国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

捕食梨火疫病菌黏細菌菌株的篩選及其生防潛力

2024-04-29 05:20:44董志銘白欣禾竇新玉羅明呂文韓劍
果樹學報 2024年1期
關鍵詞:篩選生物防治

董志銘 白欣禾 竇新玉 羅明 呂文 韓劍

收稿日期:2023-09-01 接受日期:2023-11-11

基金項目:新疆維吾爾自治區(qū)自然科學基金項目(2021D01A97);新疆維吾爾自治區(qū)自然科學基金重點項目(2021D01D12);國家重點研發(fā)計劃項目(2021YFD1400200);南京農業(yè)大學-新疆農業(yè)大學聯(lián)合基金項目(KYYJ201909)

作者簡介:董志銘,男,在讀碩士研究生,研究方向為植物病害、生物防治。E-mail:1348519564@qq.com

*通信作者 Author for correspondence. E-mail:hjwjemail@163.com

DOI:10.13925/j.cnki.gsxb.20230305

摘? ? 要:【目的】發(fā)掘梨火疫病生防資源,探究黏細菌在梨火疫病生物防治中的應用潛力?!痉椒ā客ㄟ^菌苔捕食和對峙共培養(yǎng)從實驗室前期分離、保存的黏細菌菌株中篩選高效捕食梨火疫病菌的黏細菌菌株,并通過噴施梨離體花序和盆栽杜梨苗測定其防病效果。【結果】(1)46株供試黏細菌菌株對梨火疫病菌均具有捕食能力,其中菌株WCH05、FB02和WCH03對梨火疫病菌的平板捕食能力較強。(2)黏細菌菌株WCH05預處理(噴施)對預防梨花腐的效果顯著,其7 d平均防效為68.35%,與農用鏈霉素(68.20%)接近,其次是菌株FB02,防效達到63.24%,而菌株WCH03的防效相對較低,為50.36%;黏細菌菌株WCH05、FB02和WCH03預處理(噴施)能夠顯著降低盆栽杜梨苗嫩枝的枝枯率和病情指數(shù)(p<0.05),7~21 d的平均保護性防效分別為81.53%、76.38%和71.44%,治療性防效分別為63.84%、51.13%和54.88%。(3)結合形態(tài)學特征和多基因序列分析,將WCH05和FB02鑒定為橙色黏球菌(Myxococcus fulvus),WCH03鑒定為黃色黏球菌(Myxococcus xanthus)?!窘Y論】篩選獲得3株對梨火疫病菌具有高捕食能力的黏細菌菌株,室內防效顯著,具有較好的生物防治應用前景。

關鍵詞:梨火疫病;黏細菌;捕食;篩選;生物防治

中圖分類號:S661.2 S436.612 文獻標志碼:A 文章編號:1009-9980(2024)01-0143-12

Screening and biocontrol potential of myxobacteria preying on pathogenic bacteria causing pear fire blight

DONG Zhiming, BAI Xinhe, DOU Xinyu, LUO Ming, L? Wen, HAN Jian*

(College of Agronomy, Xinjiang Agricultural University/Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-western Desert Oasis (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, Urumqi 830052, Xinjiang, China)

Abstract: 【Objective】 Pear fire blight is one of the destructive diseases of Rosaceae plants, which was first discovered successively in Yili and Bazhou in Xinjiang in 2016, and if effective preventive and control measures cant be taken to curb the spread and proliferation of the disease, not only will it cause heavy damage to Xinjiangs characteristic advantageous pear industry and face the risk of destruction, but also will bring a major threat to Xinjiang and even the national fruit industry. At present, pear fire blight control methods mainly include phytosanitary, pruning, eradication of diseased plants and chemical control and other ways, but these methods have some disadvantages. Research and practice have shown that biological control can achieve good preventive effect, compared with chemical pesticides, and has the outstanding advantages of strong selectivity, not easy to produce resistance, safety and high efficiency. Therefore, the aim of this study was to explore the biological resources for controlling pear fire blight and determine the potential of myxobacteria in the biological control for pear fire blight. 【Methods】 In this study, a 100 μL suspension of Erwinia amylovora was vertically inoculated on the surface of TPM nutrient-free medium, and it was allowed to dry naturally, 3 μL of myxobacteria suspension was inoculated at the center of the moss for the moss predation test, which was periodically photographed, and the predation was completed by scraping the plate of the pathogen moss after the 5th day, and the number of residual viable bacteria was counted by diluting and coating the moss. Myxobacteria were inoculated near the edge of the dried pathogen moss, and the face-off culture was carried out. After the 5th day, the pathogenic bacteria and moss were scraped, diluted and coated, and the number of viable bacteria was calculated. Two methods were used to screen out myxobacteria strains that could efficiently prey on pear fire blight bacteria from pre-laboratory isolates and preserved mucoid bacterial strains. After shaking cultivation of myxobacteria to the stable stage by LBS medium, the fermentation filtrate was obtained and filtered with 0.22 μm microporous filter membrane to remove bacteria, and the decontaminated fermentation filtrate was obtained. Take 1 mL of decontaminated fermentation filtrate and 0.1 mL of pathogenic bacterial suspension to be co-cultured for 24 h. Dilute the coating and count the number of residual viable bacteria to explore the effect of its metabolites on pathogenic bacteria. In order to clarify the effectiveness of myxobacteria against pear fire blight, we used pear isolated inflorescences and potted Pyrus seedlings as inoculation materials, and the disease prevention effect was determined with two methods, that is, protective and therapeutic tests, by spraying myxobacteria first for 24 hours and then spraying pathogenic bacteria, and by spraying pathogenic bacteria first and then spraying myxobacteria. 【Results】 (1) 46 strains of the tested myxobacteria have predation ability on E. amylovora, and compared with the control group, the residual viable bacterial number of 9.7×108 cfu·mL-1 decreased to (3.7×103) - (2.4×107) cfu·mL-1, of which strains WCH05, FB02 and WCH03 had stronger plate predation ability on E. amylovora. In the bacterial moss predation test, myxobacteria strain WCH05 had the strongest ability to prey on E. amylovora, and the residual viable bacterial count decreased to 3.7×103 cfu·mL-1, followed by strains FB02 and WCH03. In the standoff culture test, strain WCH05 had the strongest ability to expand outward to prey on E. amylovora, and the residual viable bacterial count of E. amylovora decreased to 2.6×103 cfu·mL-1 compared with the control group of 2.8×108 cfu·mL-1, followed by strains WCH03 and FB02. (2) The residual viable bacterial counts of myxobacteria WCH05, FB02 and WCH03 after co-cultivation with E. amylovora were all in the same order of magnitude compared with the control, with no significant difference, suggesting that the three strains preyed on pear fire blight pathogens mainly by direct contact. (3) Pretreatment (spraying) of myxobacteria strain WCH05 had a significant effect on the prevention of pear rot, and its average 7 d control efficiency was 68.35%, which was close to that of agricultural streptomycin (68.20%), followed by FB02 (63.24%), but WCH03 (50.36%) was relatively low. Pretreatment (spraying) of myxobacterium strains WCH05, FB02 and WCH03 could significantly reduce the dead shoot rate and disease index of potted pear seedlings (p<0.05), and the average protective efficacy from 7 to 21 days was 81.53%, 76.38% and 71.44%, respectively. The therapeutic efficacy was 63.84%, 51.13% and 54.88%, respectively. (4) WCH05 and FB02 were identified as Myxococcus fulvus, while WCH03 was identified as M. xanthus based on the morphological characteristics and multi-gene sequence analysis. 【Conclusion】 The M. fulvus WCH05 in the strains WCH05, FB02 and WCH03 has the best biocontrol effect on pear fire blight bacteria, and is expected to be developed as a biocontrol agent for pear fire blight, laying a foundation for the biological control for pear fire blight.

