張曉婷 莊赟 董嘉輝 周碧燕
摘? ? 要:【目的】對(duì)91份荔枝(Litchi chinensis Sonn.)種質(zhì)進(jìn)行抗寒性綜合評(píng)價(jià),篩選相對(duì)抗寒性強(qiáng)的荔枝種質(zhì),為荔枝耐寒育種和各地區(qū)荔枝引種提供理論依據(jù)?!痉椒ā糠謩e在自然低溫前和自然低溫后對(duì)91份荔枝種質(zhì)進(jìn)行采樣,測(cè)定PSⅡ最大光化學(xué)量子產(chǎn)量(Fv/Fm)、相對(duì)含水量(relative water content,RWC)、相對(duì)電導(dǎo)率(relative electrical conductivity,REC)、丙二醛(malondialdehyde,MDA)和脯氨酸(proline,Pro)含量等5個(gè)指標(biāo),利用隸屬函數(shù)分析和主成分分析對(duì)各項(xiàng)生理生化指標(biāo)進(jìn)行綜合評(píng)價(jià),最后通過(guò)灰度關(guān)聯(lián)計(jì)算和聚類(lèi)分析將荔枝種質(zhì)抗寒性進(jìn)行排序分類(lèi)?!窘Y(jié)果】(1)低溫對(duì)Fv/Fm、RWC、REC、MDA和Pro含量有顯著影響,這5個(gè)指標(biāo)是評(píng)價(jià)荔枝種質(zhì)抗寒性較理想的生理指標(biāo)。(2)將91份荔枝種質(zhì)分為高度冷敏感(Ⅰ)、冷敏感(Ⅱ)、中度耐冷性(Ⅲ)、耐冷性(Ⅳ)和高度耐冷性(Ⅴ),共5類(lèi)?!窘Y(jié)論】依據(jù)荔枝種質(zhì)綜合評(píng)價(jià)結(jié)果,篩選出大錦鐘、陳紫和紫娘喜為相對(duì)抗寒性強(qiáng)的荔枝種質(zhì),可將其作為后續(xù)耐寒育種的種質(zhì)資源,與具有其他優(yōu)質(zhì)性狀的荔枝種質(zhì)結(jié)合,獲得抗寒性強(qiáng)的優(yōu)質(zhì)荔枝種質(zhì)資源。
關(guān)鍵詞:荔枝;自然低溫;生理生化指標(biāo);綜合評(píng)價(jià)
中圖分類(lèi)號(hào):S667.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)03-0403-23
Comprehensive evaluation of cold tolerance in litchi germplasm resources
ZHANG Xiaoting1, 2, ZHUANG Yun1, 2, DONG Jiahui1, 2, ZHOU Biyan1, 2*
(1Key Laboratory of Horticultural Crop Biology and Germplasm Creation in South China, Ministry of Agriculture and Rural Affairs/College of Horticulture, South China Agricultural University, Guangzhou 510642, Guangdong, China; 2Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, Guangdong, China)
Abstract: 【Objective】 In recent years, extreme low-temperature occurred frequently in winter, affecting the growth and yield of litchi in the following year. Therefore, low temperature is one of the main factors limiting the yield of litchi. Screening chilling-resistant litchi germplasm and breeding low-temperature-tolerant varieties is the most effective way to solve this problem. Litchi germplasm resources are important for litchi breeding, scientific research and production. The research on chilling-resistant germplasm resources of litchi started late, and there has been no report about comprehensive cold-resistant evaluation on existing litchi germplasm resources. Litchi is a subtropical evergreen fruit tree and has some cold-resistant resources. Most of the cold-resistant resources may remain undiscovered due to few related studies. In this study, 91 litchi varieties were comprehensively evaluated for cold resistance. The aim was to screen out litchi germplasm with relatively strong cold resistance, which is important for low-temperature breeding and introduction of litchi in various regions. 【Methods】 In this study, we selected and numbered litchi varieties with uniform growth status and monitored leaves. At the same time, shoot tips were labeled with hanging tags in the four sides of the canopy. Varietal information was counted on 91 litchi varieties, and five physiological and biochemical indexes were measured before and after low temperature treatments i.e. the maximum photochemical quantum yield of PSII (Fv/Fm), relative water content (RWC), relative electrical conductivity (REC), malondialdehyde (MDA) and proline (proline, Pro). A comprehensive evaluation of these five physiological and biochemical indicators were performed through affiliation function analysis and principal component analysis, and comprehensive evaluation value (D-value) related to cold tolerance was obtained. Then, the cold resistance of litchi germplasm resources was classified through gray-scale correlation calculation and cluster analysis, and finally the cold resistance classification registration was obtained. 【Results】 Fv/Fm and RWC showed a decreasing trend under low temperatures. In contrast, the REC, MDA and Pro showed an increasing trend, suggesting that litchi trees were affected by the chilling stress in the cold winter. Xuehuaizi litchi trees had the lowest Fv/Fm and the highest REC after low temperature, and were more susceptible to damage caused by low temperature. Among the tested litchi varieties, the average value of Fv/Fm was 0.12, and the coefficient of variation was 19.01 after low temperatures. The average value of REC was 14.77%, and coefficient of variation was 40.85 after low temperatures. The average value of RWC remained around 55% before low temperature, and decreased by 13% after low temperature, while the average value of MDA content was 35.02 μmol·mg-1 before low temperature, and increased to 46.39 μmol·mg-1 after low temperature. The average value of Pro content was 404.40 μg·g-1 after low temperature, and increased by nearly 10 times compared to that before low temperature. Hence, low temperature significantly affected Fv/Fm, RWC, REC, MDA and Pro, indicating that these five indexes are desirable physiological indexes for evaluating the cold resistance of litchi varieties. Through systematic clustering analysis, a total of 91 litchi varieties were evaluated and graded for cold resistance. The cold resistance levels of litchi germplasm were categorized into 5 levels, including highly cold sensitive (Ⅰ), cold sensitive (Ⅱ), moderately cold tolerant (Ⅲ), cold tolerant (Ⅳ), and highly cold tolerant (Ⅴ) levels. The highly cold-sensitive varieties