国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

糖蜜和植物乳桿菌對(duì)啤酒花枝葉青貯品質(zhì)、微生物數(shù)量及瘤胃降解率的影響

2024-04-28 12:34鮮歐洋李肖陳永成王挺王旭哲張凡凡馬春暉
新疆農(nóng)業(yè)科學(xué) 2024年3期

鮮歐洋 李肖 陳永成 王挺 王旭哲 張凡凡 馬春暉

doi:10.6048/j.issn.1001-4330.2024.03.022

摘? 要:【目的】研究糖蜜和植物乳桿菌對(duì)啤酒花枝葉青貯品質(zhì)、微生物數(shù)量及瘤胃降解率的影響。

【方法】以啤酒花枝葉為原料,研究添加糖蜜與植物乳桿菌對(duì)啤酒花枝葉青貯發(fā)酵特征及綿羊瘤胃降解率的影響,設(shè)置處理無添加劑處理(CK)、5%糖蜜(Molasses,M0處理)、5%糖蜜+105 CFU/g FM植物乳桿菌的組合(Molasses and Lactobacillus plantarum,M1)3個(gè)處理。均在室溫(19~23℃)下貯藏90 d后評(píng)價(jià)感官質(zhì)量,測(cè)定分析青貯品質(zhì)、微生物數(shù)量和瘤胃降解率。

【結(jié)果】(1)M0、M1處理的感官質(zhì)量評(píng)價(jià)優(yōu)于對(duì)照處理,M1處理的DM顯著高于CK和M0處理(P<0.05),M1處理的CP顯著高于CK處理(P<0.05),M0、M1處理的WSC顯著高于CK處理(P<0.05)。M1處理的NDF顯著低于CK和M0處理(P<0.05),M0、M1處理的ADF顯著低于CK處理(P<0.05),M1處理的LA顯著高于CK、M0處理(P<0.05),M1處理的AA顯著高于CK處理(P<0.05),M0、M1處理的pH、NH3-N/TN均顯著低于CK處理(P<0.05);(2)M1處理的乳酸菌顯著高于CK、M0處理(P<0.05),M0、M1處理的酵母菌顯著低于CK處理(P<0.05);(3)瘤胃降解12 h時(shí),各處理之間DMD差異不顯著,M0、M1處理的OMD、ADFD、NDFD顯著高于CK處理(P<0.05);瘤胃降解24 h時(shí),M1處理的DMD顯著高于CK處理,M0、M1處理的OMD、ADFD、NDFD顯著高于CK處理(P<0.05);瘤胃降解48 h時(shí),M1處理的DMD、ADFD顯著高于CK、M0處理(P<0.05),M0、M1處理的OMD、DNFD顯著高于CK處理(P<0.05)。

【結(jié)論】糖蜜和植物乳桿菌在啤酒花枝葉青貯發(fā)酵中起到了良好的協(xié)同作用,有效地改善了青貯品質(zhì),抑制了啤酒花枝葉青貯過程中有害微生物的生長(zhǎng),促進(jìn)了瘤胃微生物的活動(dòng)。

關(guān)鍵詞:啤酒花枝葉;植物乳桿菌;青貯;發(fā)酵品質(zhì);瘤胃降解率

中圖分類號(hào):S182??? 文獻(xiàn)標(biāo)志碼:A??? 文章編號(hào):1001-4330(2024)03-0719-08

收稿日期(Received):

2023-07-23

基金項(xiàng)目:

農(nóng)業(yè)農(nóng)村部:國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS);新疆維吾爾自治區(qū)優(yōu)質(zhì)飼草產(chǎn)業(yè)技術(shù)體系項(xiàng)目(2022XJSC-Z-02);新疆維吾爾自治區(qū)創(chuàng)新環(huán)境(人才、基地)建設(shè)專項(xiàng)(2021D14008);昌吉州適度規(guī)?;馀S实募夹g(shù)集成與示范推廣項(xiàng)目(2021Z02)

作者簡(jiǎn)介:

鮮歐洋(1996-),男,新疆烏魯木齊人,碩士研究生,研究方向?yàn)轱暡菁庸づc生產(chǎn),(E-mail)709542017@qq.com

通訊作者:

張凡凡(1989-),男,新疆烏魯木齊人,副教授,博士,碩士生導(dǎo)師,研究方向?yàn)轱暡菁庸づc生產(chǎn),(E-mail)zhangfanfan@shzu.edu.cn

馬春暉(1966-),男,新疆哈密人,教授,博士,碩士生/博士生導(dǎo)師,研究方向?yàn)轱暡菁庸づc生產(chǎn),(E-mail)chunhuima@126.com