Key words: Pear fire blight; Myxobacteria; Predation; Screening; Biological control

由解淀粉歐文氏菌(Erwinia amylovora)侵染引起的梨火疫?。╬ear fire blight)是薔薇科仁果類果樹生產中最具毀滅性的細菌病害[1]。2016年在中國新疆首次發(fā)現(xiàn)該病害,2020年被列入中國《一類農作物病蟲害名錄》[2],2022年被列入《重點管理外來入侵物種名錄》[3]。該病害危害梨、蘋果、山楂、榅桲等果樹,尤其是在香梨上傳播極為迅速。梨火疫病菌可侵染果樹的花,并作為侵染源向葉片、嫩梢及幼果傳染,同時修剪的枝干傷口也是其侵染的主要途徑。病原菌一旦入侵植物體內,便可終身定殖,進而擴散蔓延至整個植株,同時迅速流行,難以控制和根除[4]。梨火疫病病情發(fā)生、蔓延態(tài)勢嚴峻,目前已經在中國新疆和甘肅2個省(自治區(qū))70個縣、市(區(qū))發(fā)生并造成嚴重危害[5]。如果不能采取有效防控措施遏制該病害的傳播擴散,將對新疆乃至全國林果產業(yè)帶來重大威脅。

生產上對梨火疫病的防治包括檢疫、修剪和鏟除病株、藥劑防治、生物防治及選育抗病品種等措施[6-7]。但目前生產上缺乏抗梨火疫病的果樹品種,通過移除發(fā)病枝干可以有效地阻止火疫病的傳播,但嚴重影響果樹產量;化學農藥的大量使用引起的病菌抗藥性、環(huán)境污染以及果實農藥殘留等問題日益突出。研究和實踐表明,利用具有抗菌作用的有益微生物及其活性物質防治植物病害,能達到化學農藥的良好防效,并且具有選擇性強、不易產生抗性、安全高效等突出優(yōu)勢。近年來國外在梨火疫病生物防治的相關研究和應用中取得了一定進展。其中,美國研發(fā)的熒光假單胞菌(Pseudomonas fluorescens)A506、草生歐文氏菌(E. herbicola)C9-1等商品菌劑已得到了實際應用,防治效果接近于農用鏈霉素[8-9]。Zeller等[10]分離獲得的內生細菌菌株E. herbicola 89對花腐的控制率達到70%。Ait等[11]研究表明,在田間噴施Bacillus subtilis QST713,花腐率可降低66%。目前國內在針對梨火疫病生物防治方面的研究尚屬起步階段,徐琳赟等[12]從分離獲得的梨樹內生菌中篩選梨火疫病菌拮抗菌株Klebsiella sp. TN50、Paenibacillus sp. HN89 和Pseudomonas sp. SN37,通過噴施接種盆栽杜梨苗能夠顯著降低嫩枝的枝枯率和病情指數(shù)。魯晏宏等[13]以杜梨苗為接種材料,通過土壤接種法測定了拮抗菌株對梨火疫病菌的防病效果,其中,Bacillus velezensis JE4防效最佳,可超過73%。近期,呂天宇等[14]在植物酵素液分離細菌中篩選出的一株對梨火疫病有拮抗作用的菌株B. velezensis FX1,經優(yōu)化后的發(fā)酵液能顯著降低花腐率。

黏細菌是一類具有多細胞群體行為和復雜生活史的高等原核生物,能夠以活的微生物細胞或其他高分子作為食物獲取營養(yǎng)[15],同時產生豐富的具有抗菌活性的酶類和次生代謝產物[16],此外,黏細菌能夠形成抗逆性強的子實體和黏孢子,從而使黏細菌具有良好的環(huán)境適應性和穩(wěn)定的定殖能力[17],還有研究發(fā)現(xiàn),黏細菌具有調控微生物群落結構的功能[18]。黏細菌的這些特性使其被視為一類具有重要生防潛力的新型生防微生物資源。近年來一些溫室和田間試驗表明,施用黏細菌能顯著減輕苗木立枯病[19]、黃瓜枯萎病[18]、辣椒炭疽病[20]和稻瘟病[21]等病害的危害。目前關于黏細菌生防潛力的研究主要集中在植物病原真菌方面,相比之下只有少數(shù)的研究報道了黏細菌在植物細菌性病害生物防治中的應用潛力,李周坤課題組篩選出一株對胡蘿卜軟腐果膠桿菌(Pectobacterium carotovorum subsp. carotovorum)具有良好捕食特性的黏細菌菌株BS,能夠顯著降低馬蹄蓮軟腐病的發(fā)病率[22];Dong等[23]篩選出一株對茄科羅爾斯通氏菌(Ralstonia solanacearum)具有較強捕食能力的黃色黏球菌(Myxococcus xanthus)R31,盆栽試驗結果表明,菌株R31對番茄青枯病的防效達到81.9%。然而這些研究目前也僅限于細菌性土傳病害,而關于黏細菌對如梨火疫病等主要在植株地上部傳播和危害的細菌性病害的生防潛力評估還鮮見報道。

筆者基于前期建立的黏細菌小型菌種資源庫,針對梨火疫病菌通過平板捕食試驗篩選出具有較強捕食能力的黏細菌菌株,進一步通過離體花序和盆栽杜梨苗測定黏細菌菌株對梨火疫病的生防效果。研究結果將為發(fā)掘黏細菌生防資源、探索梨火疫病生物防治新途徑奠定科學基礎。

