棉花產(chǎn)量最高;而施氮量超過392 kg·hm-2時,棉花產(chǎn)量顯著降低。由此可見,本研究提出的經(jīng)濟(jì)施氮量適于新疆植棉區(qū)的棉花種植。新疆植棉區(qū)土壤普遍存在貧瘠化的現(xiàn)象。不合理的施氮方案不但會降低肥效,而且會造成嚴(yán)重的經(jīng)濟(jì)損失和環(huán)境污染[58]。對于膜下滴灌棉田,部分試驗(yàn)不設(shè)基肥處理,在棉花生長期間將氮肥隨水滴施[7, 20];部分試驗(yàn)將20%或30%氮肥作基肥[16, 22]。適當(dāng)基肥處理能夠?yàn)槊藁ㄇ捌谏L發(fā)育提供適宜的土壤肥力條件,也有改良土壤、培肥地力的作用?;嗜狈绊懽魑锔瞪L,導(dǎo)致植株發(fā)育后期營養(yǎng)不良,造成減產(chǎn)?;蔬^量會導(dǎo)致植株?duì)I養(yǎng)失衡,抑制棉花生長,棉花也更容易發(fā)生病蟲害。這可能是本研究中20%氮肥作基肥的增產(chǎn)效應(yīng)優(yōu)于無基肥處理和30%氮肥作基肥的原因。有研究表明,與低施肥頻次(不大于5次)相比,高施肥頻次(5次以上)更能充分發(fā)揮肥效,顯著提高棉花產(chǎn)量[54]。這與本研究結(jié)論一致,本研究精量施氮方案為全生育期施氮360~420 kg·hm-2,且20%作基肥處理,剩余80%分6次作追肥處理,每次施用比例為6%、8%、22%、25%、12%和7%,在新疆植棉區(qū)根據(jù)施氮方案精量施氮是實(shí)現(xiàn)棉花高產(chǎn)的重要措施。

棉田土壤無機(jī)氮含量代表著土壤氮素水平,施用氮肥是無機(jī)氮積累的前提[59-60],而硝態(tài)氮作為無機(jī)氮的主要存在形式是棉花吸收利用的主要氮素形態(tài)。葉片作為棉花進(jìn)行光合作用的主要器官,與產(chǎn)量的形成有著密不可分的關(guān)系[61],葉面積指數(shù)一定程度上能反映植株的生長發(fā)育情況。有研究表明在棉花快速生長時期,葉面積指數(shù)升高較快,干物質(zhì)積累總量較高[62]。干物質(zhì)積累是棉花產(chǎn)量的物質(zhì)基礎(chǔ)、增施氮肥會促進(jìn)棉花的干物質(zhì)積累和對氮素的吸收[63-64]。由此可見,葉面積指數(shù)對棉花產(chǎn)量構(gòu)成有顯著影響。通徑分析結(jié)果表明,葉面積指數(shù)對棉花產(chǎn)量影響較大,施氮通過提高棉田土壤硝態(tài)氮含量,從而增加棉花葉面積指數(shù),對棉花產(chǎn)量的提升貢獻(xiàn)最大。

4 結(jié)論

本研究深入分析了施氮對棉花產(chǎn)量的綜合效應(yīng)及影響機(jī)制,通過元分析和通徑分析研究表明,與不施氮相比,施氮能顯著提高棉花產(chǎn)量,增產(chǎn)效應(yīng)為43.38%;施氮量為360~480 kg·hm-2時增產(chǎn)效應(yīng)最高,超過此用量,施氮對棉花產(chǎn)量的效應(yīng)值反而降低,本研究推薦的經(jīng)濟(jì)施氮量為360~420 kg·hm-2。施氮方案為基肥20%,追肥80%且按照6%、8%、22%、25%、12%、7%的比例隨水滴施6次。對于年蒸發(fā)量>2 000 mm、年降水量<60 mm、年日照時間<2 864 h、年有效積溫>4 000 ℃、無霜期>200 d的地區(qū),且土壤為砂質(zhì)土質(zhì)地、土壤初始有機(jī)碳含量<5.8 g·kg-1、土壤初始速效氮含量≤60 mg·kg-1的棉田,施氮增產(chǎn)效應(yīng)最明顯。棉花葉面積指數(shù)對棉花產(chǎn)量的直接影響較大,施氮通過提高棉田土壤硝態(tài)氮含量,從而增加植株葉面積指數(shù),對棉花產(chǎn)量的提升貢獻(xiàn)最顯著。

參考文獻(xiàn):

[1] Tan Hong, Ma Qiong. A tentative discussion on the constraints on production and development of cotton and countermeasures[C/OL]//2017 International Conference on Frontiers in Educational Technologies and Management Sciences(FETMS 2017). Nanjing: [s. n.]. 2017: 280-283[2023-11-01]. https://doi.org/10.25236/fetms.2017.066.