0? 引 言

【研究意義】啤酒花(Humulus Lupulus L.)為??迫劜輰俣嗄晟p繞植物,屬單性花,雌雄異株[1],在我國(guó)主要種植于新疆和甘肅兩省(區(qū)),主要用于制作啤酒原料[2]。啤酒花枝葉是啤酒花加工副產(chǎn)品,研究其青貯品質(zhì)、微生物數(shù)量及瘤胃降解率變化,對(duì)分析青貯發(fā)酵中的協(xié)同作用及品質(zhì)改善有重要意義。乳酸菌在原料發(fā)酵過程中起著關(guān)鍵作用,乳酸菌的添加可以促進(jìn)青貯發(fā)酵,對(duì)提高青貯營(yíng)養(yǎng)品質(zhì)具有現(xiàn)實(shí)意義?!厩叭搜芯窟M(jìn)展】啤酒花廢棄枝葉中含有豐富的營(yíng)養(yǎng)物質(zhì)[3],已有將啤酒花廢棄枝葉直接飼喂、堆肥發(fā)酵的相關(guān)研究,并在牛、豬、雞等家畜中應(yīng)用,顯示能改善腸道內(nèi)環(huán)境以及養(yǎng)分消化率,減少瘤胃甲烷排除[4-5]。青貯是長(zhǎng)期保存青綠飼草料營(yíng)養(yǎng)物質(zhì)最經(jīng)濟(jì)便捷的加工方式之一[6],但是啤酒花廢棄枝葉中的α-酸和β-酸含有苦味物質(zhì)且含糖量較低,加大了青貯失敗風(fēng)險(xiǎn)[7],因此在青貯過程中,通常通過外源添加發(fā)酵底物,最大程度減少青貯的營(yíng)養(yǎng)損失??扇苄蕴鞘窃u(píng)價(jià)青貯飼料營(yíng)養(yǎng)品質(zhì)的重要指標(biāo),只有在可溶性糖含量在2.5%以上才能很好的青貯,低于2.5%往往會(huì)加大青貯失敗的風(fēng)險(xiǎn)[8]。糖蜜富含糖類物質(zhì),可在微生物生長(zhǎng)繁殖的過程中提供豐富的碳源,在青貯發(fā)酵過程中作為前期乳酸菌快速發(fā)酵的補(bǔ)充[9]?!颈狙芯壳腥朦c(diǎn)】植物乳桿菌(Lactobacillus plantarum)屬于同型發(fā)酵乳酸菌,可以調(diào)控乙醇和氨態(tài)氮含量在較低水平,進(jìn)而減少消耗,有助于青綠飼料長(zhǎng)期穩(wěn)定保存[10]。啤酒花枝葉是目前尚未開發(fā)的動(dòng)物飼料原料。目前有關(guān)植物乳桿菌與糖蜜接種對(duì)啤酒花廢棄枝葉青貯發(fā)酵特征及綿羊瘤胃降解率的影響研究尚未見報(bào)道。需研究糖蜜和植物乳桿菌對(duì)啤酒花枝葉青貯品質(zhì)、微生物數(shù)量及瘤胃降解率的影響?!緮M解決的關(guān)鍵問題】設(shè)置添加糖蜜、植物乳桿菌以及糖蜜混合添加調(diào)制啤酒花枝葉青貯飼料3個(gè)處理,分析其營(yíng)養(yǎng)品質(zhì)、發(fā)酵特征及瘤胃降解率,研究其對(duì)啤酒花廢棄枝葉青貯的影響,為調(diào)制啤酒花廢棄枝葉青貯飼料提供科學(xué)根據(jù)。

1? 材料與方法

1.1? 材 料

啤酒花(Humulus Lupulus L.)枝葉采自新疆塔城奧布森生態(tài)農(nóng)場(chǎng)(46.58°N,83.27°E,海拔490 m),2021年9月5日采用粉碎機(jī)粉碎至2~3 cm長(zhǎng)度;植物乳桿菌(活菌數(shù):1×105 CFU/g,F(xiàn)W)由中國(guó)農(nóng)業(yè)微生物菌種保藏管理中心(ACCC)提供;糖蜜(總糖含量≥50%)由中糧(昌吉)屯河糖業(yè)股份有限公司提供。選擇昌吉回族自治州瑪納斯縣紅沙灣村的3只體重(45±2) kg、體態(tài)健康并安裝永久瘤胃瘺管的哈薩克羊,采用單欄獨(dú)立飼養(yǎng)方式。試驗(yàn)飼糧的精粗比為1∶2(DM基礎(chǔ)),每只羊定量飼喂200 g/d精料,苜蓿干草1 kg,全天不限制飲水,每日飼喂2次,預(yù)試期15 d,正試期7 d,術(shù)后恢復(fù)2周后開始放樣。

1.2? 方 法

1.2.1? 試驗(yàn)設(shè)計(jì)

設(shè)計(jì)CK處理(無菌劑添加對(duì)照)、M0處理(添加5%糖蜜)、M1處理(5%糖蜜+105 CFU/g FM植物乳桿菌)3個(gè)處理組,每組設(shè)置3次重復(fù)。將菌劑與原料充分混勻。各處理分別稱取3 kg樣品于青貯袋,抽真空后密封,室溫保存。發(fā)酵結(jié)束后(第90 d),測(cè)定營(yíng)養(yǎng)品質(zhì)、發(fā)酵指標(biāo)、微生物數(shù)量及瘤胃降解率并對(duì)樣品進(jìn)行感官質(zhì)量評(píng)價(jià)。

1.2.2? 測(cè)定指標(biāo)

1.2.2.1? 感官質(zhì)量

主要對(duì)青貯的色澤、氣味和質(zhì)地3項(xiàng)核心指標(biāo)進(jìn)行感官質(zhì)量評(píng)價(jià)[11]。

1.2.2.2? 營(yíng)養(yǎng)品質(zhì)

采用烘干法測(cè)定干物質(zhì)(dry matter,DM)、凱氏定氮法測(cè)定粗蛋白(crude protein,CP)[12],范式纖維洗滌法(Van Soest)測(cè)定中性洗滌纖維(neutral detergent fiber,NDF)、酸性洗滌纖維(acid detergent fiber,ADF)[13],蒽酮—硫酸比色法測(cè)定可溶性碳水化合物(water soluble carbohydrates,WSC)[14]。