1 材料和方法

1.1 材料

1.1.1 黏細菌菌株 筆者課題組在前期研究中從新疆喀什地區(qū)、阿克蘇地區(qū)、巴音郭楞蒙古自治州、昌吉回族自治州等地采集農田土壤樣品,采用兔糞誘導法、大腸桿菌誘導法和梨火疫病菌誘導法,從中分離、純化出46株黏細菌純培養(yǎng)物[24]。

1.1.2 供試病原菌 梨火疫病菌(E. amylovora)菌株Ea.017,來源于新疆庫爾勒市的香梨分離物,由新疆農業(yè)大學農學院微生物實驗室分離并保存。

1.1.3 培養(yǎng)基 NA培養(yǎng)基、NB培養(yǎng)基、LBS培養(yǎng)基、VY/4培養(yǎng)基、CYE培養(yǎng)基、TPM培養(yǎng)基參照王婷[25]的研究。

1.2 黏細菌捕食梨火疫病菌能力測定

1.2.1 黏細菌與病原菌的準備 挑取活化好的梨火疫病菌Ea.017單菌落接入NB培養(yǎng)液中,在30 ℃、160 r·min-1恒溫搖床中震蕩培養(yǎng)24 h,12 000 r·min-1,離心1 min,收集菌體,用無菌水漂洗3次后,重懸至109 cfu·mL-1,備用。將黏細菌純培養(yǎng)物在VY/4平板上活化后,刮取適量黏細菌菌落轉接至LBS培養(yǎng)液中,30 ℃、160 r·min-1搖培3~4 d。得到的黏細菌菌懸液于12 000 r·min-1離心1 min,去除上清液,收集菌體之后用無菌水漂洗3次,將成團的黏細菌菌體充分打散,最后用無菌水重懸至OD600=1.0,備用。

1.2.2 菌苔捕食試驗 參考Li等[22]的方法在TPM無營養(yǎng)固體培養(yǎng)基上垂直接種100 μL梨火疫病菌菌懸液,自然風干后將3 μL黏細菌懸液接種在梨火疫病菌菌苔中央,自然風干。以梨火疫病菌菌苔中央接種3 μL無菌水為對照,30 ℃恒溫培養(yǎng)5 d,每株黏細菌3次重復。定時觀察黏細菌的擴展情況。5 d后用無菌接種環(huán)刮下菌苔并用無菌水混勻,采用稀釋涂布的方法,每個梯度取100 μL于NA平板上涂布均勻,平板放置于30 ℃恒溫培養(yǎng)箱培養(yǎng)至單菌落長出,統(tǒng)計梨火疫病菌菌落數(shù)量,計算殘留活菌數(shù)量,評估捕食能力。

1.2.3 對峙培養(yǎng)試驗 在TPM無營養(yǎng)固體培養(yǎng)基上垂直懸空接種100 μL梨火疫病菌菌懸液,自然風干,在梨火疫病菌菌苔邊緣鄰近位置接種3 μL黏細菌菌懸液,對照組接種3 μL 無菌水,待風干后置于30 ℃恒溫培養(yǎng)箱培養(yǎng)5 d,3次重復。其間定時觀察黏細菌運動方向及運動距離,5 d后用無菌接種環(huán)刮下菌苔并用無菌水混勻,采用稀釋涂布的方法,每個梯度取100 μL于NA平板上涂布均勻,平板放置30 ℃恒溫培養(yǎng)箱培養(yǎng)至單菌落長出,統(tǒng)計梨火疫病菌菌落數(shù)量,計算殘留活菌數(shù)量,評估捕食能力。

1.3 黏細菌除菌發(fā)酵濾液的抑菌作用測定

將捕食梨火疫病菌能力較強的黏細菌菌株接種于LBS液體培養(yǎng)基中,在30 ℃、160 r·min-1搖床中震蕩培養(yǎng)至穩(wěn)定期。取菌液在4 ℃條件下,12 000 r·min-1離心20 min,收集上清液,用0.22 μm微孔濾膜過濾除菌,獲得除菌發(fā)酵濾液。取1 mL除菌發(fā)酵濾液與0.1 mL梨火疫病菌菌懸液(109 cfu·mL-1)在30 ℃條件下靜置共培養(yǎng)24 h后,在NA固體平板上稀釋涂布,計算梨火疫病菌活菌數(shù)量。以LBS培養(yǎng)液與梨火疫病菌共培養(yǎng)為對照。

1.4 黏細菌對梨火疫病防效的生物測定

1.4.1 黏細菌和病原菌接種液的制備 將待測黏細菌菌株活化后接種至3 mL LBS液體培養(yǎng)基中,30 ℃、160 r·min-1搖培2~3 d后,接種至200 mL VY/4培養(yǎng)液中,30 ℃、160 r·min-1搖培3~4 d,用移液槍將瓶底菌球充分打散后得到黏細菌接種液,備用。將梨火疫病菌Ea.017活化,挑取單菌落接入NB液體培養(yǎng)基中,在28 ℃、160 r·min-1恒溫搖床中震蕩培養(yǎng)24 h至菌液OD600=1.0,用無菌水稀釋至107 cfu·mL-1作為接種液。

1.4.2 香梨離體花序接種 將梨園采集的花枝插入0.05% NaCl溶液中保濕防腐。用手持壓力噴霧器將待測黏細菌菌液噴霧接種梨花序,每個黏細菌菌株接種50朵花序,3次重復。在28 ℃、70%空氣濕度的人工氣候箱中培養(yǎng)24 h后噴霧接種梨火疫病菌菌懸液。將接種后的花序置于人工氣候箱中28 ℃、70%空氣濕度繼續(xù)培養(yǎng),于3、5和7 d后定時觀察記錄發(fā)病情況,統(tǒng)計花腐率、計算防效。同時設噴施農用鏈霉素(華北制藥廠生產,有效成分72%)4000倍液對照,以無菌水代替黏細菌菌液作為對照。試驗結束后將發(fā)病植株材料干熱滅菌后銷毀。花腐率/%=(病花數(shù)/總花數(shù))×100;花腐防效/%=(對照花腐率-處理花腐率)/對照花腐率×100。

