劉春江,黃江輝,陳妍希,尹天樂,項文雨
基于反應(yīng)精餾技術(shù)的乳酸乙酯工藝流程模擬與優(yōu)化
劉春江,黃江輝,陳妍希,尹天樂,項文雨
(天津大學(xué)化工學(xué)院,天津 300350)
提出了一種基于反應(yīng)精餾技術(shù)制備乳酸乙酯的工藝流程.通過原料乙醇過量進料及乙醇脫水預(yù)處理的方法促進反應(yīng)向右進行,提高乳酸乙酯產(chǎn)品的純度;根據(jù)不同的乙醇-水共沸體系分離方法,建立了3種不同的乳酸乙酯工藝流程,即反應(yīng)精餾-變壓精餾(RD-PSD)流程、反應(yīng)精餾-萃取精餾(RD-EX)流程和反應(yīng)精餾-滲透汽化(RD-PV)流程;隨后采用粒子群優(yōu)化算法對各工藝流程進行多參數(shù)優(yōu)化,以最小年總成本(TACmin)為優(yōu)化目標(biāo),優(yōu)化工藝流程參數(shù),并對各流程進行經(jīng)濟和環(huán)境評價.結(jié)果表明:相較于RD-PSD流程和RD-EX流程,RD-PV流程有效降低了工藝投資,是一種極具潛力的節(jié)能低碳的乳酸乙酯工藝流程,較前兩者其TAC分別降低了67.89%和29.33%,全局能量消耗(GEC)分別降低了70.17%和27.85%,CO2排放量(CO2)分別降低了68.36%和25.00%.
乳酸乙酯;反應(yīng)精餾;共沸物;優(yōu)化設(shè)計;滲透汽化;過程強化
反應(yīng)精餾(reactive distillation,RD)是將化學(xué)反應(yīng)和精餾分離耦合于一個設(shè)備中實現(xiàn)的過程強化技術(shù)[1],通過精餾過程將反應(yīng)產(chǎn)物及時地從體系中分離,促進反應(yīng)向右進行,應(yīng)用于受化學(xué)平衡限制的反應(yīng),如酯化反應(yīng)[2-5]、醚化反應(yīng)[6]、酯交換反應(yīng)[7-9]、水解反應(yīng)[10-11]時具有明顯優(yōu)勢.
受常規(guī)反應(yīng)精餾塔結(jié)構(gòu)限制,分離最不利揮發(fā)度序列反應(yīng)物系時,未轉(zhuǎn)化的反應(yīng)物會發(fā)生極端積累現(xiàn)象[12],學(xué)者們已經(jīng)提出了針對此問題的多種應(yīng)對措施,如帶有外部循環(huán)結(jié)構(gòu)的反應(yīng)精餾塔結(jié)構(gòu)[13-16]、多進料策略[17]、過量進料技術(shù)等[18-19].其中過量進料技術(shù)工藝流程簡單,控制方案易行[20],僅需在后續(xù)工藝中分離出過量的反應(yīng)物并循環(huán)利用.
乳酸乙酯(C5H10O3)在常壓下是一種具有特殊水果香味的無色液體.乳酸乙酯的溶劑效率與石油類溶劑相當(dāng),具有來源廣泛、綠色無害、經(jīng)濟可行等特點,是一種具有較大應(yīng)用前景和市場潛力的“綠色溶劑”[21].乳酸乙酯可通過化學(xué)合成方法合成,利用乳酸與乙醇發(fā)生酯化反應(yīng)制備乳酸乙酯[22-23].采用傳統(tǒng)的“反應(yīng)+分離”方法生產(chǎn)乳酸乙酯,乳酸轉(zhuǎn)化率較低,且由于體系中存在乙醇-水共沸物,產(chǎn)物分離過程復(fù)雜,工藝能耗較高,不具有競爭優(yōu)勢[24].