[2] Yang Z, Tang J, Yu M, et al. Sustainable cotton production through increased competitiveness: analysis of comparative advantage and influencing factors of cotton production in Xinjiang, China[J/OL]. Agronomy, 2022, 12(10): 2239[2023-11-01]. https://doi.org/10.3390/agronomy12102239.

[3] 國家統(tǒng)計(jì)局關(guān)于2022年棉花產(chǎn)量的公告[N/OL]. 中國信息報, 2022-12-27(001)[2023-11-01]. https://doi.org/10.38309/n.cnki.nzgxx.2022.001214.

Announcement of national bureau of statistics on cotton production in 2022[N/OL]. China Information News, 2022-12-27(001)[2023-11-01]. https://doi.org/10.38309/n.cnki.nzgxx.2022.001214.

[4] 徐飛鵬, 李云開, 任樹梅. 新疆棉花膜下滴灌技術(shù)的應(yīng)用與發(fā)展的思考[J]. 農(nóng)業(yè)工程學(xué)報, 2003, 19(1): 25-27.

Xu Feipeng, Li Yunkai, Ren Shumei. Investigation and discussion of drip irrigation under mulch in Xinjiang Uygur Autonomous Region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(1): 25-27.

[5] 孫志梅, 武志杰, 陳利軍, 等. 農(nóng)業(yè)生產(chǎn)中的氮肥施用現(xiàn)狀及其環(huán)境效應(yīng)研究進(jìn)展[J/OL]. 土壤通報, 2006, 37(4): 782-786[2023-11-01]. https://doi.org/10.3321/j.issn:0564-3945.2006.04.037.

Sun Zhimei, Wu Zhijie, Chen Lijun, et al. Research advances in nitrogen fertilization and its environmental effects[J/OL]. Chinese Journal of Soil Science, 2006, 37(4): 782-786[2023-11-01]. https://doi.org/10.3321/j.issn:0564-3945.2006.04.037.

[6] Chen C, Pan J, Lam S K. A review of precision fertilization research[J/OL]. Environmental Earth Sciences, 2014, 71: 4073-4080[2023-11-01]. https://doi.org/10.1007/s12665-013-2792-2.

[7] 張宏, 曾雄, 王愛蓮, 等. 不同施氮量對棉花產(chǎn)量、養(yǎng)分吸收及氮素利用的影響[J/OL]. 新疆農(nóng)業(yè)科學(xué), 2021, 58(9): 1656-1664[2023-11-01]. https://doi.org/10.6048/j.issn.1001-4330.2021.09.011.

Zhang Hong, Zeng Xiong, Wang Ailian, et al. Effects of different nitrogen application rates on yield, nutrient uptake and nitrogen utilization of cotton in southern Xinjiang[J/OL]. Xinjiang Agricultural Sciences, 2021, 58(9): 1656-1664[2023-11-01]. https://doi.org/10.6048/j.issn.1001-4330.2021.09.011.

[8] 杜夢旗, 盧銳, 張哲, 等. 不同施氮量對滴灌棉田氮素利用率的影響[J/OL]. 農(nóng)業(yè)與技術(shù), 2022, 42(4): 10-13[2023-11-01]. https://doi.org/10.19754/j.nyyjs.20220228103.

Du Mengqi, Lu Rui, Zhang Zhe, et al. Effect of different nitrogen application rates on nitrogen utilisation in drip-irrigated cotton fields[J/OL]. Agriculture & Technology, 2022, 42(4): 10-13[2023-11-01]. https://doi.org/10.19754/j.nyyjs.20220228103.

[9] 王肖娟, 危常州, 張君, 等. 灌溉方式和施氮量對棉田氮肥利用率及損失的影響[J/OL]. 應(yīng)用生態(tài)學(xué)報, 2012, 23(10): 2751-2758[2023-11-01]. https://doi.org/10.13287/j.1001-9332.2012.0379.

Wang Xiaojuan, Wei Changzhou, Zhang Jun, et al. Effects of irrigation mode and N application rate on cotton field fertilizer N use efficiency and N losses[J/OL]. Chinese Journal of Applied Ecology, 2012, 23(10): 2751-2758[2023-11-01]. https://doi.org/10.13287/j.1001-9332.2012.0379.