1.4.3 盆栽杜梨苗接種 (1)黏細菌對梨火疫病的保護性防效:試驗在溫室中進行,選用2年生盆栽杜梨苗為接種材料。用手持式壓力噴霧器將待測黏細菌菌液噴霧至葉片及枝條完全濕潤,24 h后噴霧接種病原菌菌懸液,每個黏細菌菌株噴霧3盆(每盆約20個枝條),3次重復。同時設農用鏈霉素(華北制藥廠,有效成分72%)4000倍液對照和無菌水對照(即先噴施無菌水24 h后再接種梨火疫病菌)。接種后的杜梨苗置于28~30 ℃、相對濕度70%的日光溫室中培養(yǎng)。其間每天觀察發(fā)病情況,記錄發(fā)病枝條數(shù)、測定枝枯長度、枝枯長度占接種枝條長度的比例及發(fā)病級別,計算發(fā)病率和病情指數(shù),統(tǒng)計防效。試驗結束后將發(fā)病植株材料干熱滅菌后銷毀。

(2)黏細菌對梨火疫病的治療性防效:在治療性試驗中黏細菌和病原菌的接種順序與保護性試驗相反,即先在杜梨苗上噴施接種梨火疫病菌菌液24 h后再噴施黏細菌菌液,其他試驗材料、培養(yǎng)條件及防效調查方法等均與保護性試驗一致。試驗結束后將植株材料干熱滅菌后銷毀。參照李燕等[26]的方法,制定梨火疫病原菌接種盆栽杜梨苗的病情分級標準:0級,枝條無病斑;Ⅰ級,枝條病斑長度占接種枝條長度的1/3;Ⅲ級,枝條病斑長度占接種枝條長度的>1/3~2/3;Ⅴ級,枝條病斑長度占接種枝條長度的2/3以上。發(fā)病率/%=(發(fā)病枝條數(shù)/接種總枝條數(shù))×100;病情指數(shù)/%=∑(各級發(fā)病枝條數(shù)×病級代表值)/(接種總枝條數(shù)×最高級值)×100;枝枯防效/%=(對照病情指數(shù)-處理病情指數(shù))/對照病情指數(shù)×100。

1.5 黏細菌菌株的鑒定

1.5.1 形態(tài)和培養(yǎng)特征 根據(jù)Bergeys Manual of Systematic Bacteriology[27]和《原核生物學》(第2版)[28]中的黏細菌分類標準,觀察記錄黏細菌子實體的顏色及形態(tài)、菌落特征,革蘭氏染色后觀察營養(yǎng)細胞和黏孢子形態(tài),并據(jù)此對黏細菌進行初步鑒定。

1.5.2 16S rRNA和lepA基因序列測定及分析 采用細菌基因組提取試劑盒(TIANamp Bacteria DNA Kit,TIANGEN)提取黏細菌總DNA。以細菌通用引物27F(5-AGAGTTTGATCCTGGCTCAG-3)和1492R(5- TACGGCTACCTTGTTACGACTT -3)擴增16S rRNA基因[29]。參照Stackebrandt等[30]報道的引物對BAUP1(5-CATCGCCCACATCGAYCAYGGNAA-3)和BIDN1:(5-CATGTGCAGCAGGCCNARRAANCC-3)擴增lepA基因。PCR擴增體系(25 μL):2×SanTaq PCR Mix 12.5 μL,模板DNA 1 μL,引物對(10 μmol·L-1)各0.5 μL,ddH2O 10.5 μL。PCR反應程序:94 ℃預變性5 min;94 ℃變性30 s,55 ℃復性30 s,72 ℃延伸60 s,35個循環(huán);72 ℃延伸10 min。取PCR產物在10 g·L-1的瓊脂糖1×TAE緩沖系統(tǒng)電泳,檢測合格后將PCR擴增產物送至生工生物工程(上海)股份有限公司測序。將所得序列在NCBI數(shù)據(jù)庫(https://www.ncbi.nlm.nih.gov/)中進行BLAST比對分析,選取與其相似度最高的模式菌株基因序列,利用MEGA7.0軟件以鄰接法(Neighbor-Joining)構建多基因系統(tǒng)發(fā)育樹。

1.6 數(shù)據(jù)分析

利用SPSS Statistics 19.0軟件進行數(shù)據(jù)統(tǒng)計分析,使用Origin 2021和Microsoft Excel 2019繪制數(shù)據(jù)統(tǒng)計圖。

2 結果與分析

2.1 菌苔捕食試驗結果

以梨火疫病菌為靶標病原菌,對46株黏細菌的菌苔捕食能力進行測定,經過5 d后大部分黏細菌都能夠完全擴散并覆蓋整個病原細菌菌苔,并且在跨過的區(qū)域形成子實體。此時將整個菌落刮取,通過稀釋涂布法于NA固體平板中統(tǒng)計梨火疫病菌的殘留活菌數(shù),發(fā)現(xiàn)所有供試黏細菌菌株均對梨火疫病菌具有捕食性,但不同黏細菌菌株捕食梨火疫病菌的能力存在明顯差異,殘留活菌數(shù)較對照組(9.7×108 cfu·mL-1)下降至(3.7×103)~(2.4×107) cfu·mL-1。其中黏細菌菌株WCH05捕食梨火疫病菌的能力最強,殘留活菌數(shù)下降至3.7×103 cfu·mL-1,其次是菌株FB02和WCH03,殘留活菌數(shù)分別下降至2.0×104 cfu·mL-1和3.8×104 cfu·mL-1(表1)。

2.2 對峙培養(yǎng)試驗結果

為了進一步統(tǒng)計和評估菌苔捕食試驗中捕食能力較強的黏細菌菌株的運動捕食能力,將菌苔捕食試驗中捕食能力較強的黏細菌菌株WCH05、FB02和WCH03與梨火疫病菌對峙培養(yǎng),定時觀察黏細菌的運動方向和擴展速度,發(fā)現(xiàn)3株黏細菌均能向梨火疫病菌運動并且捕食梨火疫病菌,具有明顯的趨向性。培養(yǎng)5 d后刮取菌苔并稀釋涂布,計算梨火疫病菌殘留活細胞數(shù),結果表明,菌株WCH05向外擴展捕食梨火疫病菌的能力最強,梨火疫病菌的殘留活菌數(shù)較對照組(2.8×108 cfu·mL-1)下降到2.6×103 cfu·mL-1。其次是菌株WCH03和FB02,梨火疫病菌殘留活菌數(shù)分別下降至1.3×104 cfu·mL-1和3.0×104 cfu·mL-1(圖1)。

2.3 黏細菌除菌發(fā)酵濾液對梨火疫病菌的抑菌作用

將黏細菌菌株WCH05、FB02和WCH03的除菌發(fā)酵濾液與梨火疫病菌共培養(yǎng)24 h,稀釋涂布后測定梨火疫病菌殘留活菌數(shù)。結果(圖2)表明,菌株WCH05、FB02、WCH03的除菌發(fā)酵濾液對梨火疫病菌并無抑菌作用,殘留活菌數(shù)與對照并無顯著差異。說明菌株WCH05、FB02、WCH03主要通過直接接觸的方式捕食梨火疫病菌。