accounted for 7.69% of the total varieties, including Jinxianguo, Xiafanzhi, Lanzhu, Da zao, Shangshuhuai, Xijiaozi, and Wuyejiu. The second class was cold-sensitive varieties, which accounted for 10.99% of the total, including Guanyinlv, Shuidong, Xuehuaizi, Sanyuehong, Salathiel, Kwai May Pink, Heifeihong, Lingfengnuo, Niannianhong No. 1 and Shiyueli. The third class was moderately cold-tolerant ones, which accounted for 25.27% of the total. The fourth class was cold-tolerant germplasm, which accounted for 43.96% of the total. The fifth class was highly cold-tolerant germplasm, which accounted for 12.09% of the total, including Ziniangxi, Guilin, Jinzhong, Jide, Dongliu No. 1, Zhuangyuanhong, Dahongpao, Wuye, Songjiaxiang, Chenziand Dajinzhong. Among the varieties tested, most fell into the category of cold tolerance (Ⅳ), with relatively few in the categories of high cold sensitivity (Ⅰ) and high cold tolerance (Ⅴ), indicating that the cold resistance in litchi germplasm is highly concentrated. 【Conclusion】 The comprehensive evaluation of litchi varieties was carried out and it was concluded that Ziniangxi, Guilin, Jinzhong, Jidi, Dongliu No. 1, Zhuangyuanhong, Dahongpao, Wuye, Songjiaxiang, Chenzi and Dajinzhong belong to the extreme cold tolerant germplasm and have outstanding cold resistance. These varieties can be used as germplasm resources for subsequent low temperature breeding.
Key words: Litchi; Natural low temperature; Physiological and biochemical indexes; Comprehensive evaluation
荔枝(Litchi chinensis Sonn.)是一種重要的亞熱帶和熱帶常綠果樹(shù),野生荔枝的起源中心位于中國(guó)云南,隨后沿西江傳播,在海南形成野生荔枝種群的一個(gè)主要棲息地,同時(shí),在東南亞、越南北部和柬埔寨也發(fā)現(xiàn)了野生的種質(zhì)資源[1-2]。近年來(lái),世界各地的極端低溫事件頻發(fā),在廣東地區(qū)表現(xiàn)為直接影響第二年荔枝的生長(zhǎng)和產(chǎn)量[3-5]。因此,低溫是限制荔枝產(chǎn)量的主要因素之一,篩選抗寒性強(qiáng)的荔枝種質(zhì)、培育耐低溫品種是解決這一問(wèn)題最經(jīng)濟(jì)有效的途徑,且荔枝種質(zhì)資源是進(jìn)行荔枝育種、科研和生產(chǎn)的重要物質(zhì)基礎(chǔ)。
荔枝抗寒種質(zhì)資源的研究起步較晚,目前僅有少量報(bào)道。21世紀(jì)初,佘文琴等[6]就田間荔枝葉片形態(tài)與其耐寒性作了分級(jí)評(píng)價(jià)。張永福等[7]對(duì)7份珍貴荔枝種質(zhì)通過(guò)擬合Logistic方程求半致死溫度進(jìn)行抗寒性評(píng)價(jià),證明馬貴荔的抗寒性最弱。同時(shí),針對(duì)當(dāng)?shù)貧夂颦h(huán)境的監(jiān)測(cè)結(jié)果,結(jié)合荔枝凍(寒)害指標(biāo)進(jìn)行對(duì)應(yīng)的避凍區(qū)劃分,也可以降低低溫凍(寒)害對(duì)荔枝種植的影響[8]。而針對(duì)現(xiàn)有荔枝種質(zhì)資源進(jìn)行大量綜合性的抗寒性評(píng)價(jià)研究尚未見(jiàn)報(bào)道。在其他物種中,例如66份葡萄品種、23個(gè)青錢(qián)柳和99種青岡屬植物的抗寒性綜合評(píng)價(jià)已有報(bào)道[9-11]。雖然荔枝屬于亞熱帶常綠果樹(shù),但同樣存在著一定程度的抗寒資源,由于相關(guān)研究較少,大多數(shù)抗寒資源可能尚處于未發(fā)現(xiàn)狀態(tài),這些資源的搜集、鑒定評(píng)價(jià)和進(jìn)一步發(fā)掘利用,將為荔枝抗寒品種的培育打下必要的工作基礎(chǔ)。
在對(duì)西瓜的抗寒性研究中,賈藍(lán)溪等[12]測(cè)定了最大光化學(xué)效率、相對(duì)電導(dǎo)率、丙二醛含量、抗氧化酶活性、根系活力和干鮮質(zhì)量。同時(shí),在對(duì)番茄進(jìn)行耐低溫性評(píng)價(jià)的試驗(yàn)中,通過(guò)測(cè)定葉片相對(duì)電導(dǎo)率、氣體交換參數(shù)和葉綠素?zé)晒鈪?shù)將番茄品種分為3個(gè)等級(jí)[13]。因此,筆者在本研究中將選取最大光化學(xué)效率(Fv/Fm)、相對(duì)電導(dǎo)率(relative electrical conductivity,REC)、相對(duì)含水量(relative water content,RWC)、丙二醛(malondialdehyde,MDA)含量和脯氨酸(proline,Pro)含量這5個(gè)低溫相關(guān)的生理生化指標(biāo)進(jìn)行測(cè)定,并運(yùn)用相關(guān)分析對(duì)荔枝種質(zhì)抗寒系數(shù)進(jìn)行綜合評(píng)價(jià),將91份荔枝種質(zhì)進(jìn)行抗寒性等級(jí)劃分,為荔枝抗寒種質(zhì)資源的搜集發(fā)掘、鑒定評(píng)價(jià)及抗寒品種的培育等提供可行的技術(shù)方案和參考依據(jù),也為荔枝的育種改良和遺傳研究提供材料基礎(chǔ)。
1 材料和方法
1.1 試驗(yàn)地及試驗(yàn)材料
試驗(yàn)地位于廣東省廣州市天河區(qū)華南農(nóng)業(yè)大學(xué)荔枝種質(zhì)資源圃,地理坐標(biāo)為北緯23°09′36″,東經(jīng)113°20′54″,屬于南亞熱帶季風(fēng)氣候,且有顯著的海洋性氣候特征。12月到翌年2月屬于廣州的冬季,盛行東北風(fēng)或北風(fēng),月平均氣溫為12.5 ℃,大部分氣候較溫暖。但個(gè)別年份在寒潮來(lái)臨時(shí),也可出現(xiàn)霜凍天氣,造成低溫寒害,溫度為0 ℃左右。
本試驗(yàn)所用91份荔枝種質(zhì)由華南農(nóng)業(yè)大學(xué)園藝學(xué)院荔枝種質(zhì)資源圃提供,分別于2020—2021年和2021—2022年連續(xù)2 a(年)冬季對(duì)種質(zhì)資源圃?xún)?nèi)的荔枝種質(zhì)進(jìn)行調(diào)查,包括開(kāi)花時(shí)間以及花期長(zhǎng)短,對(duì)荔枝種質(zhì)進(jìn)行全面的信息統(tǒng)計(jì)。同時(shí),將前人研究[14-15]結(jié)果和后期調(diào)查結(jié)果進(jìn)行匯總(表1)。
1.2 試驗(yàn)設(shè)計(jì)
在冬季對(duì)低溫天氣進(jìn)行觀察,確定自然低溫的開(kāi)始和結(jié)束時(shí)間。于低溫前對(duì)生長(zhǎng)勢(shì)一致且葉片健康的荔枝種質(zhì)資源進(jìn)行編號(hào),且選擇東、南、西、北4個(gè)方向的枝梢進(jìn)行掛牌標(biāo)記。其中,低溫處理均通過(guò)對(duì)冬季低溫的檢測(cè),對(duì)預(yù)計(jì)出現(xiàn)0 ℃左右的低溫天氣進(jìn)行重點(diǎn)關(guān)注,在經(jīng)歷低溫后進(jìn)行后續(xù)試驗(yàn)(實(shí)際低溫前采樣溫度為15 ℃,經(jīng)歷的最低溫度為0 ℃,經(jīng)歷低溫后采樣時(shí)的溫度為4 ℃,此時(shí)觀察到荔枝葉片出現(xiàn)卷曲的現(xiàn)象,即為荔枝已經(jīng)經(jīng)歷低溫傷害)。在低溫前對(duì)已標(biāo)記種質(zhì)資源進(jìn)行末次梢第3或者第4葉位的葉片取樣,取枝條復(fù)葉上的小葉,共10枚。將新鮮的荔枝葉片(去除葉柄)用乙醇擦拭干凈,將葉片混合后得到新鮮樣品,立即進(jìn)行相關(guān)指標(biāo)的測(cè)定,低溫后進(jìn)行同樣操作的葉片采集和指標(biāo)測(cè)定,各指標(biāo)均3次重復(fù)。
1.3 主要儀器及試劑
主要儀器:植物熒光成像儀(IMAGING-PAM,WALZ公司,德國(guó)),紫外可見(jiàn)分光光度計(jì)(UV-2600/2007島津,島津儀器,中國(guó)),F(xiàn)luoroskan Ascen FL熒光化學(xué)發(fā)光分析儀(Thermo公司,美國(guó)),上海雷磁DDS-307電導(dǎo)率儀(儀電科學(xué)儀器股份有限公司,中國(guó)),電熱鼓風(fēng)干燥箱DHG-9075A(上海一恒科技有限公司,中國(guó)),高速冷凍離心機(jī)5804(R)/5801(R)(Eppendorf公司,德國(guó)),華志PTX-FA110S電子天平(華志電子科技有限公司,美國(guó)),HWS28水浴鍋(上海一恒科學(xué)儀器有限公司,中國(guó)),SHB-循環(huán)水式多用真空泵(鄭州科華儀器設(shè)備有限公司,中國(guó))。
主要試劑:三氯乙酸(500 g,成都市科龍化工試劑廠),硫代巴比妥酸(25 g,國(guó)藥集團(tuán)化學(xué)試劑有限公司),石英砂(500 g,廣州化學(xué)試劑廠),茚三酮(5 g,上??曝S實(shí)業(yè)有限公司),冰乙酸(500 mL,天津市富宇精細(xì)化化工有限公司),氫氧化鈉(500 g,天津市福晨化學(xué)試劑廠),磺基水楊酸(100 g,廣州化學(xué)試劑廠),甲苯(500 mL,洛陽(yáng)市化學(xué)試劑廠),95%的乙醇(500 mL,天津市富宇精細(xì)化化工有限公司),磷酸(500 mL,廣州化學(xué)試劑廠)。上述試劑均為分析純。
1.4 試驗(yàn)方法
