左俊杰,王志剛,薛?亮,張?韌,衛(wèi)海橋,潘家營(yíng)
發(fā)動(dòng)機(jī)進(jìn)氣溫度對(duì)稀薄燃燒穩(wěn)定性影響的可視化研究
左俊杰1, 2,王志剛2,薛?亮2,張?韌1,衛(wèi)海橋1,潘家營(yíng)1
(1. 天津大學(xué)先進(jìn)內(nèi)燃動(dòng)力全國(guó)重點(diǎn)實(shí)驗(yàn)室,天津 300072;2. 廣西玉柴機(jī)器股份有限公司,玉林 537005)
稀薄燃燒穩(wěn)定性是先進(jìn)天然氣發(fā)動(dòng)機(jī)穩(wěn)定高效清潔燃燒的重要指標(biāo).為了進(jìn)一步探索改善天然氣發(fā)動(dòng)機(jī)稀薄燃燒性能的方法,本文基于一臺(tái)高壓縮比單缸光學(xué)發(fā)動(dòng)機(jī),采用高速攝影和瞬態(tài)壓力同步測(cè)量方法,研究了進(jìn)氣溫度對(duì)天然氣發(fā)動(dòng)機(jī)稀薄燃燒特性的影響,量化了火焰發(fā)展演變與發(fā)動(dòng)機(jī)性能之間的關(guān)聯(lián)性.研究表明:提高進(jìn)氣溫度可以提升缸內(nèi)壓力和放熱率峰值,進(jìn)氣溫度從25℃到75℃,峰值壓力從3.71MPa提升至4.49MPa,峰值放熱率從57.17J/(°CA)提升至64.36J/(°CA),并且放熱過(guò)程更為集中,同時(shí)結(jié)合發(fā)動(dòng)機(jī)點(diǎn)火時(shí)刻,可進(jìn)一步實(shí)現(xiàn)燃燒相位優(yōu)化,降低傳熱損失;可視化燃燒圖像顯示,高進(jìn)氣溫度條件下著火延遲期縮短,初始火焰尺寸增大,后期火焰?zhèn)鞑ジ欤畲蠡鹧鎮(zhèn)鞑ニ俣忍嵘良s10.6m/s,同時(shí)火焰前鋒趨于向四周傳播,火焰形態(tài)對(duì)稱性更好.此外,本文創(chuàng)新性地提出了一種基于可視化圖像來(lái)量化的已燃質(zhì)量分?jǐn)?shù)的經(jīng)驗(yàn)準(zhǔn)則來(lái)評(píng)價(jià)初期火焰發(fā)展特性,發(fā)現(xiàn)提升進(jìn)氣溫度主要影響早期火焰發(fā)展規(guī)律,高進(jìn)氣溫度下早期火焰循環(huán)變化系數(shù)從18.12%降低至7.86%,并且該持續(xù)期平均值從13.03°CA降低到了9.25°CA,從而減小了后期燃燒過(guò)程的差異,這是天然氣發(fā)動(dòng)機(jī)稀薄燃燒穩(wěn)定性改善的主要原因.
稀薄燃燒;光學(xué)發(fā)動(dòng)機(jī);進(jìn)氣溫度;早期火焰發(fā)展;循環(huán)變動(dòng)
近年來(lái),大量化石能源消耗導(dǎo)致能源危機(jī)日益加重.天然氣作為最具潛力的低碳燃料,具有儲(chǔ)量大、熱值高以及安全性能好等優(yōu)點(diǎn),逐漸成為發(fā)動(dòng)機(jī)替代燃料的首選[1].天然氣主要成分為甲烷,碳?xì)浔雀?,無(wú)碳碳雙鍵;相比于傳統(tǒng)汽油機(jī),天然氣發(fā)動(dòng)機(jī)在釋放相同熱量的同時(shí)可減少30%的CO2排放[2].此外,甲烷辛烷值高(RON=126)、抗爆性好,適用于高壓縮比運(yùn)行[3-4].研究表明,天然氣發(fā)動(dòng)機(jī)采用稀燃技術(shù)后可大幅改善其經(jīng)濟(jì)性、熱效率和排放性[5].然而,由于甲烷分子結(jié)構(gòu)穩(wěn)定,發(fā)動(dòng)機(jī)采用稀薄燃燒后面臨著火困難、循環(huán)變動(dòng)大、后燃嚴(yán)重等問(wèn)題,影響發(fā)動(dòng)機(jī)的經(jīng)濟(jì)性和可靠性[6].
