国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

長枝木霉代謝物對極細鏈格孢產(chǎn)毒抑制機制解析

2024-04-29 05:20:44邵學輝張樹武徐秉良
果樹學報 2024年1期
關(guān)鍵詞:基因表達生物防治毒素

邵學輝 張樹武 徐秉良

收稿日期:2023-09-15 接受日期:2023-11-23

基金項目:甘肅省重點研發(fā)計劃項目(23YFNA0020);甘肅省科技重大專項(22ZD6NA045);甘肅農(nóng)業(yè)大學“伏羲杰出人才培育計劃”項目(Gaufx-03J03);蘭州市科技計劃項目(2021-1-39)

作者簡介:邵學輝,男,在讀碩士研究生,研究方向為資源利用與植物保護。E-mail:1030372086@qq.com

*通信作者 Author for correspondence. E-mail:xubl@gsau.edu.cn;E-mail:zhangsw704@126.com

DOI:10.13925/j.cnki.gsxb.20230369

摘? ? 要:【目的】明確長枝木霉(SC5)代謝粗提物對極細鏈格孢(ABL2)產(chǎn)毒抑制機制?!痉椒ā恳愿皇刻O果的葉片為供試材料,通過生長速率法、LC-MS和RT-qPCR技術(shù)測定了SC5代謝粗提物對ABL2菌落生長、6種非寄主選擇性毒素產(chǎn)生及產(chǎn)毒相關(guān)基因表達的抑制作用。【結(jié)果】質(zhì)量濃度為0.5 mg·mL-1的SC5代謝粗提物對ABL2菌落生長和致病力具有顯著的抑制作用,第6天時抑制率分別為38.08%和76.96%;同時,0.5 mg·mL-1 SC5代謝粗提物對ABL2菌株產(chǎn)生的非寄主選擇性毒素TEN、ALT和TeA均具有顯著抑制作用,其中處理2 d后對毒素的抑制作用最顯著,其含量分別降低69.39%、98.51%和48.99%,并且其合成相關(guān)基因TES、TES(1)、PksA和PksJ的表達量顯著下調(diào),分別降低89.02%、98.20%、46.49%和40.13%,但是對ABL2菌株非寄主選擇性毒素ATX-I含量和參與編碼其合成的PksF基因表達量具有提升作用。【結(jié)論】質(zhì)量濃度為0.5 mg·mL-1的SC5代謝粗提物對ABL2菌株生長和致病力具有抑制作用,可能通過調(diào)控ABL2菌株TES、TES(1)、PksA和PksJ基因下調(diào)表達,進而降低TEN、ALT和TeA的毒素的產(chǎn)生量及致病力。

關(guān)鍵詞:蘋果葉片;極細鏈格孢;長枝木霉;毒素;基因表達;生物防治

中圖分類號:S661.1? S436.661 文獻標志碼:A 文章編號:1009-9980(2024)01-0133-10

Identification and mechanism of Trichoderma longibrachiatum metabolites in inhibiting the Alternaria tenuissima toxin production

SHAO Xuehui, ZHANG Shuwu*, XU Bingliang*

(College of Plant Protection, Gansu Agricultural University/Engineering Laboratory for Biological Control of Crop Diseases and Pests, Lanzhou, 730070, Gansu, China)