1.2.2.3? 發(fā)酵品質(zhì)

采用酸度計(jì)測(cè)定pH,苯酚—次氯酸鈉比色法測(cè)定氨態(tài)氮(NH3-N)含量[15],高效液相色譜法測(cè)定乳酸(lactic acid,LA)、乙酸(acetic acid,AA)丙酸(propionic acid,PA)、丁酸(butyric acid,BA)[16]。

1.2.2.4? 主要微生物數(shù)量

通過MRS培養(yǎng)基培養(yǎng)乳酸菌(lactic acid bacteria,LAB)[17]、高鹽察氏培養(yǎng)基培養(yǎng)酵母菌、麥芽糖浸粉瓊脂培養(yǎng)基培養(yǎng)霉菌、營(yíng)養(yǎng)瓊脂培養(yǎng)基培養(yǎng)好氧細(xì)菌(aerobic bacteria,AB)(培養(yǎng)基均購(gòu)自北京陸橋技術(shù)股份有限公司)。采用平板計(jì)數(shù)法計(jì)算微生物數(shù)量[18]。

1.2.3? 綿羊瘤胃降解率

采用瘤胃瘺管尼龍袋法測(cè)定干物質(zhì)降解率(DMD)、中性洗滌纖維降解率(NDFD)、酸性洗滌纖維降解率(ADFD)和有機(jī)物降解率(OMD)。各處理樣品經(jīng)烘干、粉碎處理過篩至粒徑為1.0 mm,準(zhǔn)確稱取3 g各待測(cè)樣品放入孔徑45 μm,規(guī)格為5 cm×10 cm 的尼龍袋,于晨飼后2 h后打開瘤胃瘺管放入各試驗(yàn)綿羊瘤胃內(nèi),在瘤胃降解12 h、24 h、48 h分別收集尼龍袋,反復(fù)沖洗浸泡漂洗至洗凈烘干至恒重待用。

1.3? 數(shù)據(jù)處理

試驗(yàn)數(shù)據(jù)采用Excel 2019進(jìn)行整理,使用SPSS 22.0軟件進(jìn)行單因素方差分析(ANOVA),多重比較采用Duncan法。各指標(biāo)瘤胃降解率計(jì)算方法公式如下[19]:

Dx = [(MA - MB) / MA ] × 100%.

式中,Dx為待測(cè)樣品某成分的瘤胃降解率(%);

MA為待測(cè)樣品某成分含量(g);

MB為過瘤胃殘留物中某成分含量(g)。

2? 結(jié)果與分析

2.1? 糖蜜和植物乳桿菌接種啤酒花廢棄枝葉青貯感官質(zhì)量評(píng)價(jià)

研究表明,CK處理為褐綠色,M0、M1處理均為黃褐色;CK處理芳香味不明顯,有微弱丁酸味,M0、M1處理芳香味明顯,有較強(qiáng)乳酸氣味;CK處理有輕微結(jié)塊,略黏手,M0、M1處理莖葉結(jié)構(gòu)松散,無霉變。綜合感官質(zhì)量評(píng)價(jià)CK處理一般,M0、M1處理良好。表1

2.2 糖蜜和植物乳桿菌對(duì)啤酒花廢棄枝葉青貯品質(zhì)和微生物數(shù)量的影響

研究表明,原料(第0 d)DM、CP、NDF、ADF、pH顯著高于發(fā)酵組(CK、M0、M1)(P<0.05),NH3-N/TN、LA、AA顯著低于發(fā)酵組(CK、M0、M1)(P<0.05),WSC含量顯著高于CK處理;BA未檢測(cè)出,PA差異不顯著(P>0.05)。發(fā)酵結(jié)束后(第90 d),M1處理DM和LA含量顯著高于CK和M0處理(P<0.05),CP和AA含量顯著高于CK處理(P<0.05),M0、M1處理WSC含量顯著高于CK處理(P<0.05),pH、NH3-N/TN均顯著低于CK處理(P<0.05)。M1處理NDF含量顯著低于CK和M0處理(P<0.05),M0、M1處理的ADF含量顯著低于CK處理(P<0.05)。

原料(第0 d)酵母菌和好氧細(xì)菌顯著高于發(fā)酵組(CK、M0、M1)(P<0.05),乳酸菌顯著低于發(fā)酵組(CK、M0、M1)(P<0.05);發(fā)酵結(jié)束后,M1處理的乳酸菌顯著高于CK、M0處理(P<0.05),M0、M1處理的酵母菌顯著低于CK處理(P<0.05),M0、M1的霉菌低于檢出限,3個(gè)處理間的好氧細(xì)菌差異不顯著(P>0.05)。表2

2.3? 植物乳桿菌和糖蜜接種對(duì)啤酒花廢棄枝葉青貯綿羊瘤胃降解率的影響

研究表明,瘤胃降解12 h時(shí),各處理之間DMD差異不顯著(P>0.05),M0、M1處理的OMD、ADFD、NDFD顯著高于CK處理(P<0.05);瘤胃降解24 h時(shí),M1處理的DMD顯著高于CK處理(P<0.05),M0、M1處理的OMD、ADFD、NDFD顯著高于CK處理(P<0.05);瘤胃降解48 h時(shí),M1處理的DMD、ADFD顯著高于CK、M0處理(P<0.05),M0、M1處理的OMD、DNFD顯著高于CK處理(P<0.05)。表3