為解決上述問(wèn)題,以往研究大多關(guān)注于改善發(fā)動(dòng)機(jī)火焰?zhèn)鞑ヌ匦裕瓺i等[7]基于點(diǎn)燃式發(fā)動(dòng)機(jī)研究了摻氫對(duì)燃燒性能的影響,發(fā)現(xiàn)隨著摻氫量的增加,天然氣發(fā)動(dòng)機(jī)燃燒持續(xù)期縮短、熱效率提高,可能的原因是氫氣加快了燃燒反應(yīng)速率.Li等[8]通過(guò)可變渦流控制閥強(qiáng)化缸內(nèi)湍流,顯著提升了火焰?zhèn)鞑ニ俣?,改善了發(fā)動(dòng)機(jī)燃燒穩(wěn)定性,進(jìn)而提升了熱效率. Catapano等[9]和Di等[10]在光學(xué)發(fā)動(dòng)機(jī)上研究了燃料組分對(duì)燃燒性能的影響,發(fā)現(xiàn)火焰?zhèn)鞑ピ娇?,發(fā)動(dòng)機(jī)燃燒越穩(wěn)定、熱效率越高.上述研究證實(shí)了增強(qiáng)湍流和燃料改質(zhì)對(duì)天然氣發(fā)動(dòng)機(jī)火焰?zhèn)鞑ズ头€(wěn)定燃燒的促進(jìn)作用.
稀燃條件下發(fā)動(dòng)機(jī)燃燒穩(wěn)定性對(duì)關(guān)鍵參數(shù)更加敏感[11].Hung等[12]和Chen等[13]研究了兩種進(jìn)氣渦流條件下發(fā)動(dòng)機(jī)燃燒試驗(yàn),發(fā)現(xiàn)在循環(huán)變化較大的工況下,早期著火過(guò)程對(duì)燃燒穩(wěn)定性的影響更為關(guān)鍵.基于高壓縮比光學(xué)發(fā)動(dòng)機(jī),Chen等[14]研究了不同點(diǎn)火能量對(duì)天然氣燃燒性能的影響,發(fā)現(xiàn)提高點(diǎn)火能量可實(shí)現(xiàn)更穩(wěn)定的初始火核,進(jìn)而提升了燃燒穩(wěn)定性和熱效率.然而,提高點(diǎn)火能量往往會(huì)影響火花塞壽?命[15]. Pan等[16]基于單缸機(jī)性能試驗(yàn)發(fā)現(xiàn),提升進(jìn)氣溫度可加快燃燒速率,縮短滯燃期.Klimstra等[17]研究了稀燃條件下進(jìn)氣歧管溫度對(duì)渦輪增壓發(fā)動(dòng)機(jī)性能的影響,發(fā)現(xiàn)提升進(jìn)氣溫度可以降低失火率、擴(kuò)展稀燃極限.上述研究揭示了燃燒邊界條件對(duì)天然氣發(fā)動(dòng)機(jī)的重要影響,但是受限于熱力學(xué)發(fā)動(dòng)機(jī)性能試驗(yàn),關(guān)于進(jìn)氣溫度對(duì)天然氣發(fā)動(dòng)機(jī)燃燒穩(wěn)定性的影響機(jī)制尚不明確.
針對(duì)上述問(wèn)題,本文基于高壓縮比光學(xué)發(fā)動(dòng)機(jī)試驗(yàn)平臺(tái),采用缸內(nèi)壓力和高速攝影同步測(cè)量方法,研究了稀燃條件下進(jìn)氣溫度對(duì)天然氣發(fā)動(dòng)機(jī)燃燒穩(wěn)定性的影響,深入揭示了熱力學(xué)邊界條件對(duì)天然氣發(fā)動(dòng)機(jī)燃燒穩(wěn)定性的作用機(jī)制,研究結(jié)果對(duì)于天然氣發(fā)動(dòng)機(jī)穩(wěn)定高效清潔燃燒具有重要指導(dǎo)意義.