Abstract: 【Objective】 Alternaria spp. can cause a variety of apple leaf diseases, which occur in all major apple producing areas in the world. It can lead to brown disease spots in apple leaves and even result in early defoliation, which seriously affects the development of apple industry and causes huge economic losses. Apple leaf blight caused by Alternaria tenuissima was found for the first time in apple producing areas of Gansu province. This fungus can damage apple leaves and petioles, causing leaves to die and fall off. A. alternata mainly damages plants by producing Alternaria toxins. The Alternaria toxins that have been found can be divided into five categories, i. e, diphenyl-α-pyrones and their derivatives, perylenequinones and their derivatives, tetraamino acids and their derivatives, long-chain amino polyols of glycerol tricarboxylate compounds, and hybrid structures. All of them have obvious toxicity, which can cause serious harm to plants and endanger the food safety of agricultural products. At present, chemical control is still the main means to prevent and control the diseases caused by Alternaria fungi. However, due to the influence of Alternaria resistance and environmental pollution, it is of great significance to find a series of biocontrol agents with higher controlling effect on Alternaria. Biocontrol of Trichoderma is safer and greener than the traditional chemical control methods. Trichoderma metabolites are also good antifungal substances, with broad-spectrum and efficient antibacterial activity, inhibiting the growth and metabolism of pathogenic fungi. The growth and metabolism of A. tenuissima ABL2 strain were inhibited by Trichoderma longibrachiatum SC5 metabolites. The content of non-host selective toxins in the metabolites of A. tenuissima ABL2 strain and the relative expression of genes related to the synthesis of A. tenuissima toxin were determined. The inhibition mechanism of T. longibrachiatum SC5 metabolites on A. tenuissima ABL2 strain production was clarified. The aim was to provide a reference and theoretical basis for the prevention and control of apple leaf blight caused by A. tenuissima. 【Methods】 T. longibrachiatum SC5 and A. tenuissima ABL2 strains were cultured on PDA medium for 7 days. The PDB liquid medium was made, and the SC5 strain was cultured on the medium for 15 days. The fermentation broth was filtered with filter paper and the broth was retained. The liquid was added with 3-fold-volume-ethyl acetate and oscillated for 1 hour. After standing extraction, the organic phase was evaporated in a rotary evaporator, and 1 ml of methanol was added to dissolve and evaporate. The SC5 metabolites were made into an orginal liquid with a concentration of 200.00 mg·mL-1, and added to the PDA medium to make a drug-containing medium with different concentrations of SC5 metabolites (0.01, 0.05, 0.10, 0.25, 0.50, 1.00 and 2.00 mg·mL-1). The ABL2 strain was inoculated on the drug-containing medium and cultured for 24 hours in a light incubator. The diameter of ABL2 colonies was measured and the colony inhibition rate was calculated on the 2, 4, 6, 8 and 10 days by cross method. On the 6th day, 5 mycelial plugs were prepared with a sterile puncher and placed in a 10 mL of EP tube, with 3 replicates per concentration. After adding 8 mL of ethyl acetate, ultrasonic oscillation was performed for 1.5 hours, centrifuged and filtered. After the ethyl acetate phase was evaporated to dryness, 1 mL of methanol was added to dissolve it, and 5 mm circular sterile filter paper was placed in it for later use. Inoculate healthy leaves after disinfection and rinsing using stab inoculation method. A circular filter paper soaked in ABL2 metabolites was placed at each wound, and placed in an artificial climate box for moisturizing culture for 7 days. The lesion size was measured and the pathogenic activity of the metabolites was calculated. The optimal inhibitory concentration of SC5 metabolites on the growth of ABL2 strain was screened. The total RNA and the metabolites of ABL2 strain growing in the optimal concentration of drug-containing medium was extracted on 2, 4, 6, 8 and 10 days, and the quantitative standard curves of six non-host-selective toxins were made respectively. Six toxin-producing related gene primers were designed and verified for specificity. Liquid Chromatograph Mass Spectrometer and Real Time Quantitative PCR were used to determine the content of toxins in ABL2 metabolites and the relative expression of toxin-producing related genes. 【Results】 The crude extract of SC5 metabolism at a concentration of 0.5 mg·mL-1 had a significant inhibitory effect on the growth and pathogenicity of ABL2, and the inhibition rates were 38.08% and 76.96% on the 6th day, respectively. 0.5 mg·mL-1 SC5 metabolic crude extract had a significant inhibitory effect on the non-host selective toxins TEN, ALT and TeA produced by ABL2 strain. The inhibitory effect was the most significant after 2 days treatment, and its content was reduced by 69.39%, 98.51% and 48.99%, respectively. The expression levels of TES, TES (1), PksA and PksJ were significantly down-regulated by 89.02%, 98.20%, 46.49% and 40.13%, respectively. However, the content of non-host selective toxin ATX-I of ABL2 strain and the expression of PksF gene involved in its synthesis increased. 【Conclusion】 The SC5 metabolites of T. longibrachiatum at a concentration of 0.5 mg·mL-1 had an inhibitory effect on the growth and pathogenicity of A. tenuissima ABL2 strain. It could reduce and inhibit the content of TEN, ALT and TeA by down-regulating the expression of TES, TES (1), PksA and PksJ genes in ABL2 strain, thereby reducing its pathogenicity. This study can provide a theoretical basis for the biological control of ABL2 strain.

Key words: Fuji apple leaves; Alternaria tenuissima; Trichoderma longibrachiatum; Toxin; Gene expression; Biological control