PSⅡ最大光化學(xué)量子產(chǎn)量(Fv/Fm)測(cè)定:選取枝條上葉位處成熟的葉片,立即用濕棉花包裹葉柄處令其繼續(xù)吸收水分,并用濕紗布包裹,再將待測(cè)葉片置于黑暗箱中避光,暗適應(yīng)處理20 min以上,用Fluoroskan Ascen FL熒光化學(xué)發(fā)光分析儀(Thermo,美國(guó))測(cè)定Fv/Fm。具體操作步驟按照儀器說(shuō)明書(shū)進(jìn)行,之后點(diǎn)擊窗口下面的Fo、Fm按鈕,1 s之后,獲得對(duì)應(yīng)材料的葉綠素?zé)晒獬上駡D(初始熒光Fo、最大熒光Fm和PSⅡ最大光化學(xué)量子產(chǎn)量Fv/Fm)和Fv/Fm值。
相對(duì)含水量(relative water content,RWC)采取烘干法[16]測(cè)定。相對(duì)電導(dǎo)率(relative electrical conductivity,REC)采用電導(dǎo)法[17]測(cè)定。丙二醛(malondialdehyde,MDA)含量采用硫代巴比妥酸(TBA)顯色法[17]測(cè)定。脯氨酸(proline,Pro)含量采用磺基水楊酸提取法[18]測(cè)定。
1.5 數(shù)據(jù)處理與分析
利用 Microsoft Excel 進(jìn)行數(shù)據(jù)處理和計(jì)算,利用SPSS 20.0軟件進(jìn)行相關(guān)性檢驗(yàn)、正態(tài)檢驗(yàn)、主成分分析、灰色關(guān)聯(lián)度分析及相關(guān)圖表生成。以低溫前后的兩輪數(shù)據(jù)(每輪數(shù)據(jù)3個(gè)重復(fù))平均值作為基礎(chǔ)數(shù)據(jù),參照汪燦等[19-20]和歐巧明等[21]的方法進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析。
先對(duì)低溫前后數(shù)據(jù)進(jìn)行整理,獲得單個(gè)指標(biāo)的相對(duì)抗寒系數(shù)(cold tolerance coefficient,CC),見(jiàn)公式(1)。
為避免不同測(cè)試指標(biāo)數(shù)量級(jí)之間差異的影響,依據(jù)隸屬函數(shù)[公式(2)]對(duì)原始數(shù)據(jù)進(jìn)行歸一化處理。
其中,μ(CCi)表示各指標(biāo)的隸屬函數(shù)值,CCi表示第i個(gè)指標(biāo)的相對(duì)抗寒系數(shù)值,max(CC)和min(CC)表示所有荔枝種質(zhì)第i個(gè)指標(biāo)測(cè)定的最大值和最小值。
對(duì)各單項(xiàng)指標(biāo)指數(shù)進(jìn)行主成分分析,以每個(gè)主成分所對(duì)應(yīng)的特征值占所提取主成分總的特征值之和的比例作為權(quán)重。采用正交旋轉(zhuǎn)的方法對(duì)數(shù)據(jù)進(jìn)行旋轉(zhuǎn)。依據(jù)簡(jiǎn)單相關(guān)系數(shù)矩陣進(jìn)行因子分析,將原來(lái)多個(gè)彼此相關(guān)的指標(biāo)轉(zhuǎn)換成新的少數(shù)幾個(gè)彼此獨(dú)立的綜合指標(biāo),從而建立綜合指標(biāo)Zj的方程,見(jiàn)公式(3)。
bij為第i個(gè)指標(biāo)的單項(xiàng)指標(biāo)值,j代表第j個(gè)綜合指標(biāo);xi為第i個(gè)指標(biāo)值。其中,i = 1,2,……,n; j = 1,2,……,m,m ≤ n。
基于隸屬函數(shù)的耐冷性綜合評(píng)價(jià)值(cold tolerance comprehensive evaluation value,D)進(jìn)行評(píng)價(jià),見(jiàn)公式(4)(5)。
其中,pi為第i個(gè)綜合指標(biāo)貢獻(xiàn)率(各指標(biāo)的特征值即為貢獻(xiàn)率),ωi為因子權(quán)重系數(shù),表示第i個(gè)指標(biāo)在所有指標(biāo)中的重要程度。
基于灰色關(guān)聯(lián)度進(jìn)行計(jì)算,見(jiàn)公式(6)。
其中,γi是基于各指標(biāo)CC值作為比較序列,D值作為參考序列,獲得各指標(biāo)CC值與D值間的關(guān)聯(lián)度?;疑P(guān)聯(lián)度參考前人的研究方法進(jìn)行計(jì)算[22-23],ωi(γ)為各指標(biāo)權(quán)重系數(shù)。
1.6 抗寒性評(píng)價(jià)與分級(jí)
依據(jù)荔枝種質(zhì)的耐冷性綜合D值,采用歐式距離和加權(quán)配對(duì)算術(shù)平均法(weighted pair group method average,WPGMA)進(jìn)行聚類(lèi)分析,劃分荔枝抗寒性等級(jí)。D值越大,荔枝種質(zhì)抗寒性越強(qiáng),D值越小,則荔枝種質(zhì)抗寒性越弱。根據(jù)D值正態(tài)分布特點(diǎn),確定抗寒程度的分級(jí)標(biāo)準(zhǔn),并參照荔枝矮化[24]和玉米種質(zhì)資源抗寒性的分級(jí)方法[25],將91份荔枝種質(zhì)分為高度冷敏感(Ⅰ)、冷敏感(Ⅱ)、中度耐冷性(Ⅲ)、耐冷性(Ⅳ)和高度耐冷性(Ⅴ)5個(gè)級(jí)別。
2 結(jié)果與分析
2.1 荔枝種質(zhì)在低溫前后相關(guān)指標(biāo)的測(cè)定結(jié)果分析
對(duì)Fv/Fm、RWC、REC、MDA和Pro含量5個(gè)指標(biāo)進(jìn)行測(cè)定,分別將低溫前和低溫后的測(cè)定值進(jìn)行對(duì)比分析(圖1),經(jīng)歷低溫后荔枝種質(zhì)的各個(gè)指標(biāo)都有明顯變化,其中Pro含量的變化最大,說(shuō)明這5個(gè)低溫相關(guān)指標(biāo)對(duì)荔枝種質(zhì)進(jìn)行抗寒性程度鑒定評(píng)價(jià)是切實(shí)可行的。
將以上各指標(biāo)的測(cè)定值進(jìn)行相關(guān)分析(表2),包括變異系數(shù)(coefficient of variation,CV)和關(guān)聯(lián)系數(shù)(coefficient of association)。結(jié)果表明低溫之后Fv/Fm的平均值為 0.12,CV為19.01,經(jīng)歷低溫后REC的平均值為14.77,CV為40.85。Fv/Fm和REC可在一定程度上反映荔枝種質(zhì)的受傷害程度,從測(cè)試數(shù)據(jù)可知,低溫后雪懷子的Fv/Fm最低,且REC值最大,說(shuō)明其受低溫的傷害比較大。荔枝種質(zhì)的RWC值在低溫前維持在55%左右,低溫后平均降低了13%,而MDA含量(b,后同)在低溫前平均值為35.02 μmol·mg-1,低溫后平均值升高到46.39 μmol·mg-1,Pro含量(w,后同)在低溫后平均值為404.40 μg·g-1,較低溫前升高近10倍。
此外,低溫前與低溫后各指標(biāo)的相關(guān)系數(shù)均達(dá)到極顯著水平。Fv/Fm和RWC值在低溫前測(cè)定的平均值較低溫后測(cè)定的平均值大,而其他性狀均表現(xiàn)為在低溫后測(cè)定的平均值大于低溫前測(cè)定的平均值。荔枝種質(zhì)之間的CV介于3.61%~40.85%之間,表明測(cè)定的指標(biāo)對(duì)荔枝種質(zhì)資源在低溫脅迫下反應(yīng)較敏感,具有較好的低溫處理效果。此外,荔枝種質(zhì)的各項(xiàng)指標(biāo)在低溫前和低溫后表型值的相關(guān)系數(shù)介于0.35~0.95之間,進(jìn)一步說(shuō)明各指標(biāo)對(duì)低溫脅迫反應(yīng)的敏感性存在差異。直接采用各項(xiàng)指標(biāo)的表型值來(lái)度量其抗寒性,并不能夠全面地體現(xiàn)供試91份荔枝種質(zhì)的抗寒性差異。同時(shí),也說(shuō)明只用單個(gè)指標(biāo)進(jìn)行荔枝種質(zhì)抗寒性的評(píng)價(jià)是不可行的,應(yīng)該結(jié)合多個(gè)相關(guān)指標(biāo)來(lái)對(duì)其進(jìn)行綜合評(píng)價(jià),這樣的評(píng)價(jià)結(jié)果更可靠。
對(duì)低溫前后荔枝種質(zhì)的各個(gè)指標(biāo)測(cè)定結(jié)果進(jìn)行正態(tài)分布檢測(cè)(表3)。發(fā)現(xiàn)低溫后荔枝種質(zhì)的Fv/Fm和RWC值,以及低溫前的Pro含量均不符合正態(tài)分布,其他不同時(shí)間的各個(gè)低溫相關(guān)指標(biāo)均符合正態(tài)分布(低溫前的REC值和MDA含量,低溫后的MDA含量和Pro含量)或近似符合正態(tài)分布(低溫前的Fv/Fm和RWC值,低溫后的REC值)。其中不管是在低溫脅迫前還是低溫脅迫后,荔枝種質(zhì)MDA含量的測(cè)定值都表現(xiàn)為極顯著,可能是因?yàn)樵撝笜?biāo)在荔枝種質(zhì)在低溫脅迫前后的變化差異比較大。
進(jìn)一步分析5個(gè)指標(biāo)測(cè)定值的頻數(shù)分布范圍直方(圖2)??梢园l(fā)現(xiàn)Fv/Fm值在低溫前分布在0.75~0.8之間的荔枝種質(zhì)有58份,大于0.8的荔枝種質(zhì)有7份,小于0.75的荔枝種質(zhì)有26份,在低溫后分布在0.7~0.8的荔枝種質(zhì)有43份,大于0.8的荔枝種質(zhì)有1份,小于0.7的荔枝種質(zhì)有47份,其中4份荔枝種質(zhì)低于0.4。REC值在低溫前分布在8%~11%之間的荔枝種質(zhì)有86份,小于8%的荔枝種質(zhì)有4份,大于11%的荔枝種質(zhì)只有1份,低溫后分布在10~20之間的荔枝種質(zhì)有60份,小于10的荔枝種質(zhì)有19份,大于20的荔枝種質(zhì)有12份。RWC值在低溫前分布在40%~50%之間的荔枝種質(zhì)有48份,大于50%的荔枝種質(zhì)有25份,小于40%的荔枝種質(zhì)有18份,在低溫后分布在40%~50%的荔枝種質(zhì)有62份,大于50%的荔枝種質(zhì)有7份,小于40%的荔枝種質(zhì)有22份。MDA含量在低溫前分布在30~40 μmol·mg-1之間的荔枝種質(zhì)有86份,小于30 μmol·mg-1的荔枝種質(zhì)有12份,大于40 μmol·mg-1的荔枝種質(zhì)有9份,低溫后各荔枝種質(zhì)的MDA含量均有所升高,而且分布在40~50 μmol·mg-1之間的荔枝種質(zhì)有52份,有10份荔枝種質(zhì)小于40 μmol·mg-1,有29份荔枝種質(zhì)大于50 μmol·mg-1。Pro含量在低溫前分布在40~60 μg·g-1之間的荔枝種質(zhì)有89份,小于40 μg·g-1的荔枝種質(zhì)有1份,大于60 μg·g-1的荔枝種質(zhì)有1份,而且低溫后分布在400~450 μg·g-1之間的荔枝種質(zhì)有58份,小于400 μg·g-1的荔枝種質(zhì)有32份,大于450 μg·g-1的荔枝種質(zhì)有1份。根據(jù)以上分析結(jié)果,初步推斷大部分荔枝種質(zhì)的抗寒性相對(duì)較差,只有少部分可能有較強(qiáng)的抗寒性。
2.2 荔枝種質(zhì)在低溫前后各單項(xiàng)指標(biāo)的結(jié)果分析