[10] 周燕, 孫洋洋, 胡志偉, 等. 氮肥對棉花產(chǎn)量和氮素吸收量影響的Meta分析[J/OL]. 福建農(nóng)業(yè)學(xué)報, 2022, 37(3): 317-325[2023-11-01]. https://doi.org/10.19303/j.issn.1008-0384.2022.003.006.

Zhou Yan, Sun Yangyang, Hu Zhiwei, et al. Meta analysis on effects of N-fertilization on yield and N-uptake of cotton plants[J/OL]. Fujian Journal of Agricultural Sciences, 2022, 37(3): 317-325[2023-11-01]. https://doi.org/10.19303/j.issn.1008-0384.2022.003.006.

[11] Ainsworth E A. Rice production in a changing climate: a metaanalysis of responses to elevated carbon dioxide and elevated ozone concentration[J/OL]. Global Change Biology, 2008, 14(7): 1642-1650[2023-11-01]. https://doi.org/10.1111/j.1365-2486.2008.01594.x.

[12] Feng Z, Shang B, Gao F, et al. Current ambient and elevated ozone effects on poplar: a global meta-analysis and response relationships[J/OL]. Science of the Total Environment, 2019, 654: 832-840[2023-11-01]. https://doi.org/10.1016/j.scitotenv.2018.11.179.

[13] de Graaff M A, van Groenigen K J, Six J, et al. Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis[J/OL]. Global Change Biology, 2006, 12(11): 2077-2091[2023-11-01]. https://doi.org/10.1111/j.1365-2486.2006.01240.x.

[14] Liao C Z, Peng R H, Luo Y Q, et al. Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis[J/OL]. New Phytologist, 2008, 177(3): 706-714[2023-11-01]. https://doi.org/10.1111/j.1469-8137.2007.02290.x.

[15] Treseder K K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies[J/OL]. New Phytologist, 2004, 164(2): 347-355[2023-11-01]. https://doi.org/10.1111/j.1469-8137.2004.01159.x.

[16] 張澤, 馬革新, 海興巖, 等. 氮肥和土壤質(zhì)地對滴灌棉花根系分布及產(chǎn)量的影響[J/OL]. 土壤, 2018, 50(3): 622-627[2023-11-01]. https://doi.org/10.13758/j.cnki.tr.2018.03.025.

Zhang Ze, Ma Gexin, Hai Xingyan, et al. Effect of nitrogen fertilization and soil texture on cotton root traits and yields under conventional drip irrigation[J/OL]. Soils, 2018, 50(3): 622-627[2023-11-01]. https://doi.org/10.13758/j.cnki.tr.2018.03.025.

[17] 董鵬. 棉花膜下滴灌氮素養(yǎng)分綜合管理技術(shù)研究[D]. 石河子: 石河子大學(xué), 2011.

Dong Peng. Research on integrated management technology of nitrogen and nutrients in cotton under membrane drip irrigation[D]. Shihezi: Shihezi University, 2011.

[18] 徐海江, 田立文, 林濤, 等. 施氮量對南疆膜下滴灌陸地棉干物質(zhì)積累與分配的影響[J]. 新疆農(nóng)業(yè)科學(xué), 2012, 49(10): 1765-1772.

Xu Haijiang, Tian Liwen, Lin Tao, et al. Study on effect of dry matter accumulation and distribute on the nitrogen fertilizer applied to upland cotton using drip irrigation under plastic film in southern Xinjiang[J]. Xinjiang Agricultural Sciences, 2012, 49(10): 1765-1772.

[19] 楊媚, 呂新, 馬露露, 等. 施氮量對不同品種滴灌棉花氮素利用率及產(chǎn)量的影響[J/OL]. 新疆農(nóng)業(yè)科學(xué), 2019, 56(7): 1223-1231[2023-11-01]. https://doi.org/10.6048/j.issn.1001-4330.2019.07.006.

Yang Mei, Lü Xin, Ma Lulu, et al. Effects of nitrogen application rate on nitrogen utilization efficiency and yield of different varieties of drip irrigation cotton (Gossypium hirsutum L.)[J/OL]. Xinjiang Agricultural Sciences, 2019, 56(7): 1223-1231[2023-11-01]. https://doi.org/10.6048/j.issn.1001-4330.2019.07.006.

[20] 廖歡, 甘浩天, 劉凱, 等. 機(jī)采棉氮素吸收及產(chǎn)量的最佳水氮組合[J/OL]. 植物營養(yǎng)與肥料學(xué)報, 2021, 27(12): 2229-2242[2023-11-01]. https://doi.org/10.11674/zwyf.2021180.

Liao Huan, Gan Haotian, Liu Kai, et al. Optimal water scheme and N rate for high N uptake and yield of machine-harvested cotton[J/OL]. Plant Nutrition and Fertilizer Science, 2021, 27(12): 2229-2242[2023-11-01]. https://doi.org/10.11674/zwyf.2021180.