植物病原鏈格孢(Alternaria spp.)引起的蘋果病害,在世界各大產(chǎn)區(qū)普遍發(fā)生[1]。如蘋果鏈格孢?;停ˋ. alternata f. sp. mail)引起的蘋果斑點落葉病,主要危害蘋果葉片,使葉部出現(xiàn)褐色病斑,最終導致提前落葉[2]。同時,也可危害嫩枝和果實,導致樹勢衰弱,影響花芽形成和果實正常生長[3]。但是,近年來筆者課題組在甘肅省蘋果產(chǎn)區(qū)首次發(fā)現(xiàn)由極細鏈格孢(A. tenuissima)引起的蘋果葉枯病,發(fā)生后嚴重導致蘋果葉片枯死脫落。據(jù)報道,鏈格孢菌可通過產(chǎn)生鏈格孢毒素危害植物。已發(fā)現(xiàn)的鏈格孢毒素可分為5類,分別為二苯-α-吡喃酮類及其衍生物、苝醌類及其衍生物、四氨基酸及其衍生物、長鏈氨基多元醇的丙三羧酸酯類化合物、混雜多樣結(jié)構(gòu)[4-5]。目前,研究最多的鏈格孢毒素有交鏈孢酚(AOH:Alternariol)、交鏈孢單甲醚(AME:Alternariol monomethyl ether)、交鏈孢烯(ALT:Altenuene)、交鏈孢毒素(ATX-Ⅰ、Ⅱ、Ⅲ:Altertoxin)、騰毒素(TEN:Tentoxin)、細交鏈孢菌酮酸(TeA:Tenuazonic Acid),其不僅對植物產(chǎn)生嚴重危害[6-7],而且危及農(nóng)產(chǎn)品食品安全[8-9]。同時,相關(guān)研究發(fā)現(xiàn)鏈格孢毒素的生物合成受相關(guān)基因調(diào)控。Wenderoth等[10]鑒定了AOH、AME生物合成相關(guān)的基因簇PksI、omtI、moxI、aohR、sdrI、doxI并確定其功能;Liu等[11]發(fā)現(xiàn)聚酮合酶基因Pks參與鏈格孢代謝途徑且參與次生代謝物的合成,進而影響鏈格孢毒素含量;Li等[12]研究發(fā)現(xiàn)和驗證了TES和TES(1)基因是鏈格孢合成TEN毒素所需的兩個基因簇。目前,化學防治依舊是防控鏈格孢屬真菌引起的病害的主要手段[13],但是長期大量使用可導致鏈格孢菌抗藥性產(chǎn)生和污染環(huán)境[14],因此,尋找一類對鏈格孢具有較好防治效果的生防制劑對該病害的防控具有重要意義。

木霉作為一種優(yōu)良的生防菌,被廣泛應(yīng)用于農(nóng)業(yè)生產(chǎn)中的病害防治[15]。前期Abdel-Lateff等[16]從長枝木霉代謝物中分離出一種吡喃酮衍生物,發(fā)現(xiàn)其具有清除自由基、抗氧化、抑菌活性;Mironenka等[17]發(fā)現(xiàn)哈茨木霉(Trichoderma harzianum)代謝物可抑制黃色鐮孢菌產(chǎn)孢,同時減少其色素和主要毒素的含量。但是,目前有關(guān)木霉代謝物對極細鏈格孢產(chǎn)毒抑制機制尚未見報道。因此,筆者在本試驗中評價了長枝木霉代謝粗提物對極細鏈格孢的抑菌效果和毒素產(chǎn)生的影響,旨在為防治鏈格孢引起的蘋果葉枯病提供參考依據(jù)和理論基礎(chǔ)。

1 材料和方法

1.1 材料

1.1.1 供試菌株 極細鏈格孢(A. tenuissima)ABL2(序列號:MZ222271)和長枝木霉(T. longibrachiatum)SC5(序列號:ON786721)菌株由甘肅農(nóng)業(yè)大學植物保護學院植物病毒學和分子生物學實驗室分離、鑒定并保存。

1.1.2 供試葉片 供試葉片采自甘肅農(nóng)業(yè)大學蘋果種植園,品種為富士。

1.1.3 標準溶液與試劑 鏈格孢毒素標準溶液(AOH、AME、ALT、TEN、TeA、ATX-Ⅰ)購自青島普瑞邦生物工程有限公司;乙酸乙酯(分析純)、甲酸(色譜純)、乙醇(分析純)、甲醇(色譜純)和乙腈(色譜純)均購自天津市大茂化學試劑廠;TRNzol Universal 總RNA提取試劑購自TIANGEN公司;cDNA合成試劑盒、RT-qPCR試劑盒和DNA Marker均購自TaKaRa Bio公司;上下游引物由北京擎科生物科技有限公司西安分公司合成。

1.2 方法

1.2.1 長枝木霉SC5和極細鏈格孢ABL2菌株活化 將低溫保存的SC5和ABL2菌株分別接種于PDA培養(yǎng)基活化培養(yǎng)7 d后,并再次制取菌餅接種于新的PDA培養(yǎng)基活化備用。

1.2.2 長枝木霉SC5代謝粗提物制備 SC5代謝粗提物制備參照Liu等[18]的方法并稍作修改。利用無菌打孔器制取活化3 d且直徑為5 mm的SC5菌餅,并接種于200 mL PDB培養(yǎng)基(3個菌餅),然后置于光照、28 ℃、150 r·min-1的恒溫振蕩培養(yǎng)箱中振蕩培養(yǎng)。待培養(yǎng)15 d后,利用中速定性濾紙抽濾去除菌絲,并將濾液經(jīng)4 ℃、10 000 r·min-1離心30 min后,利用3倍體積的乙酸乙酯充分振蕩并萃取。將乙酸乙酯相置于旋轉(zhuǎn)蒸發(fā)儀蒸干濃縮并經(jīng)1 mL甲醇溶解和0.22 μm濾器過濾,再次濃縮獲得SC5代謝粗提物。