試驗(yàn)機(jī)是一臺(tái)由General Motor 2.0T原型機(jī)改裝而成的單缸光學(xué)發(fā)動(dòng)機(jī),發(fā)動(dòng)機(jī)主要參數(shù)如表1所示.其中,發(fā)動(dòng)機(jī)壓縮比為13∶1,發(fā)動(dòng)機(jī)排量0.64L,無(wú)氣門(mén)重疊角.
表1?光學(xué)發(fā)動(dòng)機(jī)參數(shù)
Tab.1?Optical engine specifications
(a)光學(xué)發(fā)動(dòng)機(jī)示意
(b)缸蓋示意
圖1?光學(xué)發(fā)動(dòng)機(jī)及缸蓋示意
Fig.1?Schematic of the optical engine and engine head
試驗(yàn)時(shí),發(fā)動(dòng)機(jī)由一臺(tái)小功率直流電力測(cè)功機(jī)(DZDC-20S)倒拖,發(fā)動(dòng)機(jī)轉(zhuǎn)速保持在(800±5)r/min. 發(fā)動(dòng)機(jī)采用氣道噴射方式,噴射時(shí)刻為壓縮上止點(diǎn)前300°CA,此時(shí)可以實(shí)現(xiàn)缸內(nèi)均質(zhì)燃燒狀態(tài).為精確控制過(guò)量空氣系數(shù)(),通過(guò)Bosch寬域后氧傳感器進(jìn)行閉環(huán)控制,測(cè)量分辨率0.1%,響應(yīng)時(shí)間0.15s. 通過(guò)調(diào)節(jié)噴射脈寬,使過(guò)量空氣系數(shù)保持在1.1左右.進(jìn)氣溫度由一臺(tái)GD-3型管式空氣加熱器調(diào)節(jié)并維持,精度為0.1℃.本文對(duì)比研究了3種進(jìn)氣溫度,分別是25℃、55℃和70℃.采用壓電晶體缸壓傳感器(Kistler 6125A)進(jìn)行燃燒壓力在線測(cè)量,然后利用電荷放大器(Kistler 5018)和采集卡進(jìn)行數(shù)據(jù)采集,采集精度0.1MPa.壁面溫度對(duì)發(fā)動(dòng)機(jī)燃燒性能有重要影響,因此在缸蓋配備了熱電偶溫度傳感器,測(cè)量精度±0.1℃.當(dāng)發(fā)動(dòng)機(jī)壁面溫度處于95~100℃之間時(shí)進(jìn)行缸壓和圖像采集.為便于分析,本研究中采用甲烷代替天然氣.
采用Photro SA-Z高速攝影機(jī),拍攝速度為5000幀/s,分辨率為512×512,可以保證較好的曝光率和清晰度.考慮光學(xué)發(fā)動(dòng)機(jī)的結(jié)構(gòu)強(qiáng)度,每個(gè)工況連續(xù)拍攝和采集50個(gè)燃燒循環(huán),同時(shí)對(duì)光學(xué)視窗進(jìn)行及時(shí)清理.采用光電編碼器來(lái)標(biāo)識(shí)曲軸轉(zhuǎn)角信號(hào),實(shí)現(xiàn)對(duì)光學(xué)系統(tǒng)和缸壓系統(tǒng)的同步觸發(fā).試驗(yàn)中所用的采集設(shè)備的分辨率和測(cè)試誤差如表2所示.