3? 討 論

3.1? 植物乳桿菌和糖蜜對(duì)啤酒花廢棄枝葉營(yíng)養(yǎng)品質(zhì)的影響

青貯發(fā)酵中好氧細(xì)菌等有害微生物的活動(dòng),如呼吸作用會(huì)消耗青貯中DM含量[20]。試驗(yàn)中,青貯發(fā)酵組(第90 d)DM含量均低于原料(第0 d),而在發(fā)酵組中,M1處理的DM顯著高于M0和CK處理,這是由于糖蜜的添加為青貯發(fā)酵提供了額外的底物,這可以促進(jìn)青貯體系中產(chǎn)生足夠的乳酸,使pH降低,同時(shí)抑制好氧微生物活動(dòng)[21],減少了DM損失,植物乳桿菌和糖蜜聯(lián)合添加效果更加明顯。啤酒花廢棄枝葉青貯發(fā)酵組(第90 d)相比于原料(第0 d)粗蛋白質(zhì)含量顯著下降,是由于參與青貯發(fā)酵的某些微生物具有降解蛋白質(zhì)的作用,其中蛋白水解菌和植物酶可引起植物粗蛋白降解并伴隨著NH3-N的產(chǎn)生。與CK相比,有糖蜜添加的處理均能降低pH值,導(dǎo)致NH3-N/TN降低。而同時(shí)添加糖蜜和植物乳桿菌顯著降低了NH3-N含量,從而保持了CP含量。是在發(fā)酵底物充足的前提下,植物乳桿菌促使體系快速發(fā)酵造成的低pH環(huán)境,抑制了蛋白水解菌和植物酶的活性[22]。因此,在啤酒花廢棄枝葉青貯中添加植物乳桿菌可以最大程度上減少氮源流失。添加處理青貯的NDF和ADF含量顯著低于對(duì)照青貯,

是由于植物乳

桿菌的添加促進(jìn)了微生物的增殖,糖蜜為發(fā)酵提供了底物,植物乳桿菌及其產(chǎn)生的多種酶對(duì)纖維結(jié)構(gòu)破壞,促進(jìn)了微生物的呼吸作用和纖維成分的分解[23]。WSC是青貯發(fā)酵的一個(gè)重要因素,糖蜜屬于發(fā)酵促進(jìn)劑,可促進(jìn)LA發(fā)酵中可溶性碳水化合物的利用。原料中的WSC僅為3.29%(干物質(zhì)基礎(chǔ)),

低于發(fā)酵良好的青貯的最低WSC含量標(biāo)準(zhǔn)(干物質(zhì)基礎(chǔ)的5%)[24],在沒有任何添加劑的情況下,青貯保存營(yíng)養(yǎng)物質(zhì)的能力不佳,致使啤酒花廢棄枝葉發(fā)酵效果不理想。足夠的WSC含量可以為乳酸發(fā)酵提供更多的物質(zhì)基礎(chǔ),接種植物乳桿菌在發(fā)酵早期過程中將WSC轉(zhuǎn)化為乳酸,可確保青貯期間WSC的有效轉(zhuǎn)化和利用,降低pH和減少營(yíng)養(yǎng)損失[25]。

3.2? 植物乳桿菌和糖蜜接種對(duì)啤酒花廢棄枝葉青貯發(fā)酵品質(zhì)和微生物數(shù)量的影響

青貯過程會(huì)產(chǎn)生復(fù)雜的細(xì)菌發(fā)酵,會(huì)導(dǎo)致有機(jī)酸的積累和pH的下降。pH對(duì)青貯的發(fā)酵質(zhì)量起著關(guān)鍵作用[26]。在整個(gè)青貯期內(nèi),糖蜜組和糖蜜與植物乳桿菌聯(lián)合添加組的pH值均顯著低于對(duì)照處理,其中糖蜜和植物乳桿菌組合的pH降幅最大。低pH直接增加了可發(fā)酵底物的含量,促進(jìn)了LA的充分生產(chǎn)和青貯營(yíng)養(yǎng)物質(zhì)的保存。青貯前M0、M1處理均可以顯著刺激pH的下降。然而,添加糖蜜和植物乳桿菌組合比單獨(dú)添加糖蜜表現(xiàn)出更低的pH值,是因?yàn)樵谇捌谇噘A過程中,WSC在一定程度上被植物乳酸菌分解,反過來可能加速了乳酸菌在青貯環(huán)境中建立優(yōu)勢(shì)菌群,乳酸菌占領(lǐng)主導(dǎo)地位,加速了pH的快速下降[26]。有機(jī)酸對(duì)青貯發(fā)酵品質(zhì)評(píng)價(jià)具有重要參考意義。青貯pH也與青貯體系有機(jī)酸的變化有關(guān)。其中,LA通過LAB增殖生長(zhǎng)產(chǎn)生促進(jìn)青貯體系良性發(fā)酵的代謝產(chǎn)物[27]。試驗(yàn)中,糖蜜和植物乳桿菌組合添加青貯LA含量顯著高于其他青貯處理,添加植物乳桿菌會(huì)加速LA的積累,從而導(dǎo)致啤酒花枝葉青貯pH值下降。M1處理的LA含量顯著高于其他處理,植物乳桿菌在青貯發(fā)酵體系中通過充分利用發(fā)酵基質(zhì)生成LA,使青貯體系中的pH下降,形成低酸環(huán)境,抑制多種揮發(fā)性脂肪酸(如PA等)的生成,并提高AA生成量[28]。各處理均未檢測(cè)出丁酸,可能是啤酒花本身含有α-酸和β-酸具有抑菌性,對(duì)產(chǎn)丁酸的微生物產(chǎn)生了抑制作用[29]。與對(duì)照組相比,M0、M1處理LAB含量提高27.3%~39.6%,顯著減少了好氧細(xì)菌和霉菌的數(shù)量,使好氧細(xì)菌、酵母菌的活動(dòng)受到抑制,是因?yàn)樘砑犹窃垂?yīng)了青貯的發(fā)酵底物以及植物乳桿菌的添加產(chǎn)生足夠的乳酸來降低pH值并限制其他有害細(xì)菌的生長(zhǎng),促進(jìn)了乳酸菌繁殖生長(zhǎng)[30]。添加劑可以減少啤酒花廢棄枝葉青貯中無益微生物數(shù)量,其中糖蜜和植物乳桿菌組合添加的效果最佳。