1.2.3 長枝木霉SC5代謝粗提物對極細鏈格孢ABL2生長的抑制作用 將濃縮后的SC5代謝粗提物利用甲醇配制質(zhì)量濃度為200 mg·mL-1母液。同時,分別取1.000、0.500、0.250、0.125、0.050、0.025和0.005 mL的母液用甲醇制成1 mL的工作液,并加入99 mL滅菌后待凝固的PDA中,制得含SC5代謝粗提物質(zhì)量濃度為2.00、1.00、0.50、0.25、0.10、0.05和0.01 mg·mL-1含藥培養(yǎng)基,以加入1 mL甲醇的培養(yǎng)基作為對照。然后,將直徑為5 mm的ABL2菌餅接種于不同濃度含藥培養(yǎng)基中央,并置于溫度為25 ℃全光照培養(yǎng)箱中培養(yǎng),每個處理和對照均設(shè)10次重復,分別在接種培養(yǎng)第2、4、6、8和10 d時,采用十字交叉法測量菌落直徑,并計算SC5代謝粗提物對ABL2生長抑制率。

[生長抑制率/%=對照菌落直徑-處理菌落直徑對照菌落直徑-5 mm×100]。

1.2.4 長枝木霉SC5代謝粗提物對極細鏈格孢ABL2致病力的影響 將1.2.3中經(jīng)不同濃度SC5代謝粗提物和甲醇處理培養(yǎng)6 d時的ABL2菌株作為供試處理菌株和對照菌株,參照Desrochers等[19]的方法提取ABL2菌株代謝產(chǎn)物,并測定其致病力。利用直徑為7 mm打孔器制取5個不同濃度處理菌株和對照菌株菌餅,并分別置于10 mL EP管中,每個處理3次重復。然后,分別加入8 mL乙酸乙酯,并經(jīng)渦旋振蕩和超聲提取后離心(8000 r·min-1)去除菌餅、菌絲。待靜置1 h后將乙酸乙酯相置于旋轉(zhuǎn)蒸發(fā)儀蒸干濃縮并經(jīng)1 mL甲醇溶解和0.22 μm濾器過濾,收集獲得不同濃度處理菌株和對照菌株代謝產(chǎn)物。然后,將無菌濾紙片(直徑5 mm)置于不同濃度處理菌株和對照菌株代謝產(chǎn)物浸泡1 h,制備含有ABL2代謝產(chǎn)物的濾紙片備用。利用75%乙醇將健康的蘋果葉片消毒后,經(jīng)無菌水清洗3次,然后,利用吸水紙吸干葉片表面水分,采用針刺接種法刺破葉片表面,并將含有不同濃度處理菌株和對照菌株ABL2代謝產(chǎn)物(陽性對照)的濾紙片接種于刺傷部位,試驗以1 mL甲醇浸泡等時間的濾紙片作為陰性對照,每組5個重復。接種后置于人工氣候箱,于第5天時利用十字交叉法測量其病斑大小。

1.2.5 長枝木霉SC5代謝粗提物對極細鏈格孢ABL2毒素含量的影響 將SC5代謝粗提物對ABL2菌落和致病力抑制最佳濃度作為供試濃度,測定SC5代謝粗提物對ABL2毒素含量的影響。試驗以1.2.3 中SC5代謝粗提物對ABL2菌落生長抑制作用最佳濃度培養(yǎng)基培養(yǎng)的ABL2菌株作為處理,并以加入等體積甲醇的培養(yǎng)基培養(yǎng)的ABL2菌株作為對照,分別于培養(yǎng)2、4、6、8和10 d后制備處理和對照的菌餅,并參考1.2.4方法提取和制備處理和對照菌株代謝產(chǎn)物。待制備獲得處理和對照菌株代謝產(chǎn)物后,利用LC-MS檢測其AOH、AME、ALT、TEN、TeA和ATX-Ⅰ含量。試驗利用甲醇作為溶劑配制不同質(zhì)量濃度(1000、500、250、100、50、25、10、5和1 ng·mL-1)鏈格孢毒素AOH、AME、ALT、TEN、TeA和ATX-Ⅰ標準品的混標溶液,并利用LC-MS測定后制作標準曲線(圖1、表1)。<\\LENOVO-FAN\fapai\果樹學報\1期-果樹學報-定版\1-2024-1-學報-飛翔\Image\image11.png>