表2?測(cè)試設(shè)備的分辨率和測(cè)量精度
Tab.2 Resolutions and uncertainties of measurement equip-ment
為了深入解析發(fā)動(dòng)機(jī)燃燒過(guò)程,采用瞬態(tài)壓力和高速攝影相結(jié)合的方法同步分析研究結(jié)果.為了量化火焰發(fā)展特性,可視化圖像采用MATLAB程序進(jìn)行后處理.基本步驟主要包括圖像二值化處理、火焰面積識(shí)別以及火焰半徑擬合,如圖2所示.首先,基于讀取的火焰圖像得到像素矩陣,然后對(duì)火焰圖像進(jìn)行數(shù)學(xué)處理,通過(guò)定義燃燒室區(qū)域,過(guò)濾噪聲或反射等干擾信號(hào).需要說(shuō)明的是,可以采集著火前10幅背景圖像作為參考基準(zhǔn),增強(qiáng)對(duì)比度.然后,利用“binarizing-thresholding”技術(shù)對(duì)RGB圖像進(jìn)行二值化處理,從而確定火焰基本特性.該技術(shù)根據(jù)亮度對(duì)像素點(diǎn)進(jìn)行劃分,當(dāng)像素點(diǎn)強(qiáng)度大于(小于)某閾值時(shí)則被定義為未燃(已燃)區(qū)域.最后,將處理得到的二值圖像及其矩陣求和,并以此來(lái)表征火焰面積大小,同時(shí)將火焰面積等效為一個(gè)擬合圓;根據(jù)火焰面積計(jì)算火焰半徑,最終獲得燃燒室燃燒火焰基本規(guī)律.
(a)原始圖像???(b)二值化圖像???(c)火焰擬合圓
圖2?火焰圖像邊界和半徑的提取方法
Fig.2 Procedure for extracting the boundary and radius of flame images
圖3給出了3種進(jìn)氣溫度條件下的缸內(nèi)壓力和瞬時(shí)放熱率變化,點(diǎn)火時(shí)刻均為上止點(diǎn)前18°CA,過(guò)量空氣系數(shù)為1.1.可以看到,隨著進(jìn)氣溫度的增加,缸內(nèi)最大爆發(fā)壓力不斷提升,3種進(jìn)氣溫度的壓力峰值分別達(dá)到3.71MPa、4.15MPa和4.49MPa.同時(shí),缸內(nèi)最大爆發(fā)壓力所對(duì)應(yīng)的曲軸轉(zhuǎn)角不斷提前,這說(shuō)明提升進(jìn)氣溫度可以有效改善稀薄燃燒性能.對(duì)于瞬時(shí)放熱率而言,其隨進(jìn)氣溫度的變化規(guī)律與缸內(nèi)壓力相似,隨著進(jìn)氣溫度的升高,放熱率峰值也顯著提升,同時(shí)放熱更為集中,放熱率峰值所對(duì)應(yīng)的時(shí)刻也明顯提前.由此可見(jiàn),進(jìn)氣溫度的提升使得天然氣稀薄燃燒加快、燃燒相位提前.
圖3?不同進(jìn)氣溫度下的缸內(nèi)壓力與放熱率
(a)指示熱效率
(b)COVIMEP
圖4?進(jìn)氣溫度對(duì)燃燒性能的影響
Fig.4 Effects of intake temperature on combustion per-formance
為了更加直觀地討論進(jìn)氣溫度的影響,圖5給出了不同進(jìn)氣溫度條件下的著火和火焰?zhèn)鞑ミ^(guò)程,每個(gè)進(jìn)氣溫度工況均選取最佳點(diǎn)火時(shí)刻.可以看到,當(dāng)進(jìn)氣溫度為25℃時(shí),從火花塞跳火后直到3.84°CA時(shí)才能看到明顯的火核;而在進(jìn)氣溫度為55℃和70℃時(shí),在1.92°CA時(shí)就可以清楚看到火焰核心的形成.同時(shí),進(jìn)氣溫度為70℃時(shí),火焰核心的亮度和尺寸均大于進(jìn)氣溫度55℃工況.不同進(jìn)氣溫度條件下,火焰發(fā)展也有明顯的差異.在點(diǎn)火時(shí)刻之后大約9.60°CA,進(jìn)氣溫度70℃工況下火焰已經(jīng)達(dá)到光學(xué)視窗的邊緣,而進(jìn)氣溫度為25℃工況下的火焰僅圍繞在火花塞周圍.此外,3種進(jìn)氣溫度工況條件下的火焰亮度和火焰形態(tài)也不盡相同.在進(jìn)氣溫度25℃時(shí),火焰亮度較暗,火焰邊緣也較為平滑;進(jìn)氣溫度為55℃時(shí),火焰亮度有所提升,火焰邊緣更加褶皺;進(jìn)一步提升進(jìn)氣溫度至70℃時(shí),火焰亮度進(jìn)一步增強(qiáng),火焰邊緣也更加褶皺.根據(jù)文獻(xiàn)[18]可知,火焰邊緣越褶皺,湍流火焰作用越強(qiáng)、火焰?zhèn)鞑ニ俣仍娇欤纱丝梢?jiàn),提升進(jìn)氣溫度可明顯促進(jìn)天然氣稀薄燃燒性能,改善發(fā)動(dòng)機(jī)初始火核形成和火焰?zhèn)鞑ィ硗?,在進(jìn)氣溫度為25℃時(shí),在火焰發(fā)展過(guò)程中存在明顯的形態(tài)不對(duì)稱性,火焰更傾向于向上傳播,可能的原因是排氣門(mén)附近周圍混合氣具有相對(duì)較高的環(huán)境溫度.隨著進(jìn)氣溫度的升高,上述燃燒趨勢(shì)得到了相應(yīng)改善;當(dāng)進(jìn)氣溫度為70℃時(shí),火焰?zhèn)鞑シ较蜈呌谙蛩闹馨l(fā)展,并呈現(xiàn)出明顯的對(duì)稱性分布,反映出稀薄燃燒穩(wěn)定性得到了顯著改善.