本文采用反應(yīng)精餾技術(shù)提高乳酸轉(zhuǎn)化率,在反應(yīng)精餾塔塔釜直接采出工業(yè)級乳酸乙酯,塔頂采出乙醇水混合物.采用變壓精餾、萃取精餾、滲透汽化3種方式進行乙醇-水分離,提出反應(yīng)精餾-變壓精餾(reactive distillation-pressure swing distillation,RD-PSD)流程、反應(yīng)精餾-萃取精餾(reactive distillation-extractive distillation,RD-EX)流程、反應(yīng)精餾-滲透汽化(reactive distillation-pervaporation,RD-PV)流程,采用粒子群算法對各流程進行多參數(shù)優(yōu)化,并對其經(jīng)濟、環(huán)境進行評價.
原料乳酸(lactic acid,L1)和乙醇(ethanol,EtOH)發(fā)生酯化反應(yīng),生成水(H2O)和乳酸乙酯(ethyl lactate,L1E),體系中的輕組分水和乙醇從反應(yīng)精餾塔塔頂采出,重組分乳酸和乳酸乙酯從塔釜采出.
當(dāng)乳酸溶液質(zhì)量分數(shù)高于20%時,乳酸分子會發(fā)生自聚反應(yīng)[25],此時體系中會存在乳酸二聚物(dilactic acid,L2)、乳酸三聚物(trilactic acid,L3)及其與乙醇的酯化產(chǎn)物(L2E、L3E),是強非理想體系,且常壓下體系中還會形成多種最低共沸物(表1).本文選用UNIFAC模型來描述過程的非理想性[26].
乳酸與乙醇在Amberlyst 15離子交換樹脂的作用下發(fā)生酯化反應(yīng),生成乳酸乙酯和水.體系中發(fā)生的反應(yīng)如下:
表1?常壓下體系中存在的純組分與共沸物
Tab.1 Pure components and azeotropes present in the system at atmospheric pressure
注:括號內(nèi)為質(zhì)量分數(shù).
式(2)為體系中發(fā)生的主反應(yīng),式(3)~(9)為體系中發(fā)生的副反應(yīng).在反應(yīng)體系中只含有微量的L2E、L3E,根據(jù)Dai等[26]的研究可知,式(2)~(4)足以描述該反應(yīng)過程,其他反應(yīng)對系統(tǒng)的影響可以忽略.動力學(xué)參數(shù)如表2[27]所示.
表2?動力學(xué)參數(shù)
Tab.2?Parameters of the kinetics
本文假設(shè)進料乳酸流量為1kmol/h,根據(jù)工業(yè)乳酸濃度確定乳酸原料進料流量,再依據(jù)醇酸比計算所需乙醇原料進料流量.
從反應(yīng)平衡角度考慮,水作為乙醇乳酸酯化反應(yīng)的生成物,應(yīng)盡可能降低其在反應(yīng)體系中的濃度以促進反應(yīng)向右進行,提高乳酸的轉(zhuǎn)化率.根據(jù)是否對乙醇原料進行脫水預(yù)處理,存在兩種可選的工藝流程方案,如圖1所示.
(a)原料乙醇不進行脫水預(yù)處理
(b)原料乙醇進行脫水預(yù)處理
圖1?不同乙醇進料位置工藝流程方案
Fig.1?Processes for different ethanol feed locations
年總成本(total annual cost,TAC)是一種常用的化工設(shè)備經(jīng)濟成本評價方法.反應(yīng)精餾塔的TAC計算需要在傳統(tǒng)精餾塔的基礎(chǔ)上另考慮催化劑費用,其計算公式[28]如下:
式中:OC為操作費用,包括低壓蒸汽、中壓蒸汽、高壓蒸汽和冷凝水的費用,萬元/a;CI為固定投資費用,包括塔殼及內(nèi)件、催化劑費用、換熱器費用,萬元/ a;PR為投資回收期,通常假設(shè)為3a;、、分別為塔高、塔徑和總塔板數(shù);、分別為每塊塔板上的催化樹脂的體積及密度,催化樹脂的價格為5000?元/m3;con、reb分別為冷凝器和再沸器的換熱面積,m2;LP、MP、HP、CW分別為低壓蒸汽、中壓蒸汽、高壓蒸汽和冷凝水每小時的費用,萬元/h.假設(shè)1年工作8000h.