3.3? 植物乳桿菌和糖蜜對(duì)啤酒花廢棄枝葉青貯瘤胃降解率的影響

瘤胃降解率能夠很好地反映飼料在瘤胃中的消化利用程度,DMD可以在一定程度上反映反芻動(dòng)物干物質(zhì)采食量,飼料總利用率主要通過OMD來衡量[31]。研究中,復(fù)合添加植物乳桿菌和糖蜜發(fā)酵情況良好,有利于動(dòng)物消化利用,因此OMD較高。各處理在青貯后,均能使DMD、OMD顯著提高,說明反芻動(dòng)物對(duì)青貯后的飼料消化利用率更高。一方面啤酒花枝葉通過青貯處理后改善了啤酒花枝葉的細(xì)胞壁結(jié)構(gòu),使促進(jìn)瘤胃降解的微生物釋放[32],啤酒花枝葉經(jīng)青貯處理后可以提高DM在瘤胃內(nèi)的降解率,添加劑處理相較于對(duì)照處理,DM在瘤胃中的降解更為明顯。瘤胃發(fā)酵48 h,M1處理的DMD最高,是由于聯(lián)合添加植物乳桿菌和糖蜜最大程度上保存了DM含量,對(duì)刺激瘤胃蠕動(dòng),提高瘤胃降解,提高DMD有促進(jìn)作用[33]。青貯體系的pH、瘤胃微生物和纖維組成是影響NDFD和ADFD的主要原因[34]。反芻動(dòng)物瘤胃消化酶可以促進(jìn)瘤胃內(nèi)容物中纖維素的分解利用,但是機(jī)體內(nèi)木質(zhì)素與半纖維素緊密包圍纖維素,阻礙了消化酶與纖維素的接觸,不利用于秸稈類飼料的再次利用[35]。試驗(yàn)中,瘤胃發(fā)酵48 h,M0和M1處理的NDFD和ADFD顯著高于對(duì)照處理,主要是由于糖蜜和植物乳桿菌的添加促進(jìn)了青貯有益微生物的生長(zhǎng)對(duì)纖維降解效率產(chǎn)生了影響[36]。添加植物乳桿菌和糖蜜的啤酒花枝葉青貯后,可以有效改善反芻動(dòng)物對(duì)纖維物質(zhì)的消化利用,具有更好的纖維消化率。

4? 結(jié) 論

以糖蜜添加量為5%,植物乳桿菌添加量為1×105 cfu/g,對(duì)啤酒花枝葉進(jìn)行青貯,糖蜜和植物乳桿菌在啤酒花枝葉青貯發(fā)酵中起到了良好的協(xié)同作用,青貯發(fā)酵結(jié)束后(90 d),可使乳酸菌數(shù)量增加39.70%,乳酸含量提高2.2倍。有效地改善了啤酒花枝葉青貯的品質(zhì),抑制了啤酒花枝葉青貯過程中有害微生物的生長(zhǎng),促進(jìn)了瘤胃微生物的活動(dòng),對(duì)瘤胃中的DMD、OMD、NDFD和ADFD有一定改善作用。單獨(dú)添加糖蜜和植物乳桿菌和糖蜜聯(lián)合添加能不同程度地改善啤酒花枝葉的青貯品質(zhì),其中糖蜜和植物乳桿菌聯(lián)合添加效果最佳。

參考文獻(xiàn)(References)

[1]

董志敏,許月明,聞俊,等.啤酒花HPLC指紋圖譜研究[J].藥學(xué)實(shí)踐雜志,2019,37(1):42-45,54.

DONG Zhimin,XU Yueming,WEN Jun,et al.Study on fingerprint of Hupulus lupulus by HPLC [J].Journal of Pharmaceutical Practice, 2019,37(1):42-45,54.

[2]中國(guó)科學(xué)院中國(guó)植物志編委會(huì).中國(guó)植物志[M].北京:科學(xué)出版社,2010:221.

Editorial Committee of Chinese Flora,Chinese Academy of Sciences.Flora of China [M].Beijing:Science Press,2010:221.