為了量化進(jìn)氣溫度對(duì)稀薄燃燒過(guò)程的影響,圖6給出了不同進(jìn)氣溫度條件下平均火焰半徑和對(duì)應(yīng)的火焰?zhèn)鞑ニ俣入S時(shí)間的變化.其中,平均火焰半徑是根據(jù)圖5中所對(duì)應(yīng)50個(gè)循環(huán)的可視化圖像獲得的平均值,火焰速度則是火焰半徑曲線的1階導(dǎo)數(shù),然后進(jìn)行平滑處理所得.需要說(shuō)明的是,因該發(fā)動(dòng)機(jī)光學(xué)視窗半徑為31mm,一旦火焰到達(dá)該邊界將無(wú)法獲得準(zhǔn)確的火焰?zhèn)鞑D像.
可以看到,隨著進(jìn)氣溫度的提升,火焰核心形成時(shí)間明顯縮短.當(dāng)進(jìn)氣溫度為55℃和70℃時(shí),火花塞跳火到火焰核心形成之間幾乎沒(méi)有著火延遲,同時(shí)在整個(gè)火焰?zhèn)鞑ミ^(guò)程中,進(jìn)氣溫度的提升也對(duì)應(yīng)著更大的火焰面積.而對(duì)于火焰速度而言,不同進(jìn)氣溫度下燃燒早期階段(即點(diǎn)火后0°CA~5°CA)的火焰速度呈現(xiàn)出較大的差異,而隨著進(jìn)氣溫度的提升,同一時(shí)刻的火焰速度也隨之增加;在點(diǎn)火后5°CA~10°CA階段,進(jìn)氣溫度55℃與70℃條件下的火焰速度差距縮小,二者與25℃條件下的火焰速度差距更加明顯.在進(jìn)氣溫度為25℃時(shí),火焰速度在約12.48°CA附近達(dá)到最大值9.3m/s;在進(jìn)氣溫度55℃時(shí),火焰速度約在11.52°CA附近達(dá)到最大值10.2m/s;在70℃時(shí),火焰速度約在10.56°CA附近達(dá)到最大值10.6m/s.由此可見(jiàn),提高進(jìn)氣溫度可以縮短著火延遲,同時(shí)也促進(jìn)火焰?zhèn)鞑ィ枰f(shuō)明的是,由于光學(xué)窗口的限制,半徑大于31mm的燃燒區(qū)域被覆蓋,其數(shù)值沒(méi)有直接的相關(guān)性.