選取全局能量消耗(global enengy consumption,GEC)來評價生產(chǎn)單位產(chǎn)品的能量消耗,計算式[29]為
式中:L、M、H、C分別為低壓蒸汽、中壓蒸汽、高壓蒸汽和冷凝水的熱負荷,kW;為產(chǎn)品流量,kmol/h.
式中:fuel為燃料燃燒釋放的能量,kW;根據(jù)式(19)進行計算;NHV為燃料的凈熱值,kJ/kg;為燃料的碳含量,%;為CO2與C摩爾質(zhì)量之比,取3.67.選用天然氣為燃料,其NHV為51600kJ/kg,為75.4%.
式中:proc和proc分別為蒸汽的潛熱和焓,kJ/kg;proc為工藝流程的再沸器熱負荷,kW;FT為鍋爐火焰的溫度,℃;stack為煙囪溫度,℃;0為環(huán)境溫度,℃.
反應(yīng)精餾流程通常由反應(yīng)精餾塔和后續(xù)分離設(shè)備組成,難以通過單參數(shù)優(yōu)化方法尋找全局最優(yōu)解.因此,本文采用粒子群優(yōu)化算法(圖2),在滿足生產(chǎn)任務(wù)要求的前提下,以最小的年總成本(TACmin)為優(yōu)化目標(biāo),通過改變總塔板數(shù)、進料位置feed、回流比等參數(shù)對乳酸乙酯反應(yīng)精餾工藝流程進行多參數(shù)優(yōu)化.
圖2?精餾塔粒子群優(yōu)化算法流程
反應(yīng)精餾工藝流程的優(yōu)化是典型的混合整數(shù)非線性優(yōu)化過程,且設(shè)備之間存在物質(zhì)能量交換,全流程同時優(yōu)化難以收斂.采用規(guī)定循環(huán)流股組成的方法簡化工藝過程,將序貫優(yōu)化策略用于全流程優(yōu)化.
反應(yīng)精餾塔反應(yīng)段中水含量對酯化反應(yīng)的化學(xué)平衡有重大影響,需要先分析進料乙醇濃度對產(chǎn)品乳酸乙酯純度的影響,以此判斷是否需要對原料乙醇進行脫水預(yù)處理.
(a)反應(yīng)精餾塔總理論板數(shù)??????????(b)乳酸進料位置????????????(c)乙醇進料位置
(d)反應(yīng)段起始位置???????????(e)反應(yīng)段終止位置????????????? (f)回流比
圖3?反應(yīng)精餾塔決策變量分析
Fig.3?Analysis of the decision variables related to the reactive distillation column
表3?反應(yīng)精餾塔決策變量取值范圍
Tab.3 Value range of the decision variables for the reac-tive distillation column
圖4?95%乙醇進料反應(yīng)精餾塔最優(yōu)結(jié)構(gòu)
根據(jù)優(yōu)化結(jié)果可知,原料乙醇在反應(yīng)精餾塔直接進料時,乳酸乙酯產(chǎn)品濃度無法達到乳酸乙酯工業(yè)品標(biāo)準(zhǔn),后續(xù)仍需復(fù)雜的乳酸乙酯產(chǎn)品精制過程.因此,采用對原料乙醇進行脫水預(yù)處理的工藝流程(圖1(b)).