[21] 鄧忠, 白丹, 翟國亮, 等. 膜下滴灌水氮調(diào)控對南疆棉花產(chǎn)量及水氮利用率的影響[J/OL]. 應(yīng)用生態(tài)學(xué)報, 2013, 24(9): 2525-2532[2023-11-01]. https://doi.org/10.13287/j.1001-9332.2013.0500.

Deng Zhong, Bai Dan, Zhai Guoliang, et al. Effects of water and nitrogen regulation on the yield and water and nitrogen use efficiency of cotton in south Xinjiang, Northwest China under plastic mulched drip irrigation[J/OL]. Chinese Journal of Applied Ecology, 2013, 24(9): 2525-2532[2023-11-01]. https://doi.org/10.13287/j.1001-9332.2013.0500.

[22] 林濤, 郭仁松, 崔建平, 等. 施氮對南疆荒漠綠洲滴灌棉田產(chǎn)量及棉纖維品質(zhì)的影響[J/OL]. 西北農(nóng)業(yè)學(xué)報, 2013, 22(11): 47-53[2023-11-01]. https://doi.org/10.7606/j.issn.1004-1389.2013.11.009.

Lin Tao, Guo Rensong, Cui Jianping, et al. Effects of nitrogen application on cotton yield and fiber quality under drip irrigation condition in oasis of south Xinjiang[J/OL]. Acta Agriculturae Boreali-occidentalis Sinica, 2013, 22(11): 47-53[2023-11-01]. https://doi.org/10.7606/j.issn.1004-1389.2013.11.009.

[23] 爾晨. 水氮耦合對機(jī)采棉根冠特性及水氮利用的影響[D]. 烏魯木齊: 新疆農(nóng)業(yè)大學(xué), 2020.

Er Chen. Effects of water-nitrogen coupling on root-crown characteristics and water-nitrogen utilization of machine-picked cotton[D]. Urumqi: Xinjiang Agricultural University, 2020.

[24] 蒲勝海, 王則玉, 丁峰, 等. 膜下滴灌水氮空間調(diào)控對機(jī)采棉群體塑造及產(chǎn)量的影響[J/OL]. 新疆農(nóng)業(yè)科學(xué), 2022, 59(8): 1838-1846[2023-11-01]. https://doi.org/10.6048/j.issn.1001-4330.2022.08.003.

Pu Shenghai, Wang Zeyu, Ding Feng, et al. Machine-picked cotton population shaping and yield under mulch drip irrigation with different spatial distribution of water and nitrogen[J/OL]. Xinjiang Agricultural Sciences, 2022, 59(8): 1838-1846[2023-11-01]. https://doi.org/10.6048/j.issn.1001-4330.2022.08.003.

[25] 孟艷, 沈亞文, 孟維偉, 等. 生物炭施用對農(nóng)田土壤團(tuán)聚體及有機(jī)碳影響的整合分析[J/OL]. 環(huán)境科學(xué), 2023(12): 1-13[2023-11-01]. https://doi.org/10.13227/j.hjkx.202210300.

Meng Yan, Shen Yawen, Meng Weiwei, et al. Effect of biochar on agricultural soil aggregates and organic carbon: a metaanalysis[J/OL]. Environmental Science, 2023(12): 1-13[2023-11-01]. https://doi.org/10.13227/j.hjkx.202210300.

[26] 王曉嬌, 張仁陟, 齊鵬, 等. Meta分析有機(jī)肥施用對中國北方農(nóng)田土壤CO2排放的影響[J/OL]. 農(nóng)業(yè)工程學(xué)報, 2019, 35(10): 99-107[2023-11-01]. https://doi.org/10.11975/j.issn.1002-6819.2019.10.013.

Wang Xiaojiao, Zhang Renzhi, Qi Peng, et al. Meta-analysis on farmland soil CO2 emission in northern China affected by organic fertilizer[J/OL]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(10): 99-107[2023-11-01]. https://doi.org/10.11975/j.issn.1002-6819.2019.10.013.

[27] 郭金強(qiáng), 危常州, 侯振安, 等. 施氮量對膜下滴灌棉花氮素吸收、積累及其產(chǎn)量的影響[J]. 干旱區(qū)資源與環(huán)境, 2008, 22(9): 139-142.

Guo Jinqiang, Wei Changzhou, Hou Zhenan, et al. Effect of N rates on N uptake, accumulation and yield of cotton under drip irrigation and mulch[J]. Journal of Arid Land Resources and Environment, 2008, 22(9): 139-142.