(a)3種進(jìn)氣溫度下的平均火焰半徑
(b)3種進(jìn)氣溫度下的火焰?zhèn)鞑ニ俣?/p>
圖6?不同進(jìn)氣溫度條件下的火焰半徑及火焰?zhèn)鞑ニ俣?/p>
Fig.6 Flame radius and flame propagation speed under different intake temperatures
如前文所述,提升進(jìn)氣溫度對(duì)天然氣發(fā)動(dòng)機(jī)火焰核心形成和火焰發(fā)展具有重要的影響,但稀燃條件下燃燒過(guò)程的改善對(duì)發(fā)動(dòng)機(jī)燃燒穩(wěn)定性的深層次影響機(jī)制尚不清楚.為了揭示瞬態(tài)燃燒放熱與可視化火焰圖像之間的相關(guān)性,圖7進(jìn)一步給出了火焰半徑與已燃質(zhì)量分?jǐn)?shù)(burned mass fraction,BMF)的關(guān)系. 可以看到,已燃質(zhì)量分?jǐn)?shù)與初始火焰核心半徑之間呈現(xiàn)很好的正相關(guān)性,隨著已燃質(zhì)量分?jǐn)?shù)的增加,火焰核心半徑單調(diào)增加.根據(jù)文獻(xiàn)[19],初始火焰核心形成(也就是已燃質(zhì)量分?jǐn)?shù)0~5%)和早期火焰發(fā)展的循環(huán)變化,往往是造成發(fā)動(dòng)機(jī)燃燒不穩(wěn)定(即圖4中IMEP循環(huán)變化)的主要原因.在本試驗(yàn)中,當(dāng)火焰半徑達(dá)到10mm時(shí),已燃質(zhì)量分?jǐn)?shù)在4.3%~7.8%,因此本文中筆者將點(diǎn)火時(shí)刻到火焰半徑達(dá)到10mm所需時(shí)間來(lái)表征早期燃燒.
圖7?已燃質(zhì)量分?jǐn)?shù)與火焰半徑的關(guān)系
圖8顯示了3種進(jìn)氣溫度條件下50個(gè)循環(huán)的早期燃燒階段的離散分布.其中,每個(gè)工況均選自圖4中的最佳點(diǎn)火時(shí)刻.如圖8所示,隨著進(jìn)氣溫度的提升,數(shù)據(jù)點(diǎn)分布的離散度越來(lái)越?。谶M(jìn)氣溫度為25℃時(shí),從點(diǎn)火到火焰半徑達(dá)到10mm階段所需時(shí)間分布在較大的范圍,即10.1°CA~15.8°CA之間,其循環(huán)變化系數(shù)和平均值分別為18.12%和13.03°CA;當(dāng)進(jìn)氣溫度為55℃時(shí),點(diǎn)火到火焰半徑達(dá)到10mm階段所需時(shí)間分布在9.6°CA~13.3°CA之間,其循環(huán)變化系數(shù)和平均值分別為11.25%和11.28°CA;進(jìn)一步提升進(jìn)氣溫度到70℃時(shí),此時(shí)數(shù)據(jù)點(diǎn)分布范圍最小,在7.9°CA~10.8°CA之間,循環(huán)變化系數(shù)和平均值分別為7.86%和9.25°CA.進(jìn)一步結(jié)合圖4(b),可以發(fā)現(xiàn)快速的早期燃燒(即點(diǎn)火時(shí)刻到火焰半徑達(dá)到10mm階段)可帶來(lái)更加穩(wěn)定的稀薄燃燒性能,從而提升熱效率.因此,提升進(jìn)氣溫度可以促進(jìn)早期火焰發(fā)展,從而改善天然氣發(fā)動(dòng)機(jī)稀薄燃燒穩(wěn)定性.
圖8?不同進(jìn)氣溫度下早期燃燒階段的循環(huán)變動(dòng)
(1) 在天然氣稀薄燃燒條件下,提高進(jìn)氣溫度可以明顯提高發(fā)動(dòng)機(jī)燃燒穩(wěn)定性,提高發(fā)動(dòng)機(jī)的熱效率.相同點(diǎn)火時(shí)刻時(shí),提高進(jìn)氣溫度可以提升缸內(nèi)壓力峰值,加快燃燒速率,使放熱更為集中.對(duì)于最佳點(diǎn)火時(shí)刻來(lái)說(shuō),提升進(jìn)氣溫度可以使點(diǎn)火相位推遲,優(yōu)化燃燒相位,從而降低高壓縮比下爆震傾向.