然后,利用LC-MS檢測處理和對照菌株代謝產(chǎn)物AOH、AME、ALT、TEN、TeA和ATX-Ⅰ含量。超高效液相色譜條件為:Agilent 1290超高效液相色譜儀配備Elipse Plus C18 (規(guī)格1.8 μm,2.1 mm×150 mm)色譜柱;柱溫設(shè)置為30 ℃;流動相A為0.2%的甲酸水,B 為加入0.2%氨水的乙腈;進樣量為5 μL;流速設(shè)置0.3 mL·min-1(表2);質(zhì)譜條件為:Agilent 6460三重四級桿質(zhì)譜檢測器配備電噴霧離子源,采用正離子模式(ESI+);掃描范圍(m·z-1)設(shè)置為100~900;錐孔電壓分別設(shè)置為80、95 eV:碰撞電壓為15、25、35 eV;NMR數(shù)據(jù)監(jiān)測模式;錐孔氣流150 L·h-1;離子源溫度350 ℃;噴霧電壓7500 V(表3)。同時,利用Agilent MassHunter Quantitative Analysis(For QQQ)分析并計算處理和對照菌株代謝產(chǎn)物AOH、AME、ALT、TEN、TeA和ATX-Ⅰ含量。

1.2.6 長枝木霉SC5代謝粗提物對極細鏈格孢ABL2毒素合成相關(guān)基因表達的影響 (1)樣品采集及總RNA的提取和cDNA第一鏈合成。將SC5代謝粗提物對ABL2菌落和致病力抑制最佳濃度作為供試濃度,測定SC5代謝粗提物對ABL2毒素合成相關(guān)基因表達的影響。試驗以1.2.3中SC5代謝粗提物對ABL2菌落生長抑制作用最佳濃度培養(yǎng)基培養(yǎng)的ABL2菌株作為處理,并以加入等體積甲醇的培養(yǎng)基培養(yǎng)的ABL2菌株作為對照,待處理2、4、6、8和10 d后收集處理和對照ABL2菌株菌絲。菌絲處理方法參照鄭朋飛等[20]的,將處理和對照菌絲置于液氮中并充分研磨破碎,每個處理和對照均3個重復。然后,根據(jù)TRNzol Universal 總RNA提取試劑說明書提取RNA,并進行濃度及A260/A280 比值測定。利用PrimeScript? RT reagent Kit (Perfect Real Time) 試劑盒進行反轉(zhuǎn)錄,合成處理和對照樣品cDNA第一鏈。

(2)ABL2毒素合成相關(guān)基因表達量分析。試驗以處理2、4、6、8和10 d后的處理和對照ABL2菌株菌絲cDNA第一鏈為模板,利用TB Green? Premix Ex Taq? (Tli RNaseH Plus)試劑盒測定SC5代謝粗提物對ABL2毒素合成相關(guān)基因[PksJ、PksA、PksI、PksF、TES、TES(1)]表達的影響,以BenA作為內(nèi)參基因,并利用2-??Ct法計算其相對表達量。利用Primer 5軟件設(shè)計引物,引物序列見表4。

1.3 數(shù)據(jù)處理

采用MS office Excel 2021和IBM SPSS Statistics 27軟件對數(shù)據(jù)進行統(tǒng)計分析,并運用Duncans新復極差法進行多重比較,利用OriginPro 2021作圖并分析。

2 結(jié)果與分析

2.1 長枝木霉SC5代謝粗提物對極細鏈格孢ABL2生長的抑制作用

SC5代謝粗提物對ABL2菌落的抑制作用隨著代謝粗提物濃度的增加而逐漸增強(圖2)。與對照(圖2-A)相比,經(jīng)質(zhì)量濃度為2.00、1.00、0.50、0.25、0.10、0.05和0.01 mg·mL-1的SC5代謝粗提物處理6 d的ABL2菌落直徑顯著小于對照(圖2-B~H),且不同質(zhì)量濃度之間存在顯著差異。如表5所示,當培養(yǎng)2 d時,質(zhì)量濃度為2 mg·mL-1的SC5代謝粗提物對ABL2菌落生長抑制率達到最大值,為90.42%,當SC5代謝粗提物質(zhì)量濃度大于0.05 mg·mL-1時,隨著培養(yǎng)時間的增加,抑制率趨于平穩(wěn)。

2.2 長枝木霉SC5代謝粗提物對極細鏈格孢ABL2致病力的影響

結(jié)果如圖3所示,經(jīng)不同濃度的SC5代謝粗提物處理后的ABL2代謝產(chǎn)物致病力隨著濃度的增加而減弱。接種葉片5 d后,經(jīng)質(zhì)量濃度為0.01~0.25 mg·mL-1(圖3-A、B)SC5代謝粗提物處理后的ABL2代謝產(chǎn)物的致病力呈降低趨勢,與其他處理相比,經(jīng)質(zhì)量濃度為0.50~2.00 mg·mL-1 (圖3-A、B)SC5代謝粗提物處理后的ABL2代謝產(chǎn)物致病力顯著降低,與陽性對照相比分別降低了76.96%、81.94%和80.95%。