[3]白姍姍,張瑩瑩,趙強(qiáng),等.啤酒花廢棄枝葉多酚、黃酮含量與抗氧化活性的相關(guān)性分析[J].食品科學(xué),2018,39(3):41-48.

BAI Shanshan,ZHANG Yingying,ZHAO Qiang,et al.Correlation of Antioxidant Properties with Contents of Total Polyphenols and Total Flavonoids in Successive Solvent Extracts of Abandoned Hop Branches and Leaves[J].Food Science, 2018,39(3):41-48.

[4]Michalczuk M,Holl E,Mddel A, et al.Phytogenic Ingredients from Hops and Organic Acids Improve Selected Indices of Welfare,Health Status Markers,and Bacteria Composition in the Caeca of Broiler Chickens [J].Animals,2021,11(11):3249.

[5]Blaxland J A,Watkins A J,Baillie L W J .The Ability of Hop Extracts to Reduce the Methane Production of Methanobrevibacter ruminantium [J]. Archaea, 2021:5510063.

[6]李鑫琴,樊楊,田靜,等.中國(guó)南方青貯飼料研究進(jìn)展[J].中國(guó)草地學(xué)報(bào),2022,44(6):106-114.

LI Xinqin,F(xiàn)AN Yang,TIAN Jing,et al.Research Progress on Silage in Southern China [J].Chinese Journal of Grassland, 2022,44(6):106-114.

[7]劉澤暢,劉玉梅.啤酒苦味與啤酒花苦味物質(zhì)[J].中國(guó)釀造,2019,38(1):13-19.

LIU Zechang,LIU Yumei.Bitterness of beer and bitterness substance in hops [J].China Brewing, 2019,38(1):13-19.

[8]王小娟,吳海慶.糖蜜在反芻動(dòng)物生產(chǎn)及青貯飼料中的應(yīng)用研究進(jìn)展[J].廣東飼料,2020,29(4):31-33.

WANG Xiaojuan,WU Haiqing.Application of Molasses in Ruminant Production and Silage [J].Guangdong Feed,2020,29(4):31-33.

[9]劉逸超,賈玉山,降曉偉,等.纖維素酶和糖蜜對(duì)天然牧草青貯品質(zhì)和微生物組成的影響[J].中國(guó)草地學(xué)報(bào),2022,44(12):64-72.

LIU Yichao,JIA Yushan,JIANG Xiaowei,et al.Effects of Cellulase and Molasses on Quality and Microbial Composition of Natural Forage Silage [J].Chinese Journal of Grassland,2022,44(12):64-72.

[10]Liu Q H,Shao T,Bai Y F.The effect of fibrolytic enzyme,Lactobacillus plantarum and two food antioxidants on the fermentation quality,alpha-tocopherol and beta-carotene of high moisture napier grass silage ensiled at different temperatures [J]. Animal Feed Science and Technology, 2016,221:1-11.

[11]劉建新,楊振海,葉均安,等.青貯飼料的合理調(diào)制與質(zhì)量評(píng)定標(biāo)準(zhǔn)[J].飼料工業(yè),1999,(3):4-7.

LIU Jianxin,YANG Zhenhai,YE Junan,et al.Reasonable modulation and quality evaluation standard of silage [J].Feed Industry,1999,(3):4-7.

[12]GB/T 14924.9-2001.實(shí)驗(yàn)動(dòng)物 配合飼料 常規(guī)營(yíng)養(yǎng)成分的測(cè)定[S].

GB/T 14924.9-2001.Determination of conventional nutrients in laboratory animal compound feed of State Technical Supervision Bureau [S].

[13]Van Soest P J,Robertson J B,Lewis B A.Methods for dietary fiber,neutral detergent fiber,and nonstarch polysaccharides in relation to animal nutrition [J].Journal of Dairy Science,1991,74(10):3583-3597.

[14]高俊鳳.植物生理學(xué)實(shí)驗(yàn)指導(dǎo)[M].北京:高等教育出版,2006.

GAO Junfeng. Experimental Guidance of Plant Physiology [M].Beijing:Higher Education Press,2006.

[15]Broderick G A,Kang J H.Automated Simultaneous Determination of Ammonia and Total Amino Acids in Ruminal Fluid and In Vitro Media [J].Journal of Dairy Science,1980,63(1):64-75.

[16]張英,周漢林,劉國(guó)道,等.利用HPLC法測(cè)定王草青貯飼料中的有機(jī)酸[J].熱帶作物學(xué)報(bào),2013,34(2):377-381.

ZHANG Ying,ZHOU Hanlin,LIU Guodao,et al.Determination of Organic Acids in King Grass Silage by HPLC[J].Chinese Journal of Tropical Crops,2013,34(2):377-381.

[17]Ni K K,Zhao J Y,Zhu B G,et al.Assessing the fermentation quality and microbial community of the mixed silage of forage soybean with crop corn or sorghum [J].Bioresource Technology, 2018,265:563- 567.

[18]代勝,王飛,董祥,等.紫花苜蓿與甜高粱混合比例對(duì)發(fā)酵全混合日糧營(yíng)養(yǎng)品質(zhì)及有氧穩(wěn)定性的影響[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2020,32(5):2306-2315.

DAI Sheng,WANG Fei,DONG Xiang,et al.Effects of Mixing Ratio of Alfalfa and Sweet Sorghum on Nutritional Quality and Aerobic Stability of Total Mixed Ration Silage [J].Journal of Animal Nutrition,2020,32(5):2306-2315.