[28] 卞倩倩, 王雁楠, 陳金金, 等. 施鉀對我國甘薯產(chǎn)量和土壤鉀素平衡影響的Meta分析[J/OL]. 植物營養(yǎng)與肥料學(xué)報, 2022, 28(8): 1509-1519[2023-11-01]. https://doi.org/10.11674/zwyf.2021632.

Bian Qianqian, Wang Yannan, Chen Jinjin, et al. Effects of potassium application on yield and potassium balance of sweet potato field in China: a meta-analysis[J/OL]. Plant Nutrition and Fertilizer Science, 2022, 28(8): 1509-1519[2023-11-01]. https://doi.org/10.11674/zwyf.2021632.

[29] 呂春玲, 陳延華, 何文天, 等. 玉米種植體系土壤磷素有效性對有機(jī)肥長期施用響應(yīng)的Meta分析[J/OL]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2022, 41(9): 2011-2022[2023-11-01]. https://doi.org/10.11654/jaes.2022-0015.

Lü Chunling, Chen Yanhua, He Wentian, et al. Response of soil phosphorus availability to long-term application of organic fertilizer under maize cropping system: a meta-analysis[J/OL]. Journal of Agro-Environment Science, 2022, 41(9): 2011-2022[2023-11-01]. https://doi.org/10.11654/jaes.2022-0015.

[30] Wang Q, Zhai P M, Qin D H. New perspectives on 'warming-wetting' trend in Xinjiang, China[J/OL]. Advances in Climate Change Research, 2020, 11(3): 252-260[2023-11-01]. https://doi.org/10.1016/j.accre.2020.09.004.

[31] 中國科學(xué)院《中國自然地理》委員會. 中國自然地理: 氣候[M]. 北京: 科學(xué)出版社, 1984.

Committee on Physical Geography of China, Chinese Academy of Sciences. Physical geography of China: climate[M]. Beijing: Science Press, 1984.

[32] Gu X B, Cai H J, Fang H, et al. Effects of degradable film mulching on crop yield and water use efficiency in China: a meta-analysis[J/OL]. Soil and Tillage Research, 2020, 202: 104676[2023-11-01]. https://doi.org/10.1016/j.still.2020.104676.

[33] Qin Y, Chai Y, Li R, et al. Evaluation of straw and plastic film mulching on wheat production: a meta-analysis in loess plateau of China[J/OL]. Field Crops Research, 2022, 275: 108333[2023-11-01]. https://doi.org/10.1016/j.fcr.2021.108333.

[34] 宮園, 徐玉婷, 潘友菊,等. 氣候智慧型農(nóng)業(yè)措施對中國農(nóng)田土壤有機(jī)碳含量影響的Meta分析[J/OL]. 農(nóng)業(yè)資源與環(huán)境學(xué)報, 2024, 41(1): 92-104[2023-11-01]. https://doi.org/10.13254/j.jare.2023.0152.

Gong Yuan, Xu Yuting, Pan Youju, et al. Effects of climate-smart agricultural measures on soil organic carbon content of farmland in China: a meta-analysis[J/OL]. Journal of Agricultural Resources and Environment, 2024, 41(1): 92-104[2023-11-01]. https://doi.org/10.13254/j.jare.2023.015.

[35] 趙鑫. 基于Meta-analysis對我國保護(hù)性耕作農(nóng)田土壤固碳減排效應(yīng)及其潛力的研究[D]. 北京: 中國農(nóng)業(yè)大學(xué), 2017.

Zhao Xin. Study on the effect of soil carbon sequestration and emission reduction and its potential of conservation tillage farmland in China based on meta-analysis[D]. Beijing: China Agricultural University, 2017.

[36] Dieleman W I J, Luyssaert S, Rey A, et al. Soil [N] modulates soil C cycling in CO2-fumigated tree stands: a meta-analysis[J/OL]. Plant, Cell & Environment, 2010, 33(12): 2001-2011[2023-11-01]. https://doi.org/10.1111/j.1365-3040.2010.02201.x.

[37] Chen H, Li X, Hu F, et al. Soil nitrous oxide emissions following crop residue addition: a meta-analysis[J/OL]. Global Change Biology, 2013, 19(10): 2956-2964[2023-11-01]. https://doi.org/10.1111/gcb.12274.

[38] 杜家菊, 陳志偉. 使用SPSS線性回歸實(shí)現(xiàn)通徑分析的方法[J/OL]. 生物學(xué)通報, 2010, 45(2): 4-6[2023-11-01]. https://doi.org/10.3969/j.issn.0006-3193.2010.02.002.