保持如圖4所示的最優(yōu)反應(yīng)精餾塔結(jié)構(gòu),分析乙醇進料濃度對乳酸乙酯產(chǎn)品濃度的影響.由圖5可知,乳酸乙酯產(chǎn)品濃度隨進料乙醇濃度增加而增加,乙醇質(zhì)量分數(shù)高于0.995時,可獲得工業(yè)品標(biāo)準(zhǔn)的乳酸乙酯產(chǎn)品.
圖5?進料乙醇質(zhì)量分數(shù)對乳酸乙酯含量的影響
在表3決策變量的取值范圍內(nèi),以TACmin為優(yōu)化目標(biāo)對99.5%進料乙醇的反應(yīng)精餾塔結(jié)構(gòu)進行粒子群算法優(yōu)化,反應(yīng)精餾塔的參數(shù)優(yōu)化結(jié)果如圖6所示,此時塔釜乳酸乙酯質(zhì)量分數(shù)為0.9826,反應(yīng)精餾塔的TAC為35.87萬元/a.
圖6?99.5%乙醇進料反應(yīng)精餾塔最優(yōu)結(jié)構(gòu)
2.3.1?變壓精餾
變壓精餾是一種常用的共沸物分離方法.圖7為不同壓力下乙醇-水體系的氣液平衡曲線,分別選取101.3kPa和1013.0kPa作為變壓精餾的低壓塔和高壓塔操作壓力,對應(yīng)壓力下共沸物的乙醇質(zhì)量分數(shù)分別為0.955、0.916.
以兩塔塔釜熱負荷之和最小為目標(biāo)[28],確定低壓塔和高壓塔的塔頂采出乙醇質(zhì)量分數(shù)分別為D1=0.949、D2=0.918(圖8).
圖7?乙醇-水體系氣液平衡曲線
圖8 低壓塔和高壓塔塔頂采出濃度對變壓精餾流程再沸器總熱負荷的影響
圖9?變壓精餾流程最優(yōu)結(jié)構(gòu)
(a)低壓塔總理論板數(shù)?????????????????????(b)DIS進料位置
(c)CYC2進料位置?????????????????????(d)高壓塔總理論板數(shù)
(e)原料乙醇進料位置????????????????????? (f)CYC1進料位置
圖10?變壓精餾流程決策變量分析
Fig.10?Analysis of decision variables of the pressure-swing distillation process
表4?變壓精餾決策變量取值范圍
Tab.4 Value range of the decision variable of the pres-sure-swing distillation process
2.3.2?萃取精餾
本文選取乙二醇(ethylene glycol,EG)作為乙醇-水體系分離的萃取劑.萃取精餾流程如圖11所示,萃取塔選取萃取塔總理論板數(shù)EX、DIS進料位置DIS、原料乙醇進料位置EtOH、萃取劑EG進料位置EG、萃取劑用量EG為決策變量,考察決策變量對萃取塔TAC及塔頂采出乙醇質(zhì)量分數(shù)的影響(圖12),并確定各決策變量的范圍(表5);萃取劑回收塔選取萃取劑回收塔總理論板數(shù)RE-EX、萃取塔塔釜采出進料位置EX-BOT、萃取劑回收塔回流比RRRE-EX為決策變量,考察各決策變量對萃取劑回收塔TAC及塔頂采出水質(zhì)量分數(shù)的影響,確定各決策變量的變化范圍(表5).