對(duì)荔枝種質(zhì)各指標(biāo)耐冷性系數(shù)進(jìn)行差異分析(表4)。低溫處理后,荔枝種質(zhì)各項(xiàng)指標(biāo)均產(chǎn)生明顯變化。其中,最大值的差異較大,Pro含量的最大值為10.23,F(xiàn)v/Fm的最大值為1.02,最小值的差異較最大值小,Pro含量的最小值為0.35,F(xiàn)v/Fm的最小值為5.95。同時(shí),各指標(biāo)抗寒系數(shù)(CC值)的變異系數(shù)介于3.89%~34.28%之間,REC的CV值最大,為34.28,而RWC的CV值最小,為3.89,其中,F(xiàn)v/Fm的CV值位居第二,為17.79,之后是MDA和Pro含量,分別為6.04和9.86。這說(shuō)明不同荔枝種質(zhì)間的CC值所反映的耐冷性不同,且同一荔枝種質(zhì)各指標(biāo)的CC值間也具有較大的差異,即低溫脅迫下各項(xiàng)生理指標(biāo)的變化是不同的。在對(duì)荔枝種質(zhì)的抗寒性進(jìn)行綜合評(píng)價(jià)時(shí),如果只使用某一個(gè)單一的指標(biāo)進(jìn)行抗寒性評(píng)價(jià),其結(jié)果會(huì)隨著該指標(biāo)對(duì)低溫反應(yīng)敏感性的不同而有明顯變化,且不同指標(biāo)在低溫過(guò)程中有著不同重要性,想要獲得更為準(zhǔn)確的抗寒性鑒定分級(jí),仍然需要對(duì)多個(gè)指標(biāo)進(jìn)行測(cè)定,并結(jié)合隸屬函數(shù)進(jìn)行綜合分析。
此外,分析荔枝種質(zhì)各指標(biāo)抗寒系數(shù)在不同區(qū)間的分布情況,結(jié)果(表5)顯示同一區(qū)間各指標(biāo)CC值的分布次數(shù)和頻率差異較大。由于CC值是低溫后與低溫前的各指標(biāo)比值,因此,CC值越接近于1,表明抗寒性越強(qiáng)。由表5可知,CC值大于0.8的Fv/Fm、RWC、MDA含量、Pro含量和REC的分布頻率分別為58.24%、56.04%、14.29%、25.27%和3.3%,表明各指標(biāo)對(duì)低溫脅迫反應(yīng)的敏感程度依次為Fv/Fm、RWC、Pro含量、MDA含量和REC。REC的CC值在小于0.2區(qū)間內(nèi)的分布頻率達(dá)到56.04%,表明REC值對(duì)低溫脅迫的敏感度較高,而RWC的CC值在小于0.2區(qū)間內(nèi)的分布頻率僅為2.2%,表明RWC值對(duì)低溫脅迫的敏感度相對(duì)較高。因此,只采用某個(gè)單一指標(biāo)進(jìn)行荔枝種質(zhì)抗寒性評(píng)價(jià)會(huì)忽略各指標(biāo)間復(fù)雜的相互關(guān)系,也驗(yàn)證了抗寒性相關(guān)指標(biāo)選擇的合理性,為獲得較為準(zhǔn)確的荔枝種質(zhì)抗寒性鑒定與分級(jí)評(píng)價(jià)結(jié)果提供可靠依據(jù)。
2.3 荔枝種質(zhì)在低溫前后各單項(xiàng)指標(biāo)的相關(guān)性分析
由于低溫相關(guān)指標(biāo)在反映荔枝種質(zhì)抗寒性方面具有較好的一致性,因此對(duì)5個(gè)指標(biāo)進(jìn)行相關(guān)性分析。結(jié)果(表6)表明不同性狀之間均存在一定程度的相關(guān)性,且大多數(shù)性狀的相關(guān)性達(dá)到了極顯著水平。Fv/Fm與RWC、Pro含量間呈極顯著的正相關(guān)(p<0.01),與REC呈顯著負(fù)相關(guān)(p<0.01),RWC與Pro含量呈極顯著正相關(guān)(p<0.01),與REC呈顯著負(fù)相關(guān)(p<0.01),而REC與Pro含量呈極顯著負(fù)相關(guān)(p<0.01)。即低溫相關(guān)指標(biāo)Fv/Fm、RWC、REC與Pro含量的相關(guān)性較顯著,能夠共同反映荔枝種質(zhì)的抗寒性強(qiáng)弱。
2.4 荔枝種質(zhì)在低溫前后各指標(biāo)的因子分析及因子載荷
因子分析是主成分分析的推廣,是一種可以把多個(gè)變量化為少數(shù)幾個(gè)綜合變量的多變量分析方法,其主要目的是用有限的、更基本的但又無(wú)法直接測(cè)量到的隱性變量來(lái)解釋原始變量之間的相關(guān)關(guān)系。通過(guò)研究多個(gè)變量之間的內(nèi)部依賴(lài)關(guān)系,探求已測(cè)定數(shù)據(jù)中的基本結(jié)構(gòu)。同時(shí),用少數(shù)幾個(gè)假想變量來(lái)表示其基本的數(shù)據(jù)結(jié)構(gòu)。假想變量,即為存在的潛在變量,一般稱(chēng)為因子。
筆者在本研究中采用因子分析對(duì)5個(gè)觀測(cè)指標(biāo)的CC值進(jìn)行分析,通過(guò)獲得所有指標(biāo)的特征值、因子載荷和方差貢獻(xiàn)率,來(lái)更加全面地評(píng)價(jià)與荔枝種質(zhì)抗寒性相關(guān)的各個(gè)指標(biāo)之間的內(nèi)在聯(lián)系。對(duì)荔枝種質(zhì)在低溫前和低溫后的各指標(biāo)進(jìn)行因子分析,結(jié)果見(jiàn)表7。通過(guò)觀察初始特征值、提取載荷平方和,以及旋轉(zhuǎn)載荷平方和的計(jì)算結(jié)果可知,在提取原則為特征值大于1的基礎(chǔ)上,綜合考慮方差貢獻(xiàn)率和特征值,一共可以提取4個(gè)主成分作為因子,即F1、F2、F3、F4。這4個(gè)因子的累積方差解釋率為87.11%,說(shuō)明提取出來(lái)的4個(gè)因子可以提取出總共87.11%的信息量。這4個(gè)因子的方差解釋率分別為23.62%,21.90%,20.99%和20.61%,說(shuō)明這4個(gè)因子的信息提取量分布較為均勻。因此,本研究的因子分析結(jié)果較為理想,可用來(lái)進(jìn)行之后的91份荔枝種質(zhì)抗寒性分析。
將原單項(xiàng)性狀指標(biāo)轉(zhuǎn)換為4個(gè)相互獨(dú)立的公因子(F1、F2、F3、F4),用凱撒正態(tài)化最大方差法對(duì)以上數(shù)據(jù)進(jìn)行正交旋轉(zhuǎn)得到表8。由表8可知,旋轉(zhuǎn)后的第一主成分主要包括Pro含量,且系數(shù)為正,說(shuō)明該變量對(duì)第一主成分的影響是正向的。第二主成分主要包括RWC,且系數(shù)為正,說(shuō)明該變量對(duì)第二主成分的影響也是正的。第三主成分主要包括Fv/Fm和REC,且Fv/Fm的系數(shù)為正,REC的系數(shù)為負(fù),這說(shuō)明這兩個(gè)變量對(duì)第三主成分的影響是Fv/Fm為正,REC為負(fù)。第四主成分主要包括MDA,且系數(shù)為正,說(shuō)明該變量對(duì)第四主成分的影響為正。
綜上所述,通過(guò)分析各個(gè)指標(biāo)對(duì)主成分的影響,發(fā)現(xiàn)Pro含量、RWC、Fv/Fm和MDA含量均是正向的影響,而REC則是負(fù)向的影響,說(shuō)明不同測(cè)定指標(biāo)對(duì)主成分的影響有所不同,而通過(guò)轉(zhuǎn)化成主成分F1、F2、F3和F4可以更好地對(duì)荔枝種質(zhì)抗寒性進(jìn)行綜合評(píng)價(jià),進(jìn)一步獲得較為準(zhǔn)確的抗寒性分級(jí)。
2.5 荔枝抗寒性的綜合評(píng)價(jià)
根據(jù)之前的結(jié)果得到4個(gè)主因子,以此建立不同荔枝種質(zhì)抗寒性強(qiáng)弱的評(píng)價(jià)模型,依據(jù)表9各因子得分系數(shù)計(jì)算4個(gè)主因子的得分,其因子得分的計(jì)算公式為:
FAC1=1.497×Zscore(Pro)-0.152×Zscore(RWC)-0.308×Zscore(Fv/Fm)+0.355×Zscore(REC)-0.119×Zscore(MDA);
FAC2= -0.110×Zscore(Pro)+1.162×Zscore(RWC)-0.203×Zscore(Fv/Fm)+0.093×Zscore(REC)+0.015×Zscore(MDA);
FAC3= -0.379×Zscore(Pro)-0.338×Zscore(RWC)+1.748×Zscore(Fv/Fm)+0.497×Zscore(REC)-0.129×Zscore(MDA);
FAC4= -0.076×Zscore(Pro)+0.012×Zscore(RWC)-0.072×Zscore(Fv/Fm)+0.042×Zscore(REC)+1.04×Zscore(MDA)。
根據(jù)4個(gè)主因子的貢獻(xiàn)率和因子得分,可建立耐冷性綜合評(píng)價(jià)數(shù)學(xué)模型:
F=0.271×FAC1+ 0.251×FAC2+0.241×FAC3+ 0.237×FAC4=0.269×Zscore(Pro)+0.172×Zscore(RWC)+0.270×Zscore(Fv/Fm)+0.249×Zscore(REC)+0.187×Zscore(MDA)。
F值反映了樹(shù)體耐冷程度,F(xiàn)值越大,對(duì)應(yīng)樹(shù)體的耐冷特性越明顯,反之,F(xiàn)值越小,對(duì)應(yīng)樹(shù)體的冷敏感特性越明顯。在獲得各公因子特征向量的基礎(chǔ)上,利用模糊隸屬函數(shù)法,據(jù)公式(2)計(jì)算各因子隸屬函數(shù)值(?),依據(jù)公式(4)各因子權(quán)重系數(shù)(ω),對(duì)各因子隸屬函數(shù)值(?)賦予相應(yīng)權(quán)重系數(shù)(ω),按公式(5)計(jì)算加權(quán)隸屬函數(shù)值,作為綜合抗寒性的量值(D值),以便較為準(zhǔn)確地評(píng)價(jià)荔枝種質(zhì)的抗寒性。
參考于萍等[22]的研究方法,將所有觀測(cè)指標(biāo)的抗寒系數(shù)(CC值)作為比較序列,D值作為參考數(shù)列進(jìn)行灰色關(guān)聯(lián)度分析,獲得觀測(cè)指標(biāo)的CC值與D值間的關(guān)聯(lián)度,結(jié)果(表9)顯示各指標(biāo)與D值的密切程度依次為Pro含量、RWC、Fv/Fm、REC和MDA含量。因此,與荔枝種質(zhì)耐冷性關(guān)系最為密切的是低溫相關(guān)指標(biāo)Pro含量和RWC,其次是Fv/Fm和MDA,關(guān)聯(lián)度最弱的是REC。
2.6 荔枝抗寒性的綜合評(píng)價(jià)
將上述計(jì)算獲得的91份荔枝種質(zhì)的D值匯總,得出表10,其中荔枝種質(zhì)編號(hào)對(duì)應(yīng)的種質(zhì)名稱(chēng)已在表1中詳細(xì)列出,此處僅用編號(hào)進(jìn)行匯總。綜合D值越高,表明該荔枝種質(zhì)的抗寒性越強(qiáng),綜合D值越低,則表明該荔枝種質(zhì)的抗寒性越弱。分析表10,發(fā)現(xiàn)測(cè)定的91份荔枝種質(zhì)資源中D值最大為0.775,即Lc17大錦鐘,其次是0.739的Lc62陳紫和0.745的Lc74宋家香,表明在所測(cè)荔枝種質(zhì)資源中以上3個(gè)荔枝種質(zhì)的抗寒性較強(qiáng)。而D值最小為0.330,即Lc13金線(xiàn)果,其次是0.372的Lc71下番枝和0.375的Lc36蘭竹,表明在所測(cè)荔枝種質(zhì)資源中以上3個(gè)荔枝種質(zhì)的抗寒性較弱。