Du Jiaju, Chen Zhiwei. Method of path analysis with SPSS linear regression[J/OL]. Bulletin of Biology, 2010, 45(2): 4-6[2023-11-01]. https://doi.org/10.3969/j.issn.0006-3193.2010.02.002.

[39] Zhou L, Zhou X, Zhang B, et al. Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis[J/OL]. Global Change Biology, 2014, 20(7): 2332-2343[2023-11-01]. https://doi.org/10.1111/gcb.12490.

[40] 楊玉輝. 膜下滴灌鹽漬化棉田暗管排水技術(shù)參數(shù)研究[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2021.

Yang Yuhui. Study on technical paramerers of subsurface drainage in saline cotton field with drip irrigation under mulch[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021.

[41] Yu L, Zhao X, Gao X, et al. Improving/maintaining water-use efficiency and yield of wheat by deficit irrigation: a global meta-analysis[J/OL]. Agricultural Water Management, 2020, 228: 105906[2023-11-01]. https://doi.org/10.1016/j.agwat.2019.105906.

[42] 中華人民共和國農(nóng)業(yè)農(nóng)村部. 國家農(nóng)作物優(yōu)良品種推廣目錄(2023年)[EB/OL]. (2023-03-02)[2023-11-01]. http://www.zzj.moa.gov.cn/gzdt/202303/t20230302_6422033.htm.

Ministry of Agriculture and Rural Affairs of the Peoples Republic of China. National crop variety promotion Catalog (2023)[EB/OL]. (2023-03-02)[2023-12-20]. http://www.zzj.moa.gov.cn/gzdt/202303/t20230302_6422033.htm.

[43] 王寧, 黃群, 匡猛, 等. 新育種方法在中棉所49選育中的應(yīng)用[J/OL]. 中國棉花, 2015, 42(4): 25-26, 28[2023-11-01]. http://doi.org/10.11963/issn.1000-632X.201504008.

Wang Ning, Huang Qun, Kuang Meng, et al. Application of a new breeding method in the breeding of CCRI 49[J/OL]. China Cotton, 2015, 42(4): 25-26, 28[2023-11-01]. http://doi.org/10.11963/issn.1000-632X.201504008.

[44] Ladha J K, Pathak H, Krupink T J, et al. Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects[J/OL]. Advances in Agronomy, 2005, 87: 85-156[2023-11-01]. https://doi.org/10.1016/S0065-2113(05)87003-8.

[45] Peng S, Buresh R J, Huang J, et al. Improving nitrogen fertilization in rice by sitespecific N management. A review[J/OL]. Agronomy for Sustainable Development, 2010, 30: 649-656[2023-11-01]. https://doi.org/10.1051/agro/2010002.

[46] Wittig V E, Ainiworth E A, Naidu S L, et al. Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis[J/OL]. Global Change Biology, 2009, 15(2): 396-424[2023-11-01]. https://doi.org/10.1111/j.1365-2486.2008.01774.x.

[47] 胡明芳, 田長彥, 呂昭智, 等. 氮肥施用量對新疆棉花產(chǎn)量及植株和土壤中硝態(tài)氮含量的影響[J/OL]. 西北農(nóng)林科技大學(xué)學(xué)報(自然科學(xué)版), 2006, 34(4): 63-68[2023-11-01]. https://doi.org/10.3321/j.issn:1671-9387.2006.04.015.

Hu Mingfang, Tian Changyan, Lü Zhaozhi, et al. Effects of N rate on cotton yield and nitrate-N concentration in plant tissue and soil[J/OL]. Journal of Northwest A&F University (Natural Science Edition), 2006, 34(4): 63-68[2023-11-01]. https://doi.org/10.3321/j.issn:1671-9387.2006.04.015.

[48] Tang S, Zhang H, Liu W, et al. Nitrogen fertilizer at heading stage effectively compensates for the deterioration of rice quality by affecting the starch-related properties under elevated temperatures[J/OL]. Food Chemistry, 2019, 277: 455-462[2023-11-01]. https://doi.org/10.1016/j.foodchem.2018.10.137.

[49] Xiong D, Yu T, Ling X, et al. Sufficient leaf transpiration and nonstructural carbohydrates are beneficial for high-temperature tolerance in three rice (Oryza sativa) cultivars and two nitrogen treatments[J/OL]. Functional Plant Biology, 2014, 42(4): 347-356[2023-11-01]. https://doi.org/10.1071/FP14166.

[50] Mokhele B, Zhan X, Yang G, et al. Nitrogen assimilation in crop plants and its affecting factors[J/OL]. Canadian Journal of Plant Science, 2012, 92(3): 399-405[2023-11-01]. https://doi.org/10.1139/CJPS2011-135.