(2) 可視化燃燒圖像表明,提升進(jìn)氣溫度可促進(jìn)稀薄燃燒條件下天然氣著火過(guò)程,隨著進(jìn)氣溫度的升高,火焰核心形成時(shí)間提前,火焰尺寸增大,從而縮短了著火延遲時(shí)間.在火焰?zhèn)鞑ミ^(guò)程中,提升進(jìn)氣溫度對(duì)應(yīng)著更快的火焰?zhèn)鞑?,同時(shí)火焰前鋒趨于向四周傳播,火焰形態(tài)呈現(xiàn)更好的對(duì)稱性,有助于天然氣稀薄混合氣充分燃燒.
(3) 結(jié)合瞬態(tài)壓力和可視化圖像發(fā)現(xiàn),在天然氣稀薄燃燒條件下,通過(guò)提升進(jìn)氣溫度改善發(fā)動(dòng)機(jī)燃燒穩(wěn)定性的主要原因在于早期火焰發(fā)展.進(jìn)氣溫度的提升可以縮短早期火焰發(fā)展階段所需時(shí)間,同時(shí)降低該階段的循環(huán)變化,進(jìn)而在宏觀上減小了后期湍流燃燒過(guò)程的差異,最終降低IMEP循環(huán)變化系數(shù),同時(shí)提升發(fā)動(dòng)機(jī)熱效率.
[1] 李?劍,佘源琦,高?陽(yáng),等. 中國(guó)天然氣產(chǎn)業(yè)發(fā)展形勢(shì)與前景[J]. 天然氣工業(yè),2020,40(4):133-142.
Li Jian,She Yuanqi,Gao Yang,et al. Natural gas industry in China:Development situation and pros-pect[J]. Natural Gas Industry,2020,40(4):133-142(in Chinese).
[2] Collier K,Mulligan N,Shin D,et al. Emission results from the new development of a dedicated hydrogen-enriched natural gas heavy duty engine[C]//SAE Techni-cal Paper. Detroit,USA,2005:2005-01-0235.
[3] Pourkhesalian A M,Shamekhi A H,Salimi F. Alterna-tive fuel and gasoline in an SI engine:A comparative study of performance and emissions characteristics[J]. Fuel,2010,89:1056-1063.
[4] Aslam M U,Masjuki H H,Kalam M A,et al. An experimental investigation of CNG as an alternative fuel for a retrofitted gasoline vehicle[J]. Fuel,2006,85:717-724.
[5] 中國(guó)天然氣發(fā)展報(bào)告(2020)[M]. 北京:石油工業(yè)出版社,2020.
China Natural Gas Development Report(2020)[M]. Bei-jing:Petroleum Industry Press,2020(in Chinese).
[6] 劉津津,丁順良,高建設(shè),等. 低負(fù)荷工況下天然氣發(fā)動(dòng)機(jī)燃燒不穩(wěn)定性分析[J]. 內(nèi)燃機(jī)學(xué)報(bào),2022,40(5):394-402.
Liu Jinjin,Ding Shunliang,Gao Jianshe,et al. Analy-sis of combustion instability for a natural gas engine un-der low load conditions[J]. Transactions of CSICE,2022,40(5):394-402(in Chinese).
[7] Di I S,Sementa P,Vaglieco B M. Analysis of combus-tion of methane and hydrogen-methane blends in small DISI(direct injection spark ignition)engine using ad-vanced diagnostics[J]. Energy,2016,108:99-107.
[8] Li Jinguang,Zhang Ren,Yang Penghui,et al. Optical investigations on lean combustion improvement of natu-ral gas engines via turbulence enhancement[J]. Journal of Central South University,2022,29(7):2225-2238.
[9] Catapano F,Di I S,Magno A,et al. A comprehensive analysis of the effect of ethanol,methane and methane-hydrogen blend on the combustion process in a PFI(port fuel injection)engine[J]. Energy,2015,88:101-110.
[10] Di I S,Sementa P,Vaglieco B M. Experimental inves-tigation of a methane-gasoline dual-fuel combustion in a small displacement optical engine[C]//SAE Technical Paper. Detroit,USA,2013:2013-24-0046.
[11] Pera C,Chevillard S,Reveillon J. Effects of residual burnt gas heterogeneity on early flame propagation and on cyclic variability in spark-ignited engines[J]. Com-bustion and Flame,2013,160:1020-1032.