[19]Ribeiro S S,Vasconcelos J T,Morais M G,et al.Effects of ruminal infusion of a slow-release polymer-coated urea or conventional urea on apparent nutrient digestibility,in situ degradability,and rumen parameters in cattle fed low-quality hay [J].Animal Feed Science and Technology,2011,164(1/2):53-61.

[20]Borreani G,Tabacco E,Schmidt R J,et al.Silage review:Factors affecting dry matter and quality losses in silages [J].Journal of Dairy Science,2018,101(5),3952-3979.

[21]Coblentz W K,Akins M S.Silage review:Recent advances and future technologies for baled silages [J].Journal of Dairy Science,2018,101(5):4075-4092.

[22]Dong J N,Li S E,Chen X,et al.Effects of Lactiplantibacillus plantarum inoculation on the quality and bacterial community of whole-crop corn silage at different harvest stages [J].Chemical and Biological Technologies in Agriculture, 2022,9(1):57.

[23]張玉雯,蔡明,王福軍,等.植物乳桿菌對(duì)辣木莖葉青貯品質(zhì)的影響[J].飼料研究,2022,45(17):89-93.

ZHANG Yuwen,CAI Ming,WANG Fujun,et al.Effect of Lactobacillus plantarum on quality of Moringa oleifera stem and leaf silage [J].Feed Research,2022,45(17):89-93.

[24]Wang S R,Guo G,Li J F,et al.Improvement of fermentation profile and structural carbohydrate compositions in mixed silages ensiled with fibrolytic enzymes,molasses and Lactobacillus plantarum MTD-1[J].Italian Journal of Animal Science,2019,18(1),328-335.

[25]賈婷婷,吳哲,玉柱.不同類型乳酸菌添加劑對(duì)燕麥青貯品質(zhì)和有氧穩(wěn)定性的影響[J].草業(yè)科學(xué),2018,35(5):1266-1272.

JIA Tingting,WU Zhe,YU Zhu.Effect of different lactic acid bacteria additives on the fermentation quality and aerobic stability of oat silage [J]. Pratacultural Science, 2018,35(5):1266-1272.

[26]Wang X K,Liu H,Xie Y X,et al.Effect of Sucrose and Lactic Acid Bacteria Additives on Fermentation Quality,Chemical Composition and Protein Fractions of Two Typical Woody Forage Silages [J].Agriculture,2021,11(3):256.

[27]陳鑫珠,高承芳,劉景,等.綠汁發(fā)酵液中的微生物多樣性及其對(duì)菌糠發(fā)酵品質(zhì)的影響[J].草地學(xué)報(bào),2019,27(1):199-210.

CHEN Xinzhu,GAO Chengfang,LIU Jing,et al.Microbial Diversity of Fermented Juice Using Epiphytic Lactic Acid Bacteria and Their Effects of on the Fermentation Quality of Fungus Chaff Silage [J].Acta Agrestia Sinica,2019,27(1):199-210.

[28]司華哲,劉晗璐,南韋肖,等.不同發(fā)酵類型乳酸菌對(duì)低水分粳稻秸稈青貯發(fā)酵品質(zhì)及有氧穩(wěn)定性的影響[J].草地學(xué)報(bào),2017,25(6):1294-1299.

SI Huazhe,LIU Hanlu,NAN Weixiao,et al.Effects of Different Lactic Acid Bacteria on Fermentation Characteristics and Aerobic Stability of Low Moisture Rice Stalk Silage [J].Acta Agrestia Sinica, 2017,25(6):1294-1299.

[29]Prencipe F P,Brighenti V,Rodolfi M,et al.Development of a new high-performance liquid chromatography method with diode array and electrospray ionization-mass spectrometry detection for the metabolite fingerprinting of bioactive compounds in Humulus lupulus L.[J].Journal of Chromatography A,2014,1349:50-59.

[30]Li Y Y,Du S,Sun L,et al.Effects of Lactic Acid Bacteria and Molasses Additives on Dynamic Fermentation Quality and Microbial Community of Native Grass Silage [J].Frontiers in Microbiology, 2022,13:830121.

[31]楊宇為,馬吉鋒,于洋,等.三種馬鈴薯秧飼料在肉牛瘤胃中降解規(guī)律的比較[J].飼料工業(yè),2020,41(11):11-18.

YANG Yuwei,MA Jifeng,YU Yang,et al.Comparison on degradation rule of three kinds of potato vines fodder in rumen of beef cattle [J].Feed Industry, 2020,41(11):11-18.

[32]王挺,宋磊,王旭哲,等.復(fù)合乳酸菌對(duì)番茄皮渣與苜蓿混合青貯發(fā)酵品質(zhì)及瘤胃降解率的影響[J].草業(yè)學(xué)報(bào),2022,31(10):167-177.

WANG Ting,SONG Lei,WANG Xuzhe,et al.Effect of compound Lactobacillus and mixture ratio on fermentation quality and rumen degradability of mixed tomato pomace and alfalfa silage mixed storage [J].Acta Prataculturae Sinica, 2022,31(10):167-177.

[33]牟怡曉,林語(yǔ)梵,張桂杰.不可消化中性洗滌纖維在反芻動(dòng)物生產(chǎn)中的應(yīng)用及研究進(jìn)展[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2020,32(11):5069-5074.