2.4 黏細菌對梨火疫病的防效

將初步篩選出的對梨火疫病菌捕食能力較強的3株黏細菌菌株(WCH05、FB02和WCH03),通過離體花序、杜梨苗接種,測定其對該病害的生防效果。

2.4.1 香梨離體花序的保護性防效 在離體香梨花序上噴施黏細菌菌液,再接種病原菌后,觀察發(fā)現(xiàn)(表2),在病原菌接種后第3天,未噴施黏細菌菌液的對照的大量香梨花序開始出現(xiàn)花腐癥狀,而噴施黏細菌的處理能在一定程度上減輕花腐癥狀,降低花腐率。其中菌株WCH05的防效最高,第3天的保護性防效達到92.12%,7 d時平均防效達68.35%,與農用鏈霉素的防效(68.20%)接近;其次是FB02(63.24%),而菌株WCH03的平均防效最低,為50.36%。

2.4.2 黏細菌對杜梨苗梨火疫病的保護性及治療性防效 選擇對香梨花腐具有較好預防效果的黏細菌菌株WCH05、FB02和WCH03在盆栽杜梨苗上進行梨火疫病的保護性和治療性的防治試驗。

(1)保護性試驗結果(表3,圖3)表明,在杜梨苗上事先噴施黏細菌菌液能顯著降低杜梨苗嫩枝的枝枯率和病情指數(shù)。其中防效最好的WCH05第7天的防效最高(84.58%),到21 d仍能保持在80.19%,平均防效達81.53%,略低于農用鏈霉素(87.50%);其次是FB02(平均防效76.38%)和WCH03(平均防效71.44%)。

(2)治療性試驗結果(表4,圖4)表明,噴施WCH05、FB02和WCH03菌液具有明顯的治療效果,枝枯率和病情指數(shù)顯著降低。防效最好的菌株WCH05第7天的防效達到76.44%,14~21 d的防效有所下降,平均防效達到63.84%,略低于農用鏈霉素(67.32%);其次是WCH03(平均防效54.88%)和FB02(平均防效51.13%)。

2.5 黏細菌菌株WCH05、WCH03、FB02的鑒定

2.5.1 形態(tài)學鑒定 通過觀察記錄黏細菌子實體的顏色及形態(tài)、菌落特征以及細胞形態(tài),根據(jù)《伯杰氏細菌鑒定手冊》中黏細菌分類標準,初步判斷WCH05、WCH03、FB02為黏球菌屬菌株。其中菌株WCH05和FB02形態(tài)相似,在VY/4平板上呈薄膜狀擴展,子實體多為球形,單生,粉紅色,營養(yǎng)細胞細桿狀,黏孢子球形。菌株WCH03在VY/4平板上菌膜上有整齊排列的子實體,子實體卵球形,單生,黃色,營養(yǎng)細胞細桿狀,黏孢子球形(圖5)。

2.5.2 16S rRNA和lepA基因序列分析 以提取的WCH05、FB02和WCH03菌株的基因組DNA為模板進行16S rRNA的PCR以及持家基因lepA PCR擴增、測序。將獲得的序列提交至GeneBank,獲得16S rRNA GenBank登錄號分別為ON406568、ON024012、ON024053;lepA登錄號分別為ON313804、ON313766、ON313803。將測序結果在NCBI數(shù)據(jù)庫中進行在線Blast,使用DNAStar軟件進行序列相似性比對。選取與其相似度最高的模式菌株的基因序列,利用MEGA7.0軟件鄰接法構建多基因聯(lián)合系統(tǒng)進化樹。結果(圖6)表明,黏細菌菌株WCH05、FB02與橙色黏球菌模式菌株Myxococcus fulvus 124B02(CP006003)聚為一簇,WCH03與黃色黏球菌M. xanthus strain R31(CP068048)、M. xanthus strain GH3.5.6c2(CP017169)模式菌株聚為一支。綜合培養(yǎng)性狀、形態(tài)特征,將WCH05和FB02鑒定為橙色黏球菌,WCH03鑒定為黃色黏球菌。

3 討 論

梨火疫病的入侵給中國林果產業(yè)帶來嚴重威脅,特別對中國新疆地區(qū)香梨產業(yè)帶來巨大風險。近年來基于有益微生物的生防菌劑在梨火疫病生物防治中作用的研究受到了學者的重視,也取得了一定的成果。有許多微生物已被用于梨火疫病的生物防治,但關于黏細菌在梨火疫病生物防治中的研究和應用目前尚屬空白。近年來大量研究表明,黏細菌在植物病害的生物防治方面具有重要的應用潛力。在抗植物病原真菌方面,珊瑚球菌(Corallococcus)[22,18]、黏球菌(Myxococcus)[31]、Sorangiym cellulosum[32]、Nannocystis exedens[33]以及其他一些捕食性黏細菌[34-35]對多種植物病原真菌表現(xiàn)出良好的生物防治效果。事實上,黏細菌對細菌的捕食和拮抗效果更佳,在植物細菌性病害的生物防治方面具有廣闊的應用前景[24]。筆者基于前期建立的黏細菌小型菌種資源庫,通過菌苔捕食和平板對峙篩選出3株對梨火疫病菌具有較強捕食能力的黏細菌菌株WCH05、FB02和WCH03,并通過離體花序和盆栽杜梨苗接種試驗,首次證實了黏細菌在梨火疫病生物防治中的應用潛力。研究結果不僅為梨火疫病的生物防治提供了新的微生物資源,也為進一步研究和開發(fā)黏細菌生防菌劑在梨火疫病生物防治中的應用奠定了基礎。