為了更加清晰地對(duì)91份荔枝種質(zhì)資源進(jìn)行抗寒性評(píng)價(jià)分級(jí),以荔枝種質(zhì)的耐冷性綜合D值為基礎(chǔ),對(duì)荔枝種質(zhì)的D值進(jìn)行系統(tǒng)聚類(lèi)分析,得到圖3、圖4。在λ=5處,將91份荔枝種質(zhì)的抗寒性等級(jí)劃分為5個(gè)等級(jí),即高度冷敏感(Ⅰ)、冷敏感(Ⅱ)、中度耐冷性(Ⅲ)、耐冷性(Ⅳ)和高度耐冷性(Ⅴ)。其中,大部分荔枝種質(zhì)都被劃分到耐冷性(Ⅳ)這一分類(lèi)中,高度冷敏感(Ⅰ)和高度耐冷性(Ⅴ)這兩類(lèi)都相對(duì)較少,說(shuō)明荔枝種質(zhì)的抗寒能力大部分較為集中。
將荔枝抗寒性分級(jí)評(píng)價(jià)結(jié)果進(jìn)行分類(lèi)匯總(表11)。結(jié)果表明,Ⅰ類(lèi)為高度冷敏感荔枝種質(zhì),有金線(xiàn)果、下番枝、蘭竹、大造、尚書(shū)懷、犀角子和烏葉舅,共7份,占總數(shù)的7.69%;Ⅱ類(lèi)為冷敏感荔枝種質(zhì),有觀音綠、水東、雪懷子、三月紅、Salathiel、Kwai May Pink、黑妃紅、嶺豐糯、年年紅1號(hào)和十月荔,共10份,占總數(shù)的10.99%;Ⅲ類(lèi)為中度耐冷性荔枝種質(zhì),共23份,占總數(shù)的25.27%;Ⅳ類(lèi)為耐冷性荔枝種質(zhì),共40份,占總數(shù)的43.96%;Ⅴ類(lèi)為高度耐冷性荔枝種質(zhì),有娘喜紫、桂林、金鐘、及第、東劉一號(hào)、狀元紅、大紅袍、烏葉、宋家香、陳紫和大錦鐘,共11份,占總數(shù)的12.09%。綜上所述,以上結(jié)果基于低溫相關(guān)指標(biāo)的測(cè)定,通過(guò)因子分析對(duì)荔枝抗寒性程度進(jìn)行綜合評(píng)價(jià)和分級(jí),建立了比較客觀準(zhǔn)確的抗寒性鑒定方法,探索出評(píng)價(jià)荔枝種質(zhì)抗寒性的量化評(píng)價(jià)標(biāo)準(zhǔn),為荔枝抗寒種質(zhì)資源的發(fā)掘和篩選提供了有效的參考依據(jù)。
依據(jù)系統(tǒng)聚類(lèi)劃分的5個(gè)類(lèi)群,分別對(duì)5個(gè)不同耐冷性材料類(lèi)群的各性狀抗寒系數(shù)和綜合D值進(jìn)行分析。由圖4可知,低溫對(duì)Pro含量、RWC、Fv/Fm、MDA含量和REC有顯著影響,表現(xiàn)為隨著抗寒性的增強(qiáng),在低溫脅迫后Pro含量、RWC和Fv/Fm呈顯著升高的趨勢(shì),REC和MDA含量呈顯著降低的趨勢(shì)。同時(shí),5個(gè)耐冷性類(lèi)群由Ⅰ~Ⅴ綜合D值依次呈現(xiàn)升高的趨勢(shì)。
3 討 論
3.1 荔枝種質(zhì)抗寒性資源的發(fā)掘與利用
中國(guó)荔枝種質(zhì)資源十分豐富,主要分布于南亞熱帶地區(qū),由于其在長(zhǎng)期發(fā)育中對(duì)溫度有較高的要求,使其不能在全國(guó)進(jìn)行推廣栽培,故選育抗寒性強(qiáng)的荔枝種質(zhì)顯得尤為重要[26]。隨著全球極端低溫氣候事件頻發(fā),華南地區(qū)冬季也常常伴隨著連續(xù)出現(xiàn)的霜凍天氣,在冬季氣溫降至4 ℃,會(huì)造成大面積的荔枝凍害[27],在低溫降到0 ℃以下時(shí),會(huì)使荔枝葉片和枝條受害,甚至使樹(shù)干受損,整株死亡[28]。隨著中國(guó)大力發(fā)展農(nóng)業(yè),對(duì)農(nóng)業(yè)結(jié)構(gòu)進(jìn)行不斷調(diào)整,鼓勵(lì)特色農(nóng)業(yè)發(fā)展,荔枝種植面積逐年增加,目前全國(guó)種植面積穩(wěn)定在58萬(wàn)hm2,面積和產(chǎn)量均占全世界總量的70%以上[29]。由此可見(jiàn),對(duì)荔枝抗寒性種質(zhì)資源的發(fā)掘與利用對(duì)培育耐寒性荔枝品種或砧木具有十分重要的意義。
3.2 果樹(shù)抗寒資源的鑒定與評(píng)價(jià)
近年來(lái),果樹(shù)抗寒性預(yù)選指標(biāo)在大量研究中被報(bào)道[30-31],F(xiàn)v/Fm反映PSⅡ反應(yīng)中心內(nèi)原初光能的轉(zhuǎn)化效率[32],進(jìn)一步反映葉片光合作用受低溫影響的情況,直接影響其抗寒能力[33-34];RWC值可以很好地反映植物抗逆性,通常其值越高,對(duì)應(yīng)的滲透調(diào)節(jié)功能和抗性就越強(qiáng)[35],用REC值大小直接反映果樹(shù)在低溫下細(xì)胞膜受傷害程度[36-38];MDA是膜脂過(guò)氧化的終產(chǎn)物[39],其含量高低代表質(zhì)膜受損傷的程度,與果樹(shù)抗寒能力密切相關(guān)[40];Pro是一種維持膜穩(wěn)定的物質(zhì),其積累量越多,果樹(shù)抗寒性越強(qiáng)[41]。另外在形態(tài)、生理、生化等方面也都進(jìn)行了詳細(xì)報(bào)道[42-44],相關(guān)研究表明這些指標(biāo)與植物抗寒性都存在直接或者間接的聯(lián)系。實(shí)際上,果樹(shù)抗寒是一個(gè)復(fù)雜的過(guò)程,在低溫下其表型性狀受多種因素影響,且不同物種對(duì)低溫響應(yīng)的機(jī)制差異很大,使用單一指標(biāo)無(wú)法準(zhǔn)確地評(píng)價(jià)其對(duì)低溫的耐受能力,因此進(jìn)行果樹(shù)種質(zhì)低溫抗寒性評(píng)價(jià)需要將各個(gè)指標(biāo)進(jìn)行綜合考慮[45]。同時(shí)針對(duì)不同物種選擇適宜的指標(biāo),結(jié)合隸屬函數(shù)法、主成分分析和聚類(lèi)分析法,可以更好地對(duì)不同物種耐寒性進(jìn)行評(píng)價(jià),為選育抗寒性強(qiáng)的種質(zhì)資源提供基礎(chǔ)[46-47]。
低溫下葉綠素?zé)晒馓匦缘淖兓诶鎇48]、小麥[49]、咖啡[50]中均被證明。在對(duì)不同基因型的白雞冠F1代抗寒性研究中,林鄭和等[51]通過(guò)測(cè)定葉綠素?zé)晒鈩?dòng)力學(xué)可區(qū)分不同后代的抗寒水平。Fv/Fm值降低的程度與不同品種的抗冷性之間呈現(xiàn)較顯著的相關(guān)性,在老芒麥[52]的抗寒性鑒定中已有報(bào)道。除此之外,低溫其他相關(guān)指標(biāo)差異也均有報(bào)道[53-55],對(duì)葡萄抗寒性進(jìn)行全面評(píng)價(jià)時(shí),孫艷等[56]測(cè)定6個(gè)葡萄品種根系RWC以進(jìn)行抗寒性鑒定,而在荔枝種質(zhì)上的研究未見(jiàn)報(bào)道。另外,在低溫下對(duì)5個(gè)梨品種分別測(cè)定多個(gè)生理生化指標(biāo),其中包括REC、MDA和Pro含量,結(jié)合隸屬函數(shù)分析法得出新梨七號(hào)是其中抗寒性最強(qiáng)的[35]。在對(duì)樹(shù)上干杏不同株系抗寒性的鑒定評(píng)價(jià)中,于慶帆等[57]也選擇了REC、MDA和Pro含量這些指標(biāo),建立了較為可靠的樹(shù)上干杏抗寒性評(píng)價(jià)方法。在石榴[58]、蘋(píng)果[59]和獼猴桃[60]的抗寒性評(píng)價(jià)研究中,也將REC和MDA含量作為抗寒性評(píng)價(jià)指標(biāo)。蔡汝鵬等[61]對(duì)三月紅(♀)和紫娘喜(♂)的雜交后代進(jìn)行10個(gè)枝葉性狀指標(biāo)鑒定,分析各性狀變幅、分布頻率、變異系數(shù)等。由此可見(jiàn),通過(guò)Fv/Fm、RWC、REC、MDA和Pro含量5個(gè)指標(biāo)的測(cè)定,對(duì)鑒定評(píng)價(jià)荔枝抗寒性具有一定的可行性。
3.3 荔枝種質(zhì)抗寒性綜合評(píng)價(jià)
在對(duì)荔枝種質(zhì)抗寒性研究中,通過(guò)對(duì)5個(gè)指標(biāo)進(jìn)行相關(guān)性分析,發(fā)現(xiàn)Fv/Fm、RWC、REC和Pro含量存在極顯著的相關(guān)性,能夠共同反映荔枝的抗寒性程度。再經(jīng)過(guò)主成分和灰度關(guān)聯(lián)分析,結(jié)果顯示5個(gè)指標(biāo)與D值的密切程度均高于0.7,進(jìn)一步明確低溫相關(guān)指標(biāo),為荔枝種質(zhì)抗寒性評(píng)價(jià)提供依據(jù)。同時(shí),相關(guān)分析方法在葡萄[62]、石榴[63]和桃[64]的綜合評(píng)價(jià)中多有報(bào)道。通過(guò)正態(tài)檢測(cè)和系統(tǒng)聚類(lèi)分析,筆者在本研究中參考低溫下205份玉米種質(zhì)抗寒性評(píng)價(jià)分級(jí)類(lèi)型[25],結(jié)合D值大小,將91份荔枝種質(zhì)資源劃分為高度冷敏感(Ⅰ)、冷敏感(Ⅱ)、中度耐冷性(Ⅲ)、耐冷性(Ⅳ)和高度耐冷性(Ⅴ)5個(gè)等級(jí),并確定了每個(gè)等級(jí)的典型代表品種。依據(jù)該分級(jí)方法,明確了大錦鐘、陳紫和紫娘喜為高度耐冷性品種,這與前人研究一致[6,65]。說(shuō)明該評(píng)價(jià)方法具有較高的可靠性,為荔枝抗寒種質(zhì)資源的搜集發(fā)掘、鑒定評(píng)價(jià)及抗寒品種的培育等提供了可行的技術(shù)方案和參考依據(jù)。
4 結(jié) 論
本試驗(yàn)中選取5個(gè)指標(biāo)的相對(duì)測(cè)定值進(jìn)行抗寒性的綜合評(píng)價(jià),結(jié)果顯示低溫對(duì)Fv/Fm、RWC、REC、MDA和Pro含量有顯著影響,這5個(gè)指標(biāo)是評(píng)價(jià)荔枝種質(zhì)抗寒性較理想的生理指標(biāo)。測(cè)定91份荔枝種質(zhì)在自然低溫脅迫下生理生化指標(biāo)的變化情況,并結(jié)合一系列相關(guān)分析進(jìn)行綜合評(píng)價(jià),將荔枝種質(zhì)資源抗寒性分為5個(gè)等級(jí),即高度冷敏感(Ⅰ)、冷敏感(Ⅱ)、中度耐冷性(Ⅲ)、耐冷性(Ⅳ)和高度耐冷性(Ⅴ)。同時(shí),篩選出大錦鐘、陳紫等為相對(duì)抗寒性高的荔枝種質(zhì),以及冷敏感種質(zhì)金線(xiàn)果,為荔枝的育種改良和遺傳研究提供材料基礎(chǔ)。
參考文獻(xiàn) References:
[1] HU G B,F(xiàn)ENG J T,XIANG X,WANG J B,SALOJ?RVI J,LIU C M,WU Z X,ZHANG J S,LIANG X M,JIANG Z D,LIU W,OU L X,LI J W,F(xiàn)AN G Y,MAI Y X,CHEN C J,ZHANG X T,ZHENG J K,ZHANG Y Q,PENG H X,YAO L X,WAI C M,LUO X P,F(xiàn)U J X,TANG H B,LAN T Y,LAI B,SUN J H,WEI Y Z,LI H L,CHEN J Z,HUANG X M,YAN Q,LIU X,MCHALE L K,ROLLING W,GUYOT R,SANKOFF D,ZHENG C F,ALBERT V A,MING R,CHEN H B,XIA R,LI J G. Two divergent haplotypes from a highly heterozygous lychee genome suggest independent domestication events for early and late-maturing cultivars[J]. Nature Genetics,2022,54(1):73-83.