圖11?萃取精餾流程最優(yōu)結(jié)構(gòu)
(a)萃取塔總理論板數(shù)???????????(b)DIS進料位置????????????(c)乙醇進料位置
(d)萃取劑進料位置????????????(e)萃取劑用量??????????(f)萃取劑回收塔總理論板數(shù)
(g)萃取塔塔釜采出進料位置?????????? (h)萃取劑回收塔回流比
圖12?萃取精餾流程決策變量分析
Fig.12?Analysis of decision variables in the extractive distillation process
表5?萃取精餾決策變量取值范圍
Tab.5 Value range of the decision variable of the extrac-tive distillation process
2.3.3?滲透汽化
本文滲透汽化過程的模型方程由質(zhì)量守恒方程、能量守恒方程及擴散方程構(gòu)成,即
式中:feed、ret、perm分別為進料、滯留側(cè)、滲透側(cè)的流量,mol/h;x,feed、x,ret、x,perm分別為進料、滯留側(cè)、滲透側(cè)各組分的摩爾分數(shù);feed、ret、perm分別為進料、滯留側(cè)、滲透側(cè)的摩爾焓,J/mol;D,j為各組分滲透表觀活化能,kJ/mol;J為各組分的滲透量,kg/(h·m2);1、2、3、4均為指前因子;為除水以外的其他組分.
本文選用Sulzer Chemtech?提供的PERVAP?2201用于滲透汽化過程,膜面積為30m2,模型方程中涉及的參數(shù)見表6[32].
滲透汽化流程如圖13所示,初分塔選取總理論板數(shù)PRE、DIS進料位置DIS、CYC進料位置CYC、回流比PRE為決策變量,考察決策變量對初分塔TAC及塔釜采出乙醇質(zhì)量分數(shù)的影響(圖14),并確定各決策變量的范圍(表7).
表6?滲透汽化模型參數(shù)
Tab.6?Pervaporation model parameters
圖13?滲透汽化流程最優(yōu)結(jié)構(gòu)
(a)初分塔總理論板數(shù)????????????????????(b)DIS進料位置
(c)CYC進料位置???????????????????????(d)回流比
圖14?滲透汽化流程決策變量分析
Fig.14?Analysis of decision variables in the pervaporation process
表7?滲透汽化流程決策變量取值范圍
Tab.7 Value range of the decision variable of the per-vaporation process
在反應(yīng)精餾制備乳酸乙酯的全流程中,反應(yīng)精餾塔塔頂采出流股DIS進入乙醇-水分離單元,乙醇-水分離單元的乙醇采出流股CYCEtOH循環(huán)至反應(yīng)精餾塔.在全流程計算過程中,設(shè)置這兩個流股為撕裂流股.根據(jù)共沸體系分離方法的不同,提出3種不同的工藝流程,分別為RD-PSD流程、RD-EX流程、RD-PV流程,如圖15~圖17所示.
圖15?反應(yīng)精餾-變壓精餾流程
圖16?反應(yīng)精餾-萃取精餾流程
圖17?反應(yīng)精餾-滲透汽化流程
表8?不同工藝流程計算結(jié)果匯總
Tab.8 Summary of calculation results of different proc-esses
本文根據(jù)不同的乙醇-水共沸物分離方法,提出了3種基于反應(yīng)精餾技術(shù)的乳酸乙酯工藝流程.首先,對進料乙醇進行脫水預(yù)處理并確定了最佳進料乙醇質(zhì)量分數(shù);隨后,采用粒子群優(yōu)化算法對各流程進行多參數(shù)優(yōu)化,以最小的年總成本(TACmin)為優(yōu)化目標(biāo),優(yōu)化工藝流程參數(shù);最后,從經(jīng)濟、環(huán)境兩方面對流程進行評價.主要結(jié)論如下.
(1) 采用95%乙醇作為反應(yīng)精餾塔進料時,受反應(yīng)平衡限制,反應(yīng)精餾塔無法直接得到合格的乳酸乙酯產(chǎn)品.計算結(jié)果表明,對原料乙醇進行脫水預(yù)處理,反應(yīng)精餾塔進料乙醇的質(zhì)量分數(shù)高于99.5%時,反應(yīng)精餾塔塔釜可得到合規(guī)產(chǎn)品.
[1] 王曉達,陳?宇,王清蓮,等. 醚化反應(yīng)精餾研究進展[J]. 化工進展,2021,40(4):1797-1811.