[51] 孟妍君, 馬鑫穎, 宋晨, 等. 水氮調(diào)控對棉花生理性狀及產(chǎn)量的影響[J/OL]. 中國生態(tài)農(nóng)業(yè)學(xué)報(中英文), 2023, 31(9): 1379-1391[2023-11-01]. https://doi.org/10.12357/cjea.20230002.

Meng Yanjun, Ma Xinying, Song Chen, et al. Effects of water and nitrogen regulation on physiological characteristics and yield of cotton[J/OL]. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1379-1391[2023-11-01]. https://doi.org/10.12357/cjea.20230002.

[52] Dong H, Li W, Eneji A E, et al. Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field[J/OL]. Field Crops Research, 2012, 126: 137-144[2023-11-01]. https://doi.org/10.1016/j.fcr.2011.10.005.

[53] Peng S, Garcia F V, Laza R C, et al. Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice[J/OL]. Field Crops Research, 1996, 47(2/3): 243-252[2023-11-01]. https://doi.org/10.1016/0378-4290(96)00018-4.

[54] 蔡煥杰, 李府陽, 趙政鑫, 等. 施氮對中國棉田產(chǎn)量和水分利用效率影響的Meta分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報, 2023, 54(12): 316-326.

Cai Huanjie, Li Fuyang, Zhao Zhengxin, et al. A meta-analysis of the effects of nitrogen application on cotton yield and water use efficiency in China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(12): 316-326.

[55] 賈耀宇, 黃偉斌, 楊北方, 等. 虧缺灌溉對中國棉花產(chǎn)量和灌溉水分生產(chǎn)力影響的元分析[J/OL]. 棉花學(xué)報, 2023, 35(3): 195-210[2023-11-01]. https://doi.org/10.11963/cs20220065.

Jia Yaoyu, Huang Weibin, Yang Beifang, et al. A meta-analysis of yield and irrigation water productivity of cotton under deficit irrigation in China[J/OL]. Cotton Science, 2023, 35(3): 195-210[2023-11-01]. https://doi.org/10.11963/cs20220065.

[56] 王振華, 朱延凱, 張金珠, 等. 水氮調(diào)控對輕度鹽化土滴灌棉花生理特性與產(chǎn)量的影響[J/OL]. 農(nóng)業(yè)機(jī)械學(xué)報, 2018, 49(6): 296-308[2023-11-01]. https://doi.org/106401/j.issn.1000.1298.2018.06.035.

Wang Zhenhua, Zhu Yankai, Zhang Jinzhu, et al. Effects of water and nitrogen fertilization on physiological characteristics and yield of cotton under drip irrigation in mildly salinized soil[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(6): 296-308[2023-11-01]. https://doi.org/106401/j.issn.1000.1298.2018.06.035.

[57] 李志強(qiáng), 楊永林, 劉洪亮, 等. 不同施肥量對北疆高產(chǎn)棉花冠層結(jié)構(gòu)、養(yǎng)分吸收和產(chǎn)量構(gòu)成的影響[J/OL]. 中國農(nóng)學(xué)通報, 2014, 30(33): 105-109[2023-11-01]. https://doi.org/10.11924/j.issn.1000-6850.2014-1497.

Li Zhiqiang, Yang Yonglin, Liu Hongliang, et al. Effect of different fertilizer on canopy structure, nutrient absorption and yield formation of high-yield cotton in north xinjiang, China[J/OL]. Chinese Agricultural Science Bulletin, 2014, 30(33): 105-109[2023-11-01]. https://doi.org/10.11924/j.issn.1000-6850.2014-1497.

[58] 巨曉棠, 張翀. 論合理施氮的原則和指標(biāo)[J/OL]. 土壤學(xué)報, 2021, 58(1): 1-13[2023-11-01]. https://doi.org/10.11766/trxb202006220322.

Ju Xiaotang, Zhang Chong. The principles and indicators of rational N fertilization[J/OL]. Acta Pedologica Sinica, 2021, 58(1): 1-13[2023-11-01]. https://doi.org/10.11766/trxb202006220322.

[59] 婁善偉, 馬興旺, 托乎提·艾買提, 等. 棉花施氮閾值與產(chǎn)量、無機(jī)氮儲量的關(guān)系研究[J/OL]. 新疆農(nóng)業(yè)科學(xué), 2016, 53(12): 2217-2224[2023-11-01]. https://doi.org/10.6048/j.issn.1001-4330.2016.12.008.