2.3 長枝木霉SC5代謝粗提物對極細鏈格孢ABL2毒素產(chǎn)生的影響

結(jié)果表明(圖4),SC5代謝粗提物對ABL2菌株ALT、AME、AOH、TeA、ATX-I和TEN毒素含量具有顯著的影響,并且不同時間段的毒素含量存在明顯差異。與對照相比,處理2~8 d后,SC5代謝粗提物對ABL2菌株ALT(圖4-A)和TEN(圖4-D)毒素含量具有顯著的抑制作用,其處理時間段內(nèi)平均含量分別較對照降低59.74%和84.41%。然而,處理2~8 d后,SC5代謝粗提物對ABL2菌株AME(圖4-B)、AOH(圖4-C)、TeA(圖4-E)和ATX-I(圖4-F)毒素含量具有不同程度的影響,其中在處理2 d后均表現(xiàn)出一定的抑制作用,但是隨著處理時間的增加,其抑制作用不顯著,與對照相比,處理時間段內(nèi)TeA含量整體呈降低趨勢,ATX-I含量整體呈上升趨勢,AOH和AME含量在處理6~8 d時顯著高于對照。

2.4 產(chǎn)毒相關(guān)基因表達分析

結(jié)果表明(圖5),SC5代謝粗提物對ABL2菌株產(chǎn)毒相關(guān)基因TES、TES(1)、PksJ、PksA、PksF和PksI表達具有顯著的影響,并且不同時間段的表達存在顯著差異。與對照相比,處理2~10 d,SC5代謝粗提物對ABL2菌株TES(圖5-A)、TES(1)(圖5-B)、PksA(圖5-D)和PksI(圖5-F)基因表達量具有顯著的抑制作用,其處理時間段內(nèi)平均表達量較對照降低了61.35%、65.83%、56.94%和65.19%。然而,處理2~10 d,SC5代謝粗提物對ABL2菌株P(guān)ksJ(圖5-C)和PksF(圖5-E)基因表達量具有不同程度的影響,其中在處理2~4 d時對PksF表現(xiàn)出一定的抑制作用,但隨著處理時間的增加,抑制作用變?yōu)榇龠M作用,而在處理2~8 d時對PksJ表現(xiàn)出一定的抑制作用,但在處理10 d后卻由抑制變?yōu)榇龠M。

3 討 論

Liu等[11]發(fā)現(xiàn)鏈格孢代謝途徑中與毒素合成相關(guān)的聚酮合酶Pks基因會受到肉桂醛的抑制;Yun等[21]證明TAS1可催化異亮氨酸和乙酰輔酶合成TeA;Saha等[22]研究發(fā)現(xiàn)PksJ下調(diào)會直接抑制AOH和AME的合成,PksB和PksI的下調(diào)并不直接影響AOH和AME的合成,而PksH則通過調(diào)節(jié)PksJ和PksI 的表達來控制AOH和AME的合成。Li等[12]研究發(fā)現(xiàn)兩個分別編碼一個非核糖體合成酶和一種細胞色素P450蛋白的基因TES和TES(1),并進一步驗證TES和TES(1)參與Tentoxin合成。目前,利用長枝木霉代謝粗提物抑制極細鏈格孢產(chǎn)毒的研究尚未報道。筆者在本研究中發(fā)現(xiàn)0.5 mg·mL-1的SC5代謝粗提物對ABL2菌落生長和代謝產(chǎn)物的致病力有較好的抑制效果,并通過抑制產(chǎn)毒相關(guān)基因的表達減少毒素含量。通過分析基因表達量和毒素含量后發(fā)現(xiàn)隨著培養(yǎng)時間的增加PksJ表達量呈下調(diào)趨勢,同時TeA含量呈下降趨勢,且在第2天、第4天和第6天時顯著低于對照,但在第10天時PksJ表達量高于對照,同時TeA含量也高于對照,表明TeA的合成主要受PksJ調(diào)控,這與Liu等[11]的研究結(jié)果一致;而PksA的表達量先上升后下降,在第6天時達到最大值,但均顯著低于對照,這與TEN毒素含量的變化趨勢相同,初步推測PksA參與了TEN毒素的生物合成,同時PksI表達量也隨時間的增加呈上調(diào)趨勢,但顯著低于對照,且AOH和AME含量隨時間變化呈上升趨勢,在第6天和第8天時卻顯著高于對照,表明PksA和PksI共同參與AOH和AME的生物合成,且PksA在第6天時開始參與調(diào)控TEN毒素的生物合成,這與Liu等[11]的研究結(jié)果一致,但與Saha等[22]的研究結(jié)果略有差異,初步判斷差異的原因是抑菌物質(zhì)和致病菌的不同;TES和TES(1)表達量與對照相比顯著降低,同時TEN含量(ρ)在第6天達到最大值8.74 ng·mL-1,說明TES、TES(1)主要參與調(diào)控TEN的生物合成,這與Li等[12]等的研究結(jié)果相同;ATX-I含量呈上升趨勢,在第4天、第6天、第8天和第10天時均顯著高于對照,這與PksF表達情況相似,同時ALT含量呈上升趨勢且顯著低于對照,這與PksI表達情況相似,但PksF和PksI如何調(diào)控ATX-I和ALT的生物合成還有待研究。結(jié)果表明,SC5代謝粗提物在0.5 mg·mL-1的質(zhì)量濃度下會抑制ABL2菌落的生長和非寄主選擇性毒素TEN、ALT和TeA的生物合成,從而減少毒素含量,但有關(guān)SC5代謝粗提物抑制ABL2菌株毒素合成及其相關(guān)基因表達的分子作用機制有待深入研究。