[2] ZHAO L,WANG K,WANG K,ZHU J,HU Z Y. Nutrient components,health benefits,and safety of litchi (Litchi chinensis Sonn.):A review[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(4):2139-2163.
[3] GUO L,WANG J H,LI M J,LIU L,XU J C,CHENG J M,GANG C C,YU Q,CHEN J,PENG C H,LUEDELING E. Distribution margins as natural laboratories to infer species flowering responses to climate warming and implications for frost risk[J]. Agricultural and Forest Meteorology,2019,268:299-307.
[4] YANG Y,WU Z F,GUO L,HE H S,LING Y H,WANG L,ZONG S W,NA R S,DU H B,LI M H. Effects of winter chilling vs. spring forcing on the spring phenology of trees in a cold region and a warmer reference region[J]. The Science of the Total Environment,2020,725:138323.
[5] ALBERTOS P,WAGNER K,POPPENBERGER B. Cold stress signalling in female reproductive tissues[J]. Plant,Cell & Environment,2019,42(3):846-853.
[6] 佘文琴,劉星輝. 荔枝葉片細(xì)胞結(jié)構(gòu)緊密度與耐寒性的關(guān)系[J]. 園藝學(xué)報(bào),1995,22(2):185-186.
SHE Wenqin,LIU Xinghui. The Relationship between leaf cell structure in litchi and its cold tolerance[J]. Acta Horticulturae Sinica,1995,22(2):185-186.
[7] 張永福,劉成明. 荔枝珍稀種質(zhì)耐寒性鑒定及安全越冬的生理機(jī)制[J]. 中國(guó)南方果樹(shù),2015,44(4):60-66.
ZHANG Yongfu,LIU Chengming. Identification of cold hardiness and physiological mechanisms for safe overwintering of rare litchi germplasm[J]. South China Fruits,2015,44(4):60-66.
[8] 沈耀文,王偉,何秀戀. 荔枝凍(寒)害指標(biāo)在詔安縣農(nóng)業(yè)氣象服務(wù)中應(yīng)用探討[J]. 福建熱作科技,2017,42(1):62-65.
SHEN Yaowen,WANG Wei,HE Xiulian. Discussion on the application of litchi freezing (cold) damage indicators in Zhaoan Countys agricultural meteorological services[J]. Fujian Science & Technology of Tropical Crops,2017,42(1):62-65.
[9] 丁思悅,王雨婷,趙佳琪,王文,惠竹梅. 葡萄種質(zhì)抗寒性鑒定及綜合評(píng)價(jià)[J/OL].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2024,52(6):1-15. [2023-09-15]. https://doi.org/10.13207/j.cnki.jnwafu.2024.06.011.
DING Siyue,WANG Yuting,ZHAO Jiaqi,WANG Wen,HUI Zhumei. Identification and comprehensive evaluation of cold resistance among grape germplasm[J/OL]. Journal of Northwest A & F University (Natural Science Edition),2024,52(6):1-15. [2023-09-15]. https://doi.org/10.13207/j.cnki.jnwafu.2024.06.011.
[10] 張贊培,谷月?tīng)I(yíng),尚旭嵐,王紀(jì),方佐. 自然低溫下23個(gè)青錢(qián)柳家系耐寒性初步評(píng)價(jià)[J/OL].南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2023:1-13. [2023-09-15]. http://kns.cnki.net/kcms/detail/32.1161.S.20231227.1456.007.html.
ZHANG Zanpei,GU Yueying,SHANG Xulan,WANG Ji,F(xiàn)ANG Zuo. A preliminary evaluation on cold tolerance of twenty-three Cyclocarya paliurus families under natural low temperature[J/OL]. Journal of Nanjing Forestry University (Natural Sciences Edition),2023:1-13. [2023-09-15]. http://kns.cnki.net/kcms/detail/32.1161.S.20231227.1456.007.html.
[11] 焦雪輝,喬雨軒,申瀟瀟,史喜兵,孫毅寧,周小娟,劉杰. 9種青岡屬植物抗寒性綜合評(píng)價(jià)[J]. 分子植物育種,2024,22(2):561-570.
JIAO Xuehui,QIAO Yuxuan,SHEN Xiaoxiao,SHI Xibing,SUN Yining,ZHOU Xiaojuan,LIU Jie. Comprehensive evaluation of cold resistance of nine Cyclobalanopsis species[J]. Molecular Plant Breeding,2024,22(2):561-570.
[12] 賈藍(lán)溪,郭延亮,宋希梅,白如意,張顯. 不同濃度海藻糖處理對(duì)西瓜幼苗低溫抗性的影響[J]. 中國(guó)瓜菜,2023,36(8):27-32.
JIA Lanxi,GUO Yanliang,SONG Ximei,BAI Ruyi,ZHANG Xian. Effects of different concentrations of trehalose on the cold tolerance of watermelon seedlings[J]. China Cucurbits and Vegetables,2023,36(8):27-32.
[13] 羅鑫輝,劉明月,黃科,劉玉兵,彭淼,王軍偉. 不同品種番茄幼苗低溫適應(yīng)性評(píng)價(jià)及光合特性分析[J]. 中國(guó)瓜菜,2021,34(8):49-55.
LUO Xinhui,LIU Mingyue,HUANG Ke,LIU Yubing,PENG Miao,WANG Junwei. Evaluation of low temperature adaptability and analysis of photosynthetic characteristics in different tomato varieties[J]. China Cucurbits and Vegetables,2021,34(8):49-55.
[14] 李建國(guó). 荔枝學(xué)[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2008.
LI Jianguo. The litchi[M]. Beijing:China Agriculture Press,2008.
[15] 吳淑嫻. 中國(guó)果樹(shù)志-荔枝卷[M]. 北京:中國(guó)林業(yè)出版社,1998.
WU Shuxian. Chinese fruit·Litchi volume[M]. Beijing:China Forestry Publishing House,1998.
[16] 郝再彬,蒼晶,徐仲. 植物生理實(shí)驗(yàn)[M]. 哈爾濱:哈爾濱工業(yè)大學(xué)出版社,2004:22-108.
HAO Zaibin,CANG Jing,XU Zhong. Plant physiology experimental[M].? Harbin:Harbin Institute of Technology Press,2004:22-108.
[17] 李合生. 植物生理生化實(shí)驗(yàn)原理和技術(shù)[M]. 北京:高等教育出版社,2000:184-263.
LI Hesheng. Principles and techniques of plant physiological biochemical experiment[M]. Beijing:Higher Education Press,2000:184-263.
[18] 張治安,陳展宇. 植物生理學(xué)實(shí)驗(yàn)技術(shù)[M]. 長(zhǎng)春:吉林大學(xué)出版社,2008.
ZHANG Zhian,CHEN Zhanyu. Experimental techniques of plant physiology[M]. Changchun:Jilin University Press,2008.
[19] 汪燦,周棱波,張國(guó)兵,張立異,徐燕,高旭,姜訥,邵明波. 薏苡種質(zhì)資源成株期抗旱性鑒定及抗旱指標(biāo)篩選[J]. 作物學(xué)報(bào),2017,43(9):1381-1394.
WANG Can,ZHOU Lingbo,ZHANG Guobing,ZHANG Liyi,XU Yan,GAO Xu,JIANG Ne,SHAO Mingbo. Identification and indices screening of drought resistance at adult plant stage in Jobs tears germplasm resources[J]. Acta Agronomica Sinica,2017,43(9):1381-1394.
[20] 汪燦,周棱波,張國(guó)兵,徐燕,張立異,高旭,高杰,姜訥,邵明波. 酒用糯高粱資源成株期抗旱性鑒定及抗旱指標(biāo)篩選[J]. 中國(guó)農(nóng)業(yè)科學(xué),2017,50(8):1388-1402.
WANG Can,ZHOU Lingbo,ZHANG Guobing,XU Yan,ZHANG Liyi,GAO Xu,GAO Jie,JIANG Ne,SHAO Mingbo. Drought resistance identification and drought resistance indices screening of liquor-making waxy Sorghum resources at adult plant stage[J]. Scientia Agricultura Sinica,2017,50(8):1388-1402.
[21] 歐巧明,葉春雷,李進(jìn)京,陳軍,崔文娟,王立光,羅俊杰. 胡麻種質(zhì)資源成株期抗旱性綜合評(píng)價(jià)及其指標(biāo)篩選[J]. 干旱區(qū)研究,2017,34(5):1083-1092.
OU Qiaoming,YE Chunlei,LI Jinjing,CHEN Jun,CUI Wenjuan,WANG Liguang,LUO Junjie. Comprehensive valuation and screening of drought resistance of flax germplasms[J]. Arid Zone Research,2017,34(5):1083-1092.
[22] 于萍,李克. 使用Microsoft Excel進(jìn)行數(shù)據(jù)的灰關(guān)聯(lián)分析[J]. 微型電腦應(yīng)用,2011,27(3):29-30.
YU Ping,LI Ke. Grey correlation analysis of data on microsoft excel[J]. Microcomputer Applications,2011,27(3):29-30.
[23] AZZEH M,NEAGU D,COWLING P I. Fuzzy grey relational analysis for software effort estimation[J]. Empirical Software Engineering,2010,15(1):60-90.
[24] 胡福初,陳哲,趙杰堂,馮學(xué)杰,吳鳳芝,范鴻雁,王祥和,胡桂兵. 荔枝種質(zhì)資源矮化相關(guān)形態(tài)指標(biāo)的鑒定及綜合評(píng)價(jià)[J]. 植物遺傳資源學(xué)報(bào),2020,21(3):775-784.
HU Fuchu,CHEN Zhe,ZHAO Jietang,F(xiàn)ENG Xuejie,WU Fengzhi,F(xiàn)AN Hongyan,WANG Xianghe,HU Guibing. Identification and comprehensive evaluation of dwarfing-related morphological indicators in Litchi germplasm resources[J]. Journal of Plant Genetic Resources,2020,21(3):775-784.
[25] 靳亞楠. 玉米苗期耐冷性評(píng)價(jià)及禾本科COLD1蛋白功能與進(jìn)化分析[D]. 沈陽(yáng):沈陽(yáng)農(nóng)業(yè)大學(xué),2019.
JIN Yanan. Evaluation of maize (Zea may L.) cold tolerance at seedling stage,and functional and evolutionary analyses of crops COLD1 proteins[D]. Shenyang:Shenyang Agricultural University,2019.
[26] 張君圻. 荔枝凍害與抗寒栽培[J]. 中國(guó)果樹(shù),1979(2):12-16.
ZHANG Junqi. Frost damage and cold-resistant cultivation in litchi[J]. China Fruits,1979(2):12-16.