[12] Hung D L S,Chen H,Xu M,et al. Experimental in-vestigation of the variations of early flame development in a spark-ignition direct-injection optical engine[J]. Journal of Engineering for Gas Turbines and Power,2014,136(10):101503.
[13] Chen H,Xu M,Hung D L S,et al. Cycle-to-cycle variation analysis of early flame propagation in engine cylinder using proper orthogonal decomposition[J]. Ex-perimental Thermal and Fluid Science,2014,58:48-55.
[14] Chen L,Wei H Q,Zhang R,et al. Effects of spark plug type and ignition energy on combustion performance in an optical SI engine fueled with methane[J]. Applied Thermal Engineering,2019,148:188-195.
[15] Ma F H,Ding S F,Wang Y,et al. Study on com-bustion behaviors and cycle-by-cycle variations in a tur-bocharged lean burn natural gas S. I. engine with hydro-gen enrichment[J]. International Journal of Hydrogen Energy,2008,33:7245-7255.
[16] Pan J Y,Li N,Wei H Q,et al. Experimental investi-gations on combustion acceleration behavior of meth-ane/gasoline under partial load conditions of SI en-gines[J]. Applied Thermal Engineering,2018,139:432-444.
[17] Klimstra J,Westing J E. Performance of natural-gas-fueled engines with variable intake-manifold tempera-tures [C]//SAE Technical Paper. Detroit,USA,1992:922364.
[18] Chen L,Wei H Q,Zhang R,et al. Effects of late in-jection on lean combustion characteristics of methane in a high compression ratio optical engine[J]. Fuel,2019,255:115718.
[19] Aleiferis P G,Taylor A M K P,Ishii K,et al. The nature of early flame development in a lean-burn strati-fied-charge spark-ignition engine[J]. Combustion and Flame,2004,136:283-302.
Optical Investigation of the Effects of Intake Temperature on Lean-Burning Stability of Engine
Zuo Junjie1,2,Wang Zhigang2,Xue Liang2,Zhang Ren1,Wei Haiqiao1,Pan Jiaying1
(1. State Key Laboratory of Engines,Tianjin University,Tianjin 300072,China;2. Guangxi Yuchai Machinery Group Co.,Ltd.,Yulin 537005,China)
The stability of lean burning is an important indicator of advanced natural gas engines featuring stable,efficient,and clean combustion. A high compression ratio single-cylinder optical engine was used in the experimental research on the effects of intake temperature on the lean-burning characteristics of natural gas engines to improve their lean-burning performance. In-cylinder pressure was measured simultaneously with combustion visualizations,and the correlations between flame development and engine performance were examined. The results indicate that elevating intake temperature can increase the peak value of in-cylinder pressure and heat release rate from 25℃ to 75℃,the peak pressure is increased from 3.71MPa to 4.49MPa,and the peak heat release rate is elevated from 57.17J/(°CA) to 64.36J/(°CA),resulting in a more concentrated heat release and less heat transfer loss. Additionally,combustion phasing can be improved by combining ignition timing. Visualized flame images show that the ignition delay time is reduced,the initial flame size increases at high intake temperatures,and the maximum flame propagation speed has reached approximately 10.6m/s. Moreover,the flame front spreads faster at the later stage and tends to spread around,which presents better flame-shaped symmetry. Furthermore,an empirical criterion for the burned mass fraction is proposed based on the development of initial flame images to examine the initial combustion process. It was found that increasing intake temperature mainly affects the early flame development stage. The coefficient of variation of IMEP during the early flame development decreased from 18.12% to 7.86%,the average value of this stage also decreased from 13.03°CA to 9.25°CA,and the difference in the later combustion process was alleviated,which reflects the improvement in the lean-burning stability of natural gas engines.
lean-burning;optical engine;intake temperature;early flame development;cyclic variation
TK437
A
0493-2137(2024)04-0355-07
10.11784/tdxbz202302004
2023-02-04;
2023-03-15.
左俊杰(1988—??),男,本科,工程師,zuojunjie@yuchai.com.
潘家營(yíng),jypan@tju.edu.cn.
國(guó)家自然科學(xué)基金資助項(xiàng)目(52222604,52076149).
the National Natural Science Foundation of China(No. 52222604,No. 52076149).
(責(zé)任編輯:金順愛(ài))