4 結(jié) 論

(1)篩選獲得了長枝木霉SC5代謝粗體物對極細鏈格孢ABL2菌株生長抑制作用及其代謝物質(zhì)致病作用最佳質(zhì)量濃度為0.5 mg·mL-1,處理6 d后,其對ABL2菌落生長和致病力抑制率分別為38.08%和76.96%。

(2)初步推測SC5代謝粗提物抑制ABL2菌株產(chǎn)毒的機制可能通過抑制ABL2菌株生長同時抑制其產(chǎn)毒相關(guān)基因如TES、TES(1)、PksA和PksJ基因的表達,進而降低ALT、TEN和TeA毒素含量,削弱ABL2菌株致病力。

參考文獻References:

[1] ZHANG Q L,XU C R,WEI H Y,F(xiàn)AN W Q,LI T Z. Two pathogenesis-related proteins interact with leucine-rich repeat proteins to promote Alternaria leaf spot resistance in apple[J]. Horticulture Research,2021,8:219.

[2] 鄢海峰,周宗山. 異菌脲與戊唑醇、吡唑醚菌酯復配對蘋果斑點落葉病菌的聯(lián)合毒力[J]. 中國果樹,2021(6):19-23.

YAN Haifeng,ZHOU Zongshan. Synergistic interaction of the mixtures of iprodione with pyraclostrobin or tebuconazole on Alternaria alternata f. sp. mali[J]. China Fruits,2021(6):19-23.

[3] LIU B Y,LI Z W,DU J F,ZHANG W,CHE X Z,ZHANG Z R,CHEN P,WANG Y Z,LI Y,WANG S L,DING X H. Loop-mediated isothermal amplification (LAMP) for the rapid and sensitive detection of Alternaria alternata (Fr.) Keissl in apple Alternaria blotch disease with Aapg-1 encoding the endopolygalacturonase[J]. Pathogens,2022,11(11):1221.

[4] HAN X M,XU W J,WANG L X Y,ZHANG R N,YE J,ZHANG J,XU J,WU Y. Natural occurrence of Alternaria toxins in citrus-based products collected from China in 2021[J]. Toxins,2023,15(5):325.

[5] TANG H X,HAN W,F(xiàn)EI S X,LI Y B,HUANG J Q,DONG M F,WANG L,WANG W M,ZHANG Y. Development of acid hydrolysis-based UPLC-MS/MS method for determination of Alternaria toxins and its application in the occurrence assessment in solanaceous vegetables and their products[J]. Toxins,2023,15(3):201.

[6] JI X F,XIAO Y P,LYU W T,LI M L,WANG W,TANG B,WANG X D,YANG H. Probabilistic risk assessment of combined exposure to deoxynivalenol and emerging Alternaria toxins in cereal-based food products for infants and young children in China[J]. Toxins,2022,14(8):509.

[7] ZHU X,CHEN Y Y,TANG X Y,WANG D X,MIAO Y Q,ZHANG J,LI R R,ZHANG L S,CHEN J Y. General toxicity and genotoxicity of altertoxin I:A novel 28-day multiendpoint assessment in male Sprague-Dawley rats[J]. Journal of Applied Toxicology,2022,42(8):1310-1322.

[8] DEL FAVERO G,HOHENBICHLER J,MAYER R M,RYCHLIK M,MARKO D. Mycotoxin altertoxin Ⅱ induces lipid peroxidation connecting mitochondrial stress response to NF-κB inhibition in THP-1 macrophages[J]. Chemical Research in Toxicology,2020,33(2):492-504.

[9] WITTE T E,VILLENEUVE N,BODDY C N,OVERY D P. Accessory chromosome-acquired secondary metabolism in plant pathogenic fungi:The evolution of biotrophs into host-specific pathogens[J]. Frontiers in Microbiology,2021,12:664276.

[10] WENDEROTH M,PINECKER C,VO? B,F(xiàn)ISCHER R. Establishment of CRISPR/Cas9 in Alternaria alternata[J]. Fungal Genetics and Biology,2017,101:55-60.

[11] LIU M,XU L C,LIU W J,YU J N,JING G X,LIU H. Cinnamaldehyde regulates the synthesis of Alternaria alternata non-host selective toxins by influencing PKS gene expression and oxidoreductase activity[J]. Industrial Crops and Products,2020,145:112074.