迄今為止,針對植物病原菌,分離和應用拮抗菌來進行生物防治依然是最為活躍的研究領域。研究者已篩選到大量具有抑制植物病原菌效果的拮抗菌株,包括芽孢桿菌(Bacillus)、假單胞菌(Pseudomonas)、鏈霉菌(streptomyces)、溶桿菌(Lysobacter)和木霉(Trichoderma)等[36-40]。這些菌株的生防機制主要是在生長代謝過程中產生多種拮抗病原菌的抗生素類物質、毒素、細菌素、蛋白質類抗菌物質等,達到抑制或殺滅病原菌的效果。而黏細菌能通過獨特的狼群式群體行為和滑行運動主動捕食細菌、真菌和酵母菌等微生物活體,其產生的次級代謝產物被認為在黏細菌捕食過程中發(fā)揮著重要作用[41-42]。其中M. xanthus DK1622產生的抗生素TA和Corallococcus coralloides產生的corallopyronin已被證明可以抑制Escherichia coli MG1655和Staphylococcus aureus的生長,在捕食過程中扮演重要的角色[43-44]。在本研究中,黏細菌菌株WCH05、FB02和WCH03在固體平板表面對梨火疫病菌均表現(xiàn)出高的捕食能力,但將其無菌發(fā)酵濾液與梨火疫病菌共培養(yǎng)后,發(fā)現(xiàn)這3株菌株的無菌發(fā)酵濾液對梨火疫病菌的生長并無影響,結合菌苔捕食試驗結果,推測這3株黏細菌對梨火疫病菌的有效殺傷依賴于菌體間的直接接觸,而黏細菌菌株產生的胞外次級產物可能在捕食作用中并未起到主要作用。與本研究結果相似,Pan等[45]的研究表明在液體條件下,M. xanthus對大腸桿菌的捕食作用依賴于胞外多糖的物理接觸;李周坤等[46]研究發(fā)現(xiàn)Myxococcus sp. BS所分泌的次級代謝物或者酶類具有一定抑菌作用,但是與直接捕食病原細菌相比較,該作用是次要的。

黏細菌作為一類廣泛分布于土壤中的“土著菌”[47],對土壤環(huán)境的適應性更強,更易在土壤中定殖,因此近些年來關于黏細菌在植物病害生物防治方面的研究和應用主要集中在土傳病害方面。與土壤環(huán)境相比,果樹的葉際生存環(huán)境條件更加嚴苛,其可被利用的營養(yǎng)成分較少,溫濕度變化及紫外線輻射對微生物的生存也有很大影響[48]。筆者通過本研究雖然已證實黏細菌在溫室條件下對梨火疫病具有顯著的生防效果,但在田間自然環(huán)境下其抗逆性能、定殖性能及防治效果還需在后續(xù)的工作中進一步證實。此外一些問題也制約了黏細菌在梨火疫病生物防治中的實際應用。如黏細菌的自溶特性直接限制了黏細菌菌劑的規(guī)?;苽浜拓浖芷?。黏細菌在液體培養(yǎng)基中生長聚集成團,嚴重影響了噴霧施用。因此如何強化黏細菌在生長過程中的細胞分散性,建立和優(yōu)化黏細菌發(fā)酵工藝,這些問題都需要在后續(xù)的工作中深入研究。

4 結 論

本研究中,基于前期分離、純化獲得的黏細菌菌種資源,從中篩選出3株對梨火疫病菌具有高效捕食能力的黏細菌菌株M. fulvus WCH05、M. xanthus WCH03和M. fulvus FB02,進一步通過離體花序和盆栽杜梨苗防效測定,發(fā)現(xiàn)這3株黏細菌菌株均表現(xiàn)出良好的生防效果,其中黏細菌菌株WCH05的防效最佳,表明黏細菌在梨火疫病的生物防治中具有潛在的應用價值。

參考文獻References:

[1] HEITEFUSS R. Fire blight,history,biology,and management[J]. Journal of Phytopathology,2012,160(7/8):440.

[2] 中華人民共和國農業(yè)農村部. 中華人民共和國農業(yè)農村部公告第333號:一類農作物病蟲害名錄[EB/OL]. (2020-09-15)[2022-12-21]. http://www.moa.gov.cn/nybgb/2020/202010/202011/t20201130_6357326.htm.

Ministry of Agriculture and Rural Affairs of the Peoples Republic of China. Announcement No. 333 of the Ministry of Agriculture and Rural Affairs of the Peoples Republic of China:CategoryⅠ list of crop diseases and pests[EB/OL]. (2020-09-15)[2022-12-21]. http://www.moa.gov.cn/nybgb/2020/202010/202011/t20201130_6357326.htm.

[3] 中華人民共和國農業(yè)農村部. 中華人民共和國農業(yè)農村部公告第567號:重點管理外來入侵物種名錄[EB/OL]. (2022-12-20)[2022-12-21]. http://www.moa.gov.cn/govpublic/KJJYS/202211/t20221109_6415160.htm.

Ministry of Agriculture and Rural Affairs of the Peoples Republic of China. Announcement No. 567 of the Ministry of Agriculture and Rural Affairs of the Peoples Republic of China:List of alien invasive species under key management[EB/OL]. (2022-12-20)[2022-12-21]. http://www.moa.gov.cn/govpublic/KJJYS/202211/t20221109_6415160.htm.

[4] 黃偉,盛強,羅明,馬德英,張春竹. 新疆庫爾勒香梨火疫病的發(fā)生特點及防控建議[J]. 植物保護,2022,48(6):207-213.

HUANG Wei,SHENG Qiang,LUO Ming,MA Deying,ZHANG Chunzhu. Occurrence status of fire blight on Korla fragrant pear in Xinjiang and the control proposals[J]. Plant Protection,2022,48(6):207-213.

[5] 中華人民共和國農業(yè)農村部. 農業(yè)農村部辦公廳關于印發(fā)《全國農業(yè)植物檢疫性有害生物分布行政區(qū)名錄》的通知[EB/OL]. (2019-05-16)[2022-12-21]. http://www.moa.gov.cn/govpublic/ZZYGLS/202207/t20220707_6404284.htm.

Ministry of Agriculture and Rural Affairs of the Peoples Republic of China. Notice of the General Office of the Ministry of Agriculture and Rural Affairs on Printing and Distributing the National List of Administrative Regions Where Agricultural Plant Quarantine Pests Are Distributed[EB/OL]. (2019-05-16)[2022-12-21]. http://www.moa.gov.cn/govpublic/ZZYGLS/202207/t20220707_6404284.htm.

[6] ZHAO Y Q,TIAN Y L,WANG L M,GENG G M,ZHAO W J,HU B S,ZHAO Y F. Fire blight disease,a fast-approaching threat to apple and pear production in China[J]. Journal of Integrative Agriculture,2019,18(4):815-820.

[7] DOOLOTKELDIEVA T,BOBUSHOVA S,SCHUSTER C,KONURBAEVA M,LECLERQUE A. Isolation and genetic characterization of Erwinia amylovora bacteria from Kyrgyzstan[J]. European Journal of Plant Pathology,2019,155(2):677-686.

[8] VANNESTE J L,YU J. Biological control of fire blight using Erwinia herbicola EH252 and Pseudomonas fluorescens A506 separately or in combination[J]. Acta Horticulturae,1996,411:351-354.

[9] LINDOW S E,MCGOURTY G, ELKINS R. Interactions of antibiotics with Pseudomonas fluorescens strain A506 in the control of fire blight and frost injury to pear[J]. Phytopathology,1996,86(8):841.