Wang Xiaoda,Chen Yu,Wang Qinglian,et al. Review on etherification by reactive distillation[J]. Chemical Industry and Engineering Progress,2021,40(4):1797-1811(in Chinese).
[2] Grisales D V H,Willis M J. Ethyl acetate production from dilute bioethanol with low energy intensity[J]. Journal of Cleaner Production,2022,376:134137.
[3] Wang Z W,Liu R Q,Liu X N. Influence of side reactions and catalytic packing geometry on acrylic acid esterification with butanol by reactive distillation using amberlyst 15[J]. Industrial & Engineering Chemistry Research,2022,61(40):14951-14961.
[4] Patan A K,Thamida S K. Modeling and Simulation of a batch reactive distillation process with column heating[J]. Chemical Engineering & Technology,2021,44(12):2365-2373.
[5] 陳強強. 反應(yīng)精餾法合成苯甲酸異丁酯的工藝研究[J]. 化學(xué)研究,2020,31(5):409-415.
Chen Qiangqiang. Study on synthesis of isobutyl benzoate by reactive distillation[J]. Chemical Research,2020,31(5):409-415(in Chinese).
[6] Gao X,Wang F Z,Li H,et al. Heat-integrated reactive distillation process for TAME synthesis[J]. Separation and Purification Technology,2014,132:468-478.
[7] 宋振興,崔現(xiàn)寶,張?纓,等. 混合離子液體催化反應(yīng)精餾合成乙酸正己酯[J]. 化工學(xué)報,2021,72(8):4155-4165.
Song Zhenxing,Cui Xianbao,Zhang Ying,et al. Synthesis of-hexyl acetatereactive distillation catalyzed by mixed ionic liquids[J]. CIESC Journal,2021,72(8):4155-4165(in Chinese).
[8] Geng X L,Ding Q Y,Na J,et al. Enhanced transesterification reactive distillation for producing isopropanol:From kinetics,pilot-scale experiments,and process design to sustainability evaluation[J]. Separation and Purification Technology,2022,302:122108.
[9] Hu Y Q,Sun H,Li C L,et al. Design of reaction region of reactive dividing wall column based on cross-wall heat transfer[J]. Industrial & Engineering Chemistry Research,2023,62(12):5430-5444.
[10] Si Z H,Chen H,Cong H F,et al. Intensification of methyl acetate hydrolysis process:A novel transformation using steam-driven vapor recompression[J]. Separation and Purification Technology,2022,301:121958.
[11] 吳?妍. 二氧戊環(huán)類化合物水解反應(yīng)動力學(xué)及反應(yīng)精餾新工藝設(shè)計[D]. 天津:天津大學(xué)化工學(xué)院,2020.
Wu Yan. Hydrolysis Reaction Kinetics of Dioxolane Compounds and New Process Design of Reactive Distillation[D]. Tianjin:School of Chemical Engineering and Technology,Tianjin University,2020(in Chinese).
[12] 楊?宇. 雙隔離壁反應(yīng)精餾塔的結(jié)構(gòu)與分析[D]. 北京:北京化工大學(xué)信息科學(xué)與技術(shù)學(xué)院,2021.
Yang Yu. Structure and Analysis of Double-Wall Reactive Distillation Column[D]. Beijing:School of Information Science and Technology,Beijing University of Chemical Technology,2021(in Chinese).
[13] 陳海勝,王騰飛,黃克謹,等. 外部環(huán)流反應(yīng)精餾塔的分散控制方案設(shè)計[J]. 化工學(xué)報,2019,70(2):440-449,790.
Chen Haisheng,Wang Tengfei,Huang Kejin,et al. Decentralized control system designs for reactive distillation columns with external recycle[J]. CIESC Journal,2019,70(2):440-449,790(in Chinese).
[14] 郝陽洋,馬?超,熊小然. 外部環(huán)流強化乙酸丁酯反應(yīng)隔離壁蒸餾塔[J]. 化學(xué)工程,2017,45(12):26-29.