[12] LI Y H,HAN W J,GUI X W,WEI T,TANG S Y,JIN J M. Putative nonribosomal peptide synthetase and cytochrome P450 genes responsible for tentoxin biosynthesis in Alternaria alternata ZJ33[J]. Toxins,2016,8(8):234.

[13] LI J K,LI H,JI S F,CHEN T,TIAN S P,QIN G Z. Enhancement of biocontrol efficacy of Cryptococcus laurentii by cinnamic acid against Penicillium italicum in citrus fruit[J]. Postharvest Biology and Technology,2019,149:42-49.

[14] HOUGH J,HOWARD J D,BROWN S,PORTWOOD D E,KILBY P M,DICKMAN M J. Strategies for the production of dsRNA biocontrols as alternatives to chemical pesticides[J]. Frontiers in Bioengineering and Biotechnology,2022,10:980592.

[15] GUZM?N-GUZM?N P,KUMAR A,DE LOS SANTOS-VILLALOBOS S,PARRA-COTA F I,OROZCO-MOSQUEDA M D C,F(xiàn)ADIJI A E,HYDER S,BABALOLA O O,SANTOYO G. Trichoderma species:Our best fungal allies in the biocontrol of plant diseases:A review[J]. Plants,2023,12(3):432.

[16] ABDEL-LATEFF A,F(xiàn)ISCH K,WRIGHT A D. Trichopyrone and other constituents from the marine sponge-derived fungus Trichoderma sp.[J]. Zeitschrift Für Naturforschung C,2009,64(3/4):186-192.

[17] MIRONENKA J,R??ALSKA S,SOBO? A,BERNAT P. Trichoderma harzianum metabolites disturb Fusarium culmorum metabolism:Metabolomic and proteomic studies[J]. Microbiological Research,2021,249:126770.

[18] LIU S Y,LO C T,SHIBU M A,LEU Y L,JEN B Y,PENG K C. Study on the anthraquinones separated from the cultivation of Trichoderma harzianum strain Th-R16 and their biological activity[J]. Journal of Agricultural and Food Chemistry,2009,57(16):7288-7292.

[19] DESROCHERS N,WALSH J P,RENAUD J B,SEIFERT K A,YEUNG K K C,SUMARAH M W. Metabolomic profiling of fungal pathogens responsible for root rot in American ginseng[J]. Metabolites,2020,10(1):35.

[20] 鄭朋飛,張學勇,孫騫,王楚堃,楊鈺瑩,芮麟,宋來慶,張振魯,由春香. 蘋果花臉癥狀相關(guān)基因差異表達的分析[J]. 果樹學報,2023,40(6):1109-1120.

ZHENG Pengfei,ZHANG Xueyong,SUN Qian,WANG Chukun,YANG Yuying,RUI Lin,SONG Laiqing,ZHANG Zhenlu,YOU Chunxiang. Transcriptome sequencing analysis of differentially expressed genes involved in the formation of dapple symptoms in apple fruits[J]. Journal of Fruit Science,2023,40(6):1109-1120.

[21] YUN C S,MOTOYAMA T,OSADA H. Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS-PKS hybrid enzyme[J]. Nature Communications,2015,6:8758.

[22] SAHA D,F(xiàn)ETZNER R,BURKHARDT B,PODLECH J,METZLER M,DANG H,LAWRENCE C,F(xiàn)ISCHER R. Identification of a polyketide synthase required for alternariol (AOH) and alternariol-9-methyl ether (AME) formation in Alternaria alternata[J]. PLoS One,2012,7(7):e40564.

猜你喜歡
基因表達生物防治毒素
What Makes You Tired
一類具有毒素的非均勻chemostat模型正解的存在性和唯一性
植物內(nèi)生菌在植物病害中的生物防治
毒蘑菇中毒素的研究進展
淺談林業(yè)有害生物防治
抗菌肽對細菌作用機制的研究
基因芯片在胃癌及腫瘤球細胞差異表達基因篩選中的應(yīng)用
美洲大蠊提取液對大鼠難愈合創(chuàng)面VEGF表達影響的研究
二甲基砷酸毒理學的研究進展
嚴苛標準方能清洗校園“毒素”
青河县| 永和县| 宁乡县| 琼结县| 比如县| 当涂县| 绥中县| 额敏县| 曲靖市| 赤峰市| 黄山市| 高青县| 凌云县| 八宿县| 噶尔县| 宣化县| 长乐市| 咸宁市| 信阳市| 夏邑县| 东平县| 齐河县| 缙云县| 瑞安市| 福建省| 吴桥县| 大关县| 长泰县| 武邑县| 建水县| 樟树市| 宁河县| 弥渡县| 大田县| 黄龙县| 额尔古纳市| 博湖县| 辽源市| 莱西市| 肇州县| 祁门县|