[10] ZELLER W,WOLF B. Studies on biological control of fire blight[J]. Acta Horticulturae,1996,411:341-346.

[11] AIT BAHADOU S,OUIJJA A,BOUKHARI M A,TAHIRI A. Development of field strategies for fire blight control integrating biocontrol agents and plant defense activators in Morocco[J]. Journal of Plant Pathology,2017,99:51-58.

[12] 徐琳赟,古麗孜熱·曼合木提,韓劍,蔣萍,黃偉,羅明. 香梨內生拮抗細菌的篩選及對梨火疫病的生防潛力[J]. 西北植物學報,2021,41(1):132-141.

XU Linyun,Gulizzier·Manhemuti,HAN Jian,JIANG Ping,HUANG Wei,LUO Ming. Screening of endophytic antagonistic bacteria from ‘Kuerlexiangli pear and their biocontrol potential against fire blight disease[J]. Acta Botanica Boreali-Occidentalia Sinica,2021,41(1):132-141.

[13] 魯晏宏,郝金輝,羅明,黃偉,盛強,王寧,詹發(fā)強,龍宣杞,包慧芳. 梨火疫病拮抗菌篩選及溫室防效測定[J]. 微生物學通報,2021,48(10):3690-3699.

LU Yanhong,HAO Jinhui,LUO Ming,HUANG Wei,SHENG Qiang,WANG Ning,ZHAN Faqiang,LONG Xuanqi,BAO Huifang. Screening of antagonistic bacteria against Erwinia amylovora and its control effect in greenhouse[J]. Microbiology China,2021,48(10):3690-3699.

[14] 呂天宇,賀旭,羅明,韓劍,包慧芳,黃偉. 梨火疫病菌拮抗細菌FX1培養(yǎng)基及搖瓶發(fā)酵條件優(yōu)化[J]. 中國生物防治學報,2022,38(6):1553-1565.

L? Tianyu,HE Xu,LUO Ming,HAN Jian,BAO Huifang,HUANG Wei. Optimization of culture medium and flask fermentation conditions for Bacillus velezensis FX1 against Erwinia amylovora[J]. Chinese Journal of Biological Control,2022,38(6):1553-1565.

[15] MU?OZ-DORADO J,MARCOS-TORRES F J,GARC?A-BRAVO E,MORALEDA-MU?OZ A,P?REZ J. Myxobacteria:Moving,killing,feeding,and surviving together[J]. Frontiers in Microbiology,2016,7:781.

[16] THIERY S,KAIMER C. The predation strategy of Myxococcus xanthus[J]. Frontiers in Microbiology,2020,11:2.

[17] DAWID W. Biology and global distribution of myxobacteria in soils[J]. FEMS Microbiology Reviews,2000,24(4):403-427.

[18] YE X F,LI Z K,LUO X,WANG W H,LI Y K,LI R,ZHANG B,QIAO Y,ZHOU J,F(xiàn)AN J Q,WANG H,HUANG Y,CAO H,CUI Z L,ZHANG R F. A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community[J]. Microbiome,2020,8(1):49.

[19] DAHM H,BRZEZI?SKA J,WR?TNIAK-DRZEWIECKA W,GOLI?SKA P,R??YCKI H,RAI M. Myxobacteria as a potential biocontrol agent effective against pathogenic fungi of economically important forest trees[J]. Dendrobiology,2015,74:13-24.

[20] RAZA W,LING N,ZHANG R F,HUANG Q W,XU Y C,SHEN Q R. Success evaluation of the biological control of Fusarium wilts of cucumber,banana,and tomato since 2000 and future research strategies[J]. Critical Reviews in Biotechnology,2017,37(2):202-212.

[21] LI Z K,YE X F,CHEN P L,JI K,ZHOU J,WANG F,DONG W L,HUANG Y,ZHANG Z G,CUI Z L. Antifungal potential of Corallococcus sp. strain EGB against plant pathogenic fungi[J]. Biological Control,2017,110:10-17.

[22] LI Z K,WANG T,LUO X,LI X M,XIA C Y,ZHAO Y Q,YE X F,HUANG Y,GU X Y,CAO H,CUI Z L,F(xiàn)AN J Q. Biocontrol potential of Myxococcus sp. strain BS against bacterial soft rot of calla lily caused by Pectobacterium carotovorum[J]. Biological Control, 2018, 126: 36-44.

[23] DONG H H,XU X,GAO R X,LI Y Q,LI A Z,YAO Q,ZHU H H. Myxococcus xanthus R31 suppresses tomato bacterial wilt by inhibiting the pathogen Ralstonia solanacearum with secreted proteins[J]. Frontiers in Microbiology,2022,12:801091.

[24] 白欣禾,韓劍,竇新玉,羅明,崔中利,李周坤,呂文. 新疆農田土壤中粘細菌的分離鑒定及其捕食特性[J]. 新疆農業(yè)大學學報,2022,45(6):462-473.

BAI Xinhe,HAN Jian,DOU Xinyu,LUO Ming,CUI Zhongli,LI Zhoukun,L? Wen. Isolation,identification and predation characteristics of myxobacteria from farmland soils in Xinjiang[J]. Journal of Xinjiang Agricultural University,2022,45(6):462-473.

[25] 王婷. 新型生防粘細菌Myxococcus sp. BS的分離及粘細菌對細菌性軟腐病菌的捕食機理研究[D]. 南京:南京農業(yè)大學,2018.

WANG Ting. Isolation of a novel biocontrol Myxococcus sp. BS and the myxobacterial predation mechanism against bacterial soft rot[D]. Nanjing:Nanjing Agricultural University,2018.

[26] 李燕,李洪濤,葉良超,周俊祥,羅明. 蘋果細菌性枯枝病菌的生物學特性及抑菌藥劑篩選[J]. 中國農學通報,2021,37(4):112-119.

LI Yan,LI Hongtao,YE Liangchao,ZHOU Junxiang,LUO Ming. Biological characteristics of Pseudomonas syringae pv. syringae causing shoot dieback disease on apple and screening of bactericides[J]. Chinese Agricultural Science Bulletin,2021,37(4):112-119.

[27] BOONE D R,CASTENHOLZ R W,GARRITY G M. Bergeys manual of systematic bacteriology[M]. Berlin:Springer Science & Business Media,2001.

[28] BALOUS A,TRUPER H G,DWORKIN M,HARDER W,SCHLEIFER K H. The prokaryotes[M]. Berllin:Springer,1992:3418-3487.

[29] ZHANG X J,YAO Q,CAI Z P,XIE X L,ZHU H H. Isolation and identification of myxobacteria from saline-alkaline soils in Xinjiang,China[J]. PLoS One,2013,8(8):e70466.