[27] 朱建華,彭宏祥,堯金燕,龍興,秦獻(xiàn)泉,黃鳳珠,陸貴鋒,徐寧. 荔枝龍眼凍寒害果園的綜合管理技術(shù)[J]. 中國(guó)熱帶農(nóng)業(yè),2011(1):60-61.
ZHU Jianhua,PENG Hongxiang,YAO Jinyan,LONG Xing,QIN Xianquan,HUANG Fengzhu,LU Guifeng,XU Ning. Comprehensive management techniques in litchi and lonyan for freezing and chilling damaged orchards[J]. China Tropical Agriculture,2011(1):60-61.
[28] 吳少華,楊國(guó)永,方海峰,薛春容,趙永,鄭誠(chéng)樂(lè),林切. 1999年漳州荔枝凍害調(diào)查與分析[J]. 福建農(nóng)業(yè)科技,2000(3):7-9.
WU Shaohua,YANG Guoyong,F(xiàn)ANG Haifeng,XUE Chunrong,ZHAO Yong,ZHENG Chengle,LIN Qie. Investigation and analysis of freeze damage to litchi in Zhangzhou in 1999[J]. Fujian Agricrltural Science and Technology,2000(3):7-9.
[29] 胡桂兵. 不同熟期優(yōu)質(zhì)荔枝系列新品種選育及應(yīng)用[R]. 廣州:華南農(nóng)業(yè)大學(xué)(2019-03-31)[2023-09-15]. https://kns.cnki.net/kcms2/article/abstract?v=HboJJBuTKtRyzjl5JLHTu4lpjK9C5O-A5SDEEt7z2xAGq6KpRlVK0wSfNFwOXM_JRsZOiyCMfD-fX051hdOz5t3lUvcDdRBpIyv-1PruzIJ9Ma9J5or7Hg24rYt5uk-hciuHUp6VCTehHvV-iMaoC7AZg==&uniplatform=NZKPT&-language=CHS.
HU Guibing. Selection and application of new varieties of high-quality litchi series with different ripening periods[R]. Guang州:South China Agricultural University(2019-03-31)[2023-09-15]. https://kns.cnki.net/kcms2/article/abstract?v=HboJJBuTKtRyzjl5JLHTu4lpjK9C5OA5SDEEt7z2xAGq6KpRlVK0wSfNFwOXM_JRsZOiyCMfDfX051hdOz5t3lUvcDdRBpIyv-1PruzIJ9Ma9J5or7Hg24rYt5ukhciuHUp6VCTehHvV-iMaoC7AZg==&uniplatform=NZKPT&language=CHS.
[30] 郭琦,毛可欣,安淼,王海榮,呂巍,王世金,李健,李國(guó)田. 4種獼猴桃在山東越冬期生理響應(yīng)及耐寒性評(píng)價(jià)[J]. 江蘇農(nóng)業(yè)科學(xué),2023,51(12):141-148.
GUO Qi,MAO Kexin,AN Miao,WANG Hairong,L? Wei,WANG Shijin,LI Jian,LI Guotian. Physiological response and cold tolerance evaluation of four kiwifruit varieties during overwintering in Shandong Province[J]. Jiangsu Agricultural Sciences,2023,51(12):141-148.
[31] 金君,韋欣霈,宋任鋒,鐘宛儒,辛樹(shù)權(quán). 軟棗獼猴桃抗寒性研究進(jìn)展[J]. 北方園藝,2023(12):137-143.
JIN Jun,WEI Xinpei,SONG Renfeng,ZHONG Wanru,XIN Shuquan. Research progress on cold resistance of Actinidia arguta[J]. Northern Horticulture,2023(12):137-143.
[32] 鄒婭,米文博,徐明霞,徐春梅,劉自剛,趙彩霞,米超. 低溫脅迫下北方強(qiáng)冬性區(qū)甘藍(lán)型冬油菜的低溫光合生理特征[J]. 甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),2021,56(2):105-113.
ZOU Ya,MI Wenbo,XU Mingxia,XU Chunmei,LIU Zigang,ZHAO Caixia,MI Chao. Physiological and photosynthetic characteristics of winter rapeseeds under low temperature stress in northern strong winterness region[J]. Journal of Gansu Agricultural University,2021,56(2):105-113.
[33] GAN P,LIU F,LI R B,WANG S K,LUO J J. Chloroplasts- beyond energy capture and carbon fixation:Tuning of photosynthesis in response to chilling stress[J]. International Journal of Molecular Sciences,2019,20(20):5046.
[34] 崔波,程邵麗,袁秀云,周一冉,郝平安,李俊霖,馬杰. 低溫脅迫對(duì)白及光合作用及葉綠素?zé)晒鈪?shù)的影響[J]. 熱帶作物學(xué)報(bào),2019,40(5):891-897.
CUI Bo,CHENG Shaoli,YUAN Xiuyun,ZHOU Yiran,HAO Pingan,LI Junlin,MA Jie. Effects of low temperature stress on the photosynthetic characteristics and chlorophyll fluorescence parameters of Bletilla striata[J]. Chinese Journal of Tropical Crops,2019,40(5):891-897.
[35] 王睿哲,張蓓,郭鐵群,何天明,崔慧敏,王枝梅,曼蘇爾·那斯?fàn)? 5個(gè)梨品種在低溫脅迫下的生理響應(yīng)及抗寒性評(píng)價(jià)[J]. 山東農(nóng)業(yè)科學(xué),2023,55(2):57-63.
WANG Ruizhe,ZHANG Bei,GUO Tiequn,HE Tianming,CUI Huimin,WANG Zhimei,MANSUR Nasr. Physiological responses to low temperature stress of five Pyrus spp. species and their cold resistance evaluation[J]. Shandong Agricultural Sciences,2023,55(2):57-63.
[36] 丁久玲,孟海濤,鄭凱. 銅對(duì)低溫脅迫下空氣鳳梨抗寒生理特征的影響[J]. 安徽農(nóng)業(yè)科學(xué),2022,50(21):129-134.
DING Jiuling,MENG Haitao,ZHENG Kai. Effect of copper on physiological characteristics of cold resistance of Tillandsia in low temperature stress[J]. Journal of Anhui Agricultural Sciences,2022,50(21):129-134.
[37] 劉聰,陸思羽,涂淑萍,姜雪茹. 野鴉椿和圓齒野鴉椿對(duì)低溫脅迫的生理響應(yīng)及抗寒性評(píng)價(jià)[J]. 南方農(nóng)業(yè)學(xué)報(bào),2022,53(6):1685-1692.
LIU Cong,LU Siyu,TU Shuping,JIANG Xueru. Physiological response and cold-resistance evaluation of Euscaphis japonica and Euscaphis konishii under low temperature stress[J]. Journal of Southern Agriculture,2022,53(6):1685-1692.
[38] 坎智勇,張德輝,李中興,余思思,錢(qián)謙,樊天樂(lè),李雪薇,馬鋒旺,管清美. 90個(gè)蘋(píng)果品種耐寒性評(píng)價(jià)和全基因組關(guān)聯(lián)分析[J]. 園藝學(xué)報(bào),2023,50(5):921-932.
KAN Zhiyong,ZHANG Dehui,LI Zhongxing,YU Sisi,QIAN Qian,F(xiàn)AN Tianle,LI Xuewei,MA Fengwang,GUAN Qingmei. Evaluation of cold tolerance of 90 apple cultivars and genome wide association analysis[J]. Acta Horticulturae Sinica,2023,50(5):921-932.
[39] 楊復(fù)康,楊燕君,宋永宏,李靜江,呂振兵. 不同杏品種抗寒性及生理指標(biāo)[J]. 北方園藝,2021(3):27-32.
YANG Fukang,YANG Yanjun,SONG Yonghong,LI Jingjiang,L? Zhenbing. Cold resistance and physiological indexes of different apricot cultivars[J]. Northern Horticulture,2021(3):27-32.
[40] 趙云燕,孫建,梁俊超,王郅琪,顏廷獻(xiàn),顏小文,危文亮,樂(lè)美旺. 低溫脅迫對(duì)芝麻芽期幼苗生長(zhǎng)的影響與耐低溫材料篩選[J]. 浙江農(nóng)業(yè)學(xué)報(bào),2023,35(4):752-768.
ZHAO Yunyan,SUN Jian,LIANG Junchao,WANG Zhiqi,YAN Tingxian,YAN Xiaowen,WEI Wenliang,LE Meiwang. Effects of low temperature on seedling growth at sesame early seedling period and screening of low-temperature tolerant materials[J]. Acta Agriculturae Zhejiangensis,2023,35(4):752-768.
[41] 賈祥,多吉格桑,趙愛(ài)民,張文才,曲尼加措,拉巴卓瑪,普布次仁,苗彥軍. 4種禾本科牧草苗期抗寒性綜合評(píng)價(jià)[J]. 草地學(xué)報(bào),2020,28(5):1372-1378.
JIA Xiang,DUOJI Gesang,ZHAO Aimin,ZHANG Wencai,QUNI Jiacuo,LABA Zhuoma,PUBU Ciren,MIAO Yanjun. Comprehensive evaluation of cold resistance of 4 species of gramineae at seedling stage[J]. Acta Agrestia Sinica,2020,28(5):1372-1378.
[42] 王芳,王淇,趙曦陽(yáng). 低溫脅迫下植物的表型及生理響應(yīng)機(jī)制研究進(jìn)展[J]. 分子植物育種,2019,17(15):5144-5153.
WANG Fang,WANG Qi,ZHAO Xiyang. Research progress of phenotype and physiological response mechanism of plants under low temperature stress[J]. Molecular Plant Breeding,2019,17(15):5144-5153.
[43] KUCZY?SKI J,TWARDOWSKI T,NAWRACA?A J,GRACZ-BERNACIAK J,TYCZEWSKA A. Chilling stress tolerance of two soya bean cultivars:Phenotypic and molecular responses[J]. Journal of Agronomy and Crop Science,2020,206(6):759-772.
[44] 徐洋,趙崢畑,吳雨桐,申建雙,張啟翔,程堂仁,王佳,潘會(huì)堂,楊曉輝. 連翹屬種質(zhì)資源抗寒性評(píng)價(jià)[J]. 東北林業(yè)大學(xué)學(xué)報(bào),2023,51(6):33-39.
XU Yang,ZHAO Zhengtian,WU Yutong,SHEN Jianshuang,ZHANG Qixiang,CHENG Tangren,WANG Jia,PAN Huitang,YANG Xiaohui. Evaluation of cold resistance of Forsythia germplasm resources[J]. Journal of Northeast Forestry University,2023,51(6):33-39.
[45] 丁紅映,熊興耀,王萬(wàn)興,胡新喜,田宇豪,秦玉芝. 103份馬鈴薯種質(zhì)資源的耐寒性評(píng)價(jià)[J]. 中國(guó)蔬菜,2019(12):46-55.
DING Hongying,XIONG Xingyao,WANG Wanxing,HU Xinxi,TIAN Yuhao,QIN Yuzhi. Evaluation of freezing tolerance of 103 potato germplasm resources[J]. China Vegetables,2019(12):46-55.