Hao Yangyang,Ma Chao,Xiong Xiaoran. Reactive dividing-wall distillation columns employing an external recycle to strengthen process of transesterification of butyl acetate with ethanol[J]. Chemical Engineering (China),2017,45(12):26-29(in Chinese).
[15] 熊小然,苑?楊,陳海勝,等. 乙酸甲酯外部環(huán)流隔離壁反應(yīng)蒸餾塔的設(shè)計與比較[J]. 現(xiàn)代化工,2017,37(10):148-151.
Xiong Xiaoran,Yuan Yang,Chen Haisheng,et al. Design and comparison of methyl acetate external circulation dividing-wall reactive distillation column[J]. Modern Chemical Industry,2017,37(10):148-151(in Chinese).
[16] 謝沈強. 定量比較雙反應(yīng)段和外部環(huán)流反應(yīng)精餾塔的性能[J]. 化學(xué)工程,2016,44(9):11-17.
Xie Shenqiang. Quantitative comparison of performance of RDC-TRS and RDC-TBER[J]. Chemical Engineer-ing(China),2016,44(9):11-17(in Chinese).
[17] Nicolas M E,Harro V B. Thermodynamic and kinetic considerations for biodiesel production by reactive distillation[J]. Environmental Progress & Sustainable Energy,2013,32(2):373-376.
[18] 朱?超,陳海勝,苑?楊,等. 過量進料反應(yīng)隔離壁蒸餾塔的設(shè)計與比較[J]. 現(xiàn)代化工,2019,39(9):204-207.
Zhu Chao,Chen Haisheng,Yuan Yang,et al. Design and comparison of dividing-wall reactive distillation column with excess feed[J]. Modern Chemical Industry,2019,39(9):204-207(in Chinese).
[19] 孔?倩,陸佳偉,王?瓊,等. 乳酸過量進料反應(yīng)精餾合成乳酸甲酯研究[J]. 高?;瘜W(xué)工程學(xué)報,2021,35(2):280-286.
Kong Qian,Lu Jiawei,Wang Qiong,et al. Study on reactive distillation process for synthesis of methyl lactate with overfeeding[J]. Journal of Chemical Engineering of Chinese Universities,2021,35(2):280-286(in Chinese).
[20] 李海英. 反應(yīng)精餾合成乙酸異丁酯的經(jīng)濟優(yōu)化與動態(tài)控制[D]. 青島:青島科技大學(xué)化工學(xué)院,2019.
Li Haiying. Economic Optimization and Dynamic Control of Reactive Distillation to Produce Isobutyl Acetate[D]. Qingdao:School of Chemical Engineering,Qingdao University of Science and Technology,2019(in Chinese).
[21] Paul S,Pradhan K,Das A R. Ethyl lactate as a green solvent:A promising bio-compatible media for organic synthesis[J]. Current Green Chemistry,2016,3(1):111-118.
[22] Komesu A,Jaimes F J,Rios L F,et al. Evaluation of operational parameters for ethyl lactate production using reactive distillation process[J]. Chemical Engineering Transactions,2015,43:1141-1146.
[23] Ding Q Y,Li H,Liang Z P,et al. Reactive distillation for sustainable synthesis of bio-ethyl lactate:Kinetics,pilot-scale experiments and process analysis[J]. Chemical Engineering Research and Design,2022,179:388-400.
[24] 黃志紅,高?靜,周麗亞,等. 乳酸乙酯合成研究現(xiàn)狀與發(fā)展趨勢[J]. 化工進展,2009,28(1):150-154.
Huang Zhihong,Gao Jing,Zhou Liya,et al. Progress and development trend of ethyl lactate synthesis[J]. Chemical Industry and Engineering Progress,2009,28(1):150-154(in Chinese).
[25] Pereira C S M,Silva V M T,Rodrigues A E. Ethyl lactate as a solvent:Properties,applications and production processes—A review[J]. Green Chemistry,2011,13:2658.