MU Yixiao,LIN Yufan,ZHANG Guijie.Application and Research Progress of Indigestible Neutral Detergent Fiber in Ruminant Production [J].Chinese Journal of Animal Nutrition,2020,32(11):5069-5074.

[34]渠暉,沈益新.甜高粱用作青貯作物的潛力評(píng)價(jià)[J].草地學(xué)報(bào),2011,19(5):808-812.

QU Hui,SHEN Yixin.Evaluation the Potential of Sweet Sorghum Grown for Silage Crop [J].Acta Agrestia Sinica,2011,19(5):808-812.

[35]Comino L,Tabacco E,Righi F,et al.Effects of an inoculant containing a Lactobacillus buchneri that produces ferulate-esterase on fermentation products,aerobic stability,and fibre digestibility of maize silage harvested at different stages of maturity [J].Animal Feed Science and Technology,2014,198:94-106.

[36]魏晨,游偉,譚秀文,等.薰衣草秸稈和薰衣草秸稈青貯的瘤胃降解規(guī)律比較[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2018,30(7):2799-2806.

WEI Chen,YOU Wei,TAN Xiuwen,et al.Comparison on Rule of Rumen Degradation between Lavender Straw and Lavender Straw Silage [J].Chinese Journal of Animal Nutrition, 2018,30(7):2799-2806.

Effects of molasses and Lactobacillus plantarum on silage quality,microbial quantity and rumen degradation rate of hop branches and leaves

XIAN Ouyang1,LI Xiao1,2,CHEN Yongcheng1,WANG Ting1,3,WANG Xuze1,ZHANG Fanfan1,MA Chunhui1

(1. College of Animal Science and Technology,Shihezi University,Shihezi Xinjiang 832000,China; 2.Animal Husbandry General Station of Yili Prefecture,Yining? Xinjiang 835000,China; 3.Weiling Trading Co.,Ltd.,Hengyang Hunan 421000,China)

Abstract:【Objective】 Effects of molasses and Lactobacillus plantarum on silage quality,microbial quantity and rumen degradation rate of hop branches and leaves.

【Methods】? In this experiment,hop branches and leaves were used as raw materials to study the effects of adding molasses and Lactobacillus plantarum on fermentation characteristics of hop branches and leaves silage and rumen degradation rate of sheep.The treatments were no additive treatment(CK treatment),5% molasses(Molasses,M0 treatment),5% molasses+105 CFU/g FM Lactobacillus plantarum combination(Molasses and Lactobacillus plantarum,M1 treatment).After 90 days of storage at room temperature(19-23℃),the sensory quality was evaluated,the silage quality and microbial quantity were analyzed,and after that,the rumen degradation rate was determined.

【Results】 (1) The sensory quality evaluation of M0 and M1 treatments was better than that of the control treatment.The DM of M1 treatment was significantly higher than that of CK and M0 treatments(P<0.05).The CP of M1 treatment was significantly higher than that of CK treatment(P<0.05).The NDF of M1 treatment was significantly lower than that of CK and M0 treatments(P<0.05).The ADF of M0 and M1 treatments was significantly lower than that of CK treatment(P<0.05).The LA of M1 treatment was significantly higher than that of CK and M0 treatments(P<0.05).The AA of M1 treatment was significantly higher than that of CK treatment(P<0.05).The pH and NH3-N / TN of M0 and M1 treatments were significantly lower than those of CK treatment(P<0.05).(2) The lactic acid bacteria of M1 treatment was significantly higher than that of CK and M0 treatment(P<0.05),and the yeast of M0 and M1 treatment was significantly lower than that of CK treatment(P<0.05).(3) At 12 h of rumen degradation,there was no significant difference in DMD among the treatments.The OMD,ADFD and NDFD of M0 and M1 treatments were significantly higher than those of CK treatment(P<0.05).At 24 h of rumen degradation,DMD of M1 treatment was significantly higher than that of CK treatment,OMD,ADFD and NDFD of M0 and M1 treatments were significantly higher than those of CK treatment(P<0.05).At 48 h of rumen degradation,DMD and ADFD of M1 treatment were significantly higher than those of CK and M0 treatments(P<0.05),OMD and DNFD of M0 and M1 treatments were significantly higher than those of CK treatment(P<0.05).

【Conclusion】? Molasses and Lactobacillus plantarum plays a good synergistic effect in the fermentation of hop branches and leaves silage,can effectively improve the quality of silage,inhibit the growth of harmful microorganisms during hop branches and leaves silage,and promote the activity of rumen microorganisms.

Key words:hop branches and leaves; Lactobacillus plantarum; silage; fermentation quality; rumen degradation rate

Fund projects:Ministry of Agriculture and Rural Affairs:China Agriculture Research System(CARS); High-Quality Forage Industry Technology System Project of Xinjiang Uygur Autonomous Region(2022XJSC-Z-02); Innovation Environment(Talent,Base) Construction Project of Xinjiang Uygur Autonomous Region(2021D14008); Moderate Scale Beef Cattle Fattening Technology Integration and Demonstration Promotion Project Changji Prefecture(2021Z02)

Correspondence author: ZHANG Fanfan(1989-),male,from Urumqi,Xinjiang,Ph.D,associate professor,master tutor,research direction:forage production and processing,(E-mail)zhangfanfan@shzu.edu.cn

MA Chunhui(1966-),male,from Hami,Xinjiang,Ph.D,professor,doctoral supervisor,research direction:forage production and processing,(E-mail)chunhuima@126.com