[46] 曹曉敏,遲馨,弟豆豆,胡慧,宋來(lái)慶,姜中武,趙玲玲. 6種蘋(píng)果砧木的抗寒性比較研究[J]. 中國(guó)果樹(shù),2020(4):12-17.
CAO Xiaomin,CHI Xin,DI Doudou,HU Hui,SONG Laiqing,JIANG Zhongwu,ZHAO Lingling. Preliminary identification of cold resistance of six apple rootstocks[J]. China Fruits,2020(4):12-17.
[47] 范宗民,孫軍利,趙寶龍,劉懷鋒,于坤,章智鈞,劉晶晶. 不同砧木‘赤霞珠葡萄枝條抗寒性比較[J].果樹(shù)學(xué)報(bào),2020,37(2):215-225.
FAN Zongmin,SUN Junli,ZHAO Baolong,LIU Huaifeng,YU Kun,ZHANG Zhijun,LIU Jingjing. Evaluation of cold resistance of one-year shoots from ‘Cabernet Sauvignon grape vine grafted on different rootstocks[J]. Journal of Fruit Science,2020,37(2):215-225.
[48] 閆興凱,盧明艷,武春昊,趙瀅,張茂君,王強(qiáng). 抗寒梨品種資源秋季葉片葉綠素?zé)晒鈪?shù)日變化比較[J]. 北方園藝,2022(19):41-46.
YAN Xingkai,LU Mingyan,WU Chunhao,ZHAO Ying,ZHANG Maojun,WANG Qiang. Comparsion on chlorophyll fluorescence characteristics on the cold-resistant pear varieties in autumn[J]. Northern Horticulture,2022(19):41-46.
[49] 岳俊芹,張素瑜,李向東,邵運(yùn)輝,方保停,葛勝修,王漢芳,張德奇,楊程,時(shí)艷華,秦峰. 低溫脅迫對(duì)小麥葉綠素?zé)晒鈪?shù)及產(chǎn)量的響應(yīng)[J]. 麥類(lèi)作物學(xué)報(bào),2021,41(1):105-110.
YUE Junqin,ZHANG Suyu,LI Xiangdong,SHAO Yunhui,F(xiàn)ANG Baoting,GE Shengxiu,WANG Hanfang,ZHANG Deqi,YANG Cheng,SHI Yanhua,QIN Feng. Effect of low temperature stress on chlorophyll fluorescence parameters and yield of wheat[J]. Journal of Triticeae Crops,2021,41(1):105-110.
[50] 黃麗芳,李金芹,王曉陽(yáng),董云萍,龍宇宙,段志強(qiáng),陳婷,閆林. 基于幼苗光合及葉綠素?zé)晒鈪?shù)的3種咖啡耐低溫脅迫的綜合評(píng)判[J]. 福建農(nóng)業(yè)學(xué)報(bào),2020,35(10):1063-1070.
HUANG Lifang,LI Jinqin,WANG Xiaoyang,DONG Yunping,LONG Yuzhou,DUAN Zhiqiang,CHEN Ting,YAN Lin. Low-temp tolerance of Coffea seedlings evaluated by photosynthesis and chlorophyll fluorescence indices[J]. Fujian Journal of Agricultural Sciences,2020,35(10):1063-1070.
[51] 林鄭和,鐘秋生,游小妹,陳志輝,陳常頌,單睿陽(yáng),阮其春. 低溫對(duì)不同基因型‘白雞冠F1代葉綠素?zé)晒獾挠绊慬J]. 茶葉學(xué)報(bào),2018,59(2):57-66.
LIN Zhenghe,ZHONG Qiusheng,YOU Xiaomei,CHEN Zhihui,CHEN Changshong,DAN Ruiyang,RUAN Qichun. Effect of low temperature on chlorophyll fluorescence of tea of different genotypes[J]. Acta Tea Sinica,2018,59(2):57-66.
[52] 周蘊(yùn)薇,劉艷萍,戴思蘭. 用葉綠素?zé)晒夥治黾夹g(shù)鑒定植物抗寒性的剖析[J]. 植物生理學(xué)通訊,2006,42(5):945-950.
ZHOU Yunwei,LIU Yanping,DAI Silan. Identification of cold resistant plants by chlorophyll fluorescence analysis technique[J]. Plant Physiology Communications,2006,42(5):945-950.
[53] 劉暢,杜羽晨,李寧輝,陸霄光,趙烈,付連雙,劉鑫,劉君,王曉楠. 不同抗寒性小麥品種生長(zhǎng)點(diǎn)發(fā)育進(jìn)程及生理指標(biāo)差異分析[J]. 麥類(lèi)作物學(xué)報(bào),2023,43(6):721-728.
LIU Chang,DU Yuchen,LI Ninghui,LU Xiaoguang,ZHAO Lie,F(xiàn)U Lianshuang,LIU Xin,LIU Jun,WANG Xiaonan. Difference analysis of development process of growing point and physiological index in wheats with different cold resistance[J]. Journal of Triticeae Crops,2023,43(6):721-728.
[54] 孫明雪,張玉霞,夏全超,王顯國(guó),張慶昕,劉庭玉,張永亮. 鉀肥種類(lèi)及用量對(duì)低溫脅迫下苜蓿根頸含氮保護(hù)物質(zhì)含量及抗寒性的影響[J]. 中國(guó)草地學(xué)報(bào),2023,45(3):78-86.
SUN Mingxue,ZHANG Yuxia,XIA Quanchao,WANG Xianguo,ZHANG Qingxin,LIU Tingyu,ZHANG Yongliang. Effects of potassium fertilizer types and amounts on nitrogen protective substances in alfalfa root crown and cold resistance under low temperature stress[J]. Chinese Journal of Grassland,2023,45(3):78-86.
[55] 海光輝,張正武,王茜,雍巧寧,鄧煜,海宏. 不同海拔油橄欖對(duì)自然低溫的生理響應(yīng)及抗寒性差異[J]. 經(jīng)濟(jì)林研究,2022,40(4):182-190.
HAI Guanghui,ZHANG Zhengwu,WANG Qian,YONG Qiaoning,DENG Yu,HAI Hong. Physiological response and cold resistance differences of olive at different altitudes under natural low temperature[J]. Non-wood Forest Research,2022,40(4):182-190.
[56] 孫艷,李敏敏,韓斌,尹勇剛,趙勝建,郭紫娟. 六個(gè)葡萄品種根系抗寒性鑒定及綜合評(píng)價(jià)[J]. 北方園藝,2021(17):30-37.
SUN Yan,LI Minmin,HAN Bin,YIN Yonggang,ZHAO Shengjian,GUO Zijuan. Identification and comprehensive evaluation on root cold resistance of six grape varieties[J]. Northern Horticulture,2021(17):30-37.
[57] 于慶帆,王海琪,白茹,唐永清,馮建榮. 隸屬函數(shù)法對(duì)伊犁地區(qū)‘樹(shù)上干杏不同株系抗寒性的評(píng)價(jià)[J]. 分子植物育種,2018,16(8):2671-2676.
YU Qingfan,WANG Haiqi,BAI Ru,TANG Yongqing,F(xiàn)ENG Jianrong. Evaluation of cold resistance of different species in ‘Shushanggan apricot in Yili region by membership function method[J]. Molecular Plant Breeding,2018,16(8):2671-2676.
[58] 唐海霞,楊雪梅,馮立娟,朱峰,周繼磊,尹燕雷. 3個(gè)石榴品種越冬抗寒性及生理差異分析[J]. 園藝學(xué)報(bào),2023,50(7):1563-1573.
TANG Haixia,YANG Xuemei,F(xiàn)ENG Lijuan,ZHU Feng,ZHOU Jilei,YIN Yanlei. Analysis of freezing tolerances and physiological differences of three pomegranate cultivars during the overwintering[J]. Acta Horticulturae Sinica,2023,50(7):1563-1573.
[59] 徐功勛,周佳,呂德國(guó),秦嗣軍. 4個(gè)蘋(píng)果品種的抗寒性評(píng)價(jià)[J]. 果樹(shù)學(xué)報(bào),2023,40(4):669-679.
XU Gongxun,ZHOU Jia,L? Deguo,QIN Sijun. Cold resistance evaluation of four apple varieties[J]. Journal of Fruit Science,2023,40(4):669-679.
[60] 金君,辛樹(shù)權(quán),韋欣霈,宋任鋒,萬(wàn)楚. 自然越冬期軟棗獼猴桃雌雄株的生理生化響應(yīng)差異[J]. 長(zhǎng)春師范大學(xué)學(xué)報(bào),2023,42(10):86-91.
JIN Jun,XIN Shuquan,WEI Xinpei,SONG Renfeng,WAN Chu. Analysis of cold resistance difference between male and female plants of Actinidia arguta during over-wintering period[J]. Journal of Changchun Normal University,2023,42(10):86-91.
[61] 蔡汝鵬,張蕾,李芳,姜成東,李煥苓,王家保. 荔枝雜交F1代群體部分枝葉性狀的遺傳變異分析[J]. 福建農(nóng)業(yè)學(xué)報(bào),2023,38(1):23-30.
CAI Rupeng,ZHANG Lei,LI Fang,JIANG Chengdong,LI Huanling,WANG Jiabao. Genetic variations on traits of F1 Litchi chinensis leaves and branches[J]. Fujian Journal of Agricultural Sciences,2023,38(1):23-30.
[62] YILMAZ T,ALAHAKOON D,F(xiàn)ENNELL A. Freezing tolerance and chilling fulfillment differences in cold climate grape cultivars[J]. Horticulturae,2020,7(1):4.
[63] CHEN L,PAN Y F,LI H D,JIA X Y,GUO Y L,LUO J S,LI X H. Methyl jasmonate alleviates chilling injury and keeps intact pericarp structure of pomegranate during low temperature storage[J]. Food Science and Technology International,2021,27(1):22-31.
[64] 王玉玲,周晨浩,肖金平,古咸彬,張慧琴,李南羿,張嵐嵐. 3個(gè)桃品種對(duì)淹水脅迫的生理響應(yīng)及耐澇性評(píng)價(jià)[J]. 福建農(nóng)業(yè)學(xué)報(bào),2022,37(1):49-58.
WANG Yuling,ZHOU Chenhao,XIAO Jinping,GU Xianbin,ZHANG Huiqin,LI Nanyi,ZHANG Lanlan. Responses and tolerance of three peach cultivars to waterlogging[J]. Fujian Journal of Agricultural Sciences,2022,37(1):49-58.
[65] 劉星輝,佘文琴,張惠斌. 龍眼、荔枝葉片膜脂脂肪酸與耐寒性的研究[J]. 福建農(nóng)業(yè)大學(xué)學(xué)報(bào),1996,25(3):48-52.
LIU Xinghui,SHE Wenqin,ZHANG Huibin. Relationship between membrane fatty acid in leaves and cold resistance of longan and litchi[J]. Journal of Fujian Agriculture and Forestry University,1996,25(3):48-52.