[26] Dai S B,Lee H Y,Chen C L,et al. Design and economic evaluation for the production of ethyl lactate via reactive distillation combined with various separation configurations[J]. Industrial & Engineering Chemistry Research,2019,58(15):6121-6132.
[27] Navinchandra S A,Aspi K K,Dung T V,et al. A kinetic model for the esterification of lactic acid and its oligomers[J]. Industrial & Engineering Chemistry Research,2006,45:5251-5257.
[28] William L L. Distillation Design and Control Using Aspen? Simulation[M]. 2nd ed. Canada:John Wiley & Sons,Inc.,2012.
[29] Liu J Y,Ren J Y,Yang Y L,et al. Effective semicontinuous distillation design for separating normal alkanes via multi-objective optimization and control[J]. Chemical Engineering Research and Design,2021,168:340-356.
[30] 彭?珂. 環(huán)戊烷分離隔壁精餾塔的設(shè)計與優(yōu)化[D]. 大連:大連理工大學(xué)化工學(xué)院,2021.
Peng Ke. Design and Optimization of Divided Wall Distillation Column for the Separation Process of Cyclopen-tane[D]. Dalian:School of Chemical Engineering,Dalian University of Technology,2021(in Chinese).
[31] 郭廉潔. 夾帶劑促進反應(yīng)精餾過程多穩(wěn)態(tài)分析與控制研究[D]. 青島:中國石油大學(xué)(華東),2017.
Guo Lianjie. Multiple Steady-States Analysis and Control in Entrainer-Enhanced Reactive Distillation Process[D]. Qingdao:China University of Petroleum(East China),2017(in Chinese).
[32] Delgado P,Sanz M T,Beltrán S. Pervaporation of the quaternary mixture present during the esterification of lactic acid with ethanol[J]. Journal of Membrane Science,2009,332(1/2):113-120.
Simulation and Optimization of the Ethyl Lactate Synthesis Process Based on Reactive Distillation Technology
Liu Chunjiang,Huang Jianghui,Chen Yanxi,Yin Tianle,Xiang Wenyu
(School of Chemical Engineering and Technology,Tianjin University,Tianjin 300350,China)
This study presents a novel approach for synthesizing ethyl lactate based on reactive distillation technology. This approach employs ethanol dehydration pretreatment and excess raw ethanol feeding to overcome chemical equilibrium limitations,consequently enhancing the purity of ethyl lactate. Three different ethyl lactate processes were developed based on different methods of separating the ethanol-water azeotrope:reactive distillation-pressure swing distillation(RD-PSD)process,reactive distillation-extractive distillation(RD-EX)process,and reactive distillation-pervaporation(RD-PV)process. Particle swarm optimization was employed to optimize the parameters of each process for the minimum total annual cost(TACmin). Subsequent economic and environmental evaluations performed for each process indicate that the RD-PV process is a promising,low-carbon approach for ethyl lactate synthesis that requires lower investment than either the RD-PSD or the RD-EX processes. The adoption of RD-PV reduced the TAC by 67.89% and 29.33%,respectively,as compared to the RD-PSD and RD-EX processes;a reduction of 70.17% and 27.85%,respectively,in the global energy consumption;and a reduction of 68.36% and 25.00%,respectively,in the CO2emissions(CO2).
ethyl lactate;reactive distillation;azeotrope;optimized design;pervaporation;process intensification
TQ028.8
A
0493-2137(2024)04-0382-12
10.11784/tdxbz202302007
2023-02-06;
2023-04-12.
劉春江(1970—??),男,博士,教授,cjliu@tju.edu.cn.
項文雨,xwywenwen@163.com.
天津市自然科學(xué)基金資助項目(21JCQNJC00470).
the Natural Science Foundation of Tianjin,China(No. 21JCQNJC00470).
(責(zé)任編輯:田?軍)