Lou Shanwei, Ma Xingwang, Tuohuti Aimaiti, et al. Study on the relationship between nitrogen application threshold and yield and total inorganic nitrogen[J/OL]. Xinjiang Agricultural Sciences, 2016, 53(12): 2217-2224[2023-11-01]. https://doi.org/10.6048/j.issn.1001-4330.2016.12.008.

[60] 李瑋. 緩釋尿素對土壤無機(jī)氮及棉花和玉米產(chǎn)量的影響[D].石河子: 石河子大學(xué), 2016.

Li Wei. Effect of slow-release urea on soil inorganic nitrogen and yield of cotton and maize[D]. Shihezi: Shihezi University, 2016.

[61] 王全九, 王康, 蘇李君, 等. 灌溉施氮和種植密度對棉花葉面積指數(shù)與產(chǎn)量的影響[J/OL]. 農(nóng)業(yè)機(jī)械學(xué)報, 2021, 52(12): 300-312[2023-11-01]. https://doi.org/10.6041/j.issn.1000-1298.2021.12.032.

Wang Quanjiu, Wang kang, Su Lijun, et al. Effect of irrigation amount, nitrogen application rate and planting density on cotton leaf area index and yield[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(12): 300-312[2023-11-01]. https://doi.org/10.6041/j.issn.1000-1298.2021.12.032.

[62] 李慧, 萬華龍, 田立文, 等. 晚播增密對棉花群體光合及干物質(zhì)積累與分配的影響[J/OL]. 棉花學(xué)報, 2020, 32(4): 339-347[2023-11-01]. https://doi.org/10.11963/1002-7807.lhlcd.20200622.

Li Hui, Wan Hualong, Tian Liwen, et al. The effects of increased-density on canopy apparent photosynthesis, dry matter accumulation and distribution of cotton under late-sown condition[J/OL]. Cotton Science, 2020, 32(4): 339-347[2023-11-01]. https://doi.org/10.11963/1002-7807.lhlcd.20200622.

[63] 王士紅, 楊中旭, 史加亮, 等. 增密減氮對棉花干物質(zhì)和氮素積累分配及產(chǎn)量的影響[J/OL]. 作物學(xué)報, 2020, 46(3): 395-407[2023-11-01]. https://doi.org/10.3724/SP.J.1006.2020.94074.

Wang Shihong, Yang Zhongxu, Shi Jialiang, et al. Effects of increasing planting density and decreasing nitrogen rate on dry matter, nitrogen accumulation and distribution, and yield of cotton[J/OL]. Acta Agronomica Sinica, 2020, 46(3): 395-407[2023-11-01]. https://doi.org/10.3724/SP.J.1006.2020.94074.

[64] 李伶俐, 房衛(wèi)平, 謝德意, 等. 施氮量對雜交棉干物質(zhì)積累、分配和氮磷鉀吸收、分配與利用的影響[J]. 棉花學(xué)報, 2010, 22(4): 347-353.

Li Lingli, Fang Weiping, Xie Deyi, et al. Effects of nitrogen application rate on dry matter accumulation and N, P, K uptake and distribution in different organs and utilization of hybrid cotton under high-yield cultivated condition[J]. Cotton Science, 2010, 22(4): 347-353.

猜你喜歡
元分析膜下滴灌通徑分析
玉米膜下滴灌栽培技術(shù)探析
烤煙追肥對光合效應(yīng)與細(xì)胞液濃度的影響
護(hù)理實(shí)踐教學(xué)中在線學(xué)習(xí)效果的元分析
信任性別差異的元分析
淺議太仆寺旗地區(qū)發(fā)展玉米膜下滴灌的必要性
精河沙區(qū)土壤酶分布特征及其對土壤理化性狀的響應(yīng)
大學(xué)生主觀幸福感變遷的元分析研究
畢節(jié)市苦蕎種質(zhì)資源農(nóng)藝性狀的鑒定與評價
湖南主要辣椒品種產(chǎn)量與主要農(nóng)藝性狀的相關(guān)性及通徑分析
洮南市秉承膜下滴灌技術(shù)促節(jié)水增糧
大港区| 西乌珠穆沁旗| 揭阳市| 惠州市| 二连浩特市| 西和县| 东辽县| 万山特区| 鱼台县| 渭源县| 临漳县| 乾安县| 淮安市| 夏邑县| 隆德县| 固原市| 米易县| 天峨县| 张家界市| 钟山县| 明光市| 宁国市| 乌海市| 仲巴县| 日照市| 涞源县| 类乌齐县| 卫辉市| 房山区| 富顺县| 闸北区| 罗甸县| 襄垣县| 上饶市| 郁南县| 永昌县| 紫云| 皮山县| 德钦县| 元谋县| 甘孜|