[30] STACKEBRANDT E,P?UKER O,ERHARD M. Grouping myxococci (Corallococcus) strains by matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry:Comparison with gene sequence phylogenies[J]. Current Microbiology,2005,50(2):71-77.

[31] KIM S T,YUN S C. Biocontrol with Myxococcus sp. KYC 1126 against anthracnose in hot pepper[J]. The Plant Pathology Journal,2011,27(2):156-163.

[32] HOCKING D,COOK F D. Myxobacteria exert partial control of damping-off and root disease in container-grown tree seedlings[J]. Canadian Journal of Microbiology,1972,18(10):1557-1560.

[33] TAYLOR W J,DRAUGHON F A. Nannocystis exedens:A potential biocompetitive agent against Aspergillus flavus and Aspergillus parasiticus[J]. Journal of Food Protection,2001,64(7):1030-1034.

[34] HOMMA Y. Perforation and Lysis of hyphae of Rhizoctonia solaniand conidia of Cochliobolus miyabeanus by soil myxobacteria[J]. Phytopathology,1984,74(10):1234.

[35] MELIAH S,KUSUMAWATI D I,ILYAS M. Preliminary study of myxobacteria as biocontrol agents for Panama disease pathogen,tropical race 4 Fusarium odoratissimum[J]. IOP Conference Series:Earth and Environmental Science,2020,457(1):012060.

[36] FIRA D,DIMKI? I,BERI? T,LOZO J,STANKOVI? S. Biological control of plant pathogens by Bacillus species[J]. Journal of Biotechnology,2018,285:44-55.

[37] OLORUNLEKE F E,KIEU N P,H?FTE M. Recent advances in Pseudomonas biocontrol[M]//MURILLO J,VINATZER B A,JACKSON R W,ARNOLD D L. Bacteria-plant interactions:advanced research and future trends. UK:Caister Academic Press,2015:167-198

[38] LAW J W F,SER H L,KHAN T M,CHUAH L H,PUSPARAJAH P,CHAN K G,GOH B H,LEE L H. The potential of Streptomyces as biocontrol agents against the rice blast fungus,Magnaporthe oryzae (Pyricularia oryzae)[J]. Frontiers in Microbiology,2017,8:3.

[39] LIN L,XU K W,SHEN D Y,CHOU S H,GOMELSKY M,QIAN G L. Antifungal weapons of Lysobacter,a mighty biocontrol agent[J]. Environmental Microbiology,2021,23(10):5704-5715.

[40] MART?NEZ B,INFANTE D,REYES Y. Trichoderma spp. y su función en el control de plagas en los cultivos[J]. Revista De Protección Vegetal,2013,28(1):1-11.

[41] P?REZ J,CONTRERAS-MORENO F J,MARCOS-TORRES F J,MORALEDA-MU?OZ A,MU?OZ-DORADO J. The antibiotic crisis:How bacterial predators can help[J]. Computational and Structural Biotechnology Journal,2020,18:2547-2555.

[42] AREND K I,SCHMIDT J J,BENTLER T,L?CHTEFELD C,EGGERICHS D,HEXAMER H M,KAIMER C. Myxococcus xanthus predation of Gram-positive or Gram-negative bacteria is mediated by different bacteriolytic mechanisms[J]. Applied and Environmental Microbiology,2021,87(5):e02382-e02420.

[43] XIAO Y,WEI X M,EBRIGHT R,WALL D. Antibiotic production by myxobacteria plays a role in predation[J]. Journal of Bacteriology,2011,193(18):4626-4633.

[44] IRSCHIK H,JANSEN R,H?FLE G,GERTH K,REICHENBACH H. The corallopyronins,new inhibitors of bacterial RNA synthesis from myxobacteria[J]. The Journal of Antibiotics,1985,38(2):145-152.

[45] PAN H W,HE X S,LUX R,LUAN J,SHI W Y. Killing of Escherichia coli by Myxococcus xanthus in aqueous environments requires exopolysaccharide-dependent physical contact[J]. Microbial Ecology,2013,66(3):630-638.

[46] 李周坤,葉現(xiàn)豐,楊凡,黃彥,范加勤,王輝,崔中利. 黏細菌捕食生物學研究進展及其在農業(yè)領域的應用潛力[J]. 南京農業(yè)大學學報,2021,44(2):208-216.

LI Zhoukun,YE Xianfeng,YANG Fan,HUANG Yan,F(xiàn)AN Jiaqin,WANG Hui,CUI Zhongli. The predation biology of myxobacteria and its application in agricultural field[J]. Journal of Nanjing Agricultural University,2021,44(2):208-216.

[47] ZHOU X W,LI S G,LI W,JIANG D M,HAN K,WU Z H,LI Y Z. Myxobacterial community is a predominant and highly diverse bacterial group in soil niches[J]. Environmental Microbiology Reports,2014,6(1):45-56.

[48] 潘建剛,呼慶,齊鴻雁,張洪勛,莊國強,白志輝. 葉際微生物研究進展[J]. 生態(tài)學報,2011,31(2):583-592.

PAN Jiangang,HU Qing,QI Hongyan,ZHANG Hongxun,ZHUANG Guoqiang,BAI Zhihui. Advance in the research of phyllospheric microorganism[J]. Acta Ecologica Sinica,2011,31(2):583-592.

猜你喜歡
篩選生物防治
植物內生菌在植物病害中的生物防治
湖北農機化(2020年4期)2020-07-24 09:07:16
淺談林業(yè)有害生物防治
林業(yè)有害生物防治技術分析
加強有害生物防治,保護林木生態(tài)安全——方城縣有害生物防治工作成效顯著
馬鈴薯晚疫病防治農藥篩選試驗報告
新農村(2016年12期)2017-01-12 21:29:36
水稻中后期病害藥劑篩選試驗初探
初識轉基因植物篩選試劑
晉北豇豆新品種鑒定篩選與評價
不同西瓜嫁接砧木的篩選與研究
核電廠電儀設備的老化評估篩選
科技視界(2016年10期)2016-04-26 00:46:55
岱山县| 鄂州市| 亚东县| 巍山| 噶尔县| 平顶山市| 南昌县| 迭部县| 蒙城县| 汉源县| 盐山县| 安义县| 怀化市| 赞皇县| 浙江省| 夏津县| 蒙自县| 丰宁| 霍州市| 婺源县| 吉安县| 兴城市| 万年县| 云和县| 手游| 新野县| 新沂市| 深州市| 阿勒泰市| 茂名市| 博野县| 巫山县| 皮山县| 沽源县| 南平市| 拜城县| 望奎县| 福清市| 营口市| 永定县| 深州市|