楊丹丹 沈杰 趙琪 王雍 孫振亮 胡振林
[摘要]皮膚萎縮是外用糖皮質(zhì)激素最常見的副作用之一。外用糖皮質(zhì)激素引起皮膚萎縮的機(jī)制包括:抑制角質(zhì)形成細(xì)胞增殖、加快其分化成熟、抑制表皮脂質(zhì)合成、抑制成纖維細(xì)胞增殖,減少膠原蛋白和透明質(zhì)酸鈉等細(xì)胞外基質(zhì)合成等。近年來,對其副作用的防治主要集中在研發(fā)糖皮質(zhì)激素受體的選擇性調(diào)節(jié)劑、靶向抑制促萎縮基因及相關(guān)的信號通路、聯(lián)合使用其他核受體的激動劑等方面,本文就其研究進(jìn)展綜述如下。
[關(guān)鍵詞]糖皮質(zhì)激素;皮膚萎縮;副作用;選擇性調(diào)節(jié)劑;促萎縮基因;核受體激動劑
[中圖分類號]R322.99? ? [文獻(xiàn)標(biāo)志碼]A? ? [文章編號]1008-6455(2024)01-0181-04
Research Progress on Skin Atrophy Induced by Topical Glucocorticoids and Its Prevention and Treatment
YANG Dandan1,SHEN Jie2,ZHAO Qi1,WANG Yong1,SUN Zhenliang2,HU Zhenlin1
(1.School of Medicine,Shanghai University,Shanghai 200444,China; 2.Central Laboratory,Shanghai Fengxian District Central Hospital,Shanghai 201499,China)
Abstract: Skin atrophy is one of the most prevalent side-effects of topical glucocorticosteroids. The mechanisms involved in topical glucocorticoids-induced skin atrophy include suppressing keratinocyte proliferation, accelerating their maturation, inhibiting the synthesis of epidermal lipids, suppressing fibroblast proliferation, reducing the synthesis of extracellular matrix such as collagen and hyaluronic acid, etc. In recent years, the research on the prevention and treatment of this side-effect mainly focuses on the development of selective modulators of glucocorticoid receptor, targeted inhibition of atrophogenes and related signal pathways, combination with other nuclear receptor agonists.
Key words: glucocorticoids; skin atrophy; side-effect; selective activators/modulators; atrophogenes; nuclear receptor agonist
糖皮質(zhì)激素類藥物(Glucocorticoids, GCs)因其突出的抗炎和免疫抑制活性而被廣泛用于皮膚病治療[1]。外用GCs可引起多種不良反應(yīng),包括皮膚萎縮、易感染、多毛、口周皮炎、激素性痤瘡、接觸性皮炎、激素依賴等,其中以皮膚萎縮最為常見,臨床表現(xiàn)為皮膚變薄、彈性喪失、脆性增加、易撕裂、皮膚透明度增加、毛細(xì)血管擴(kuò)張、瘀傷、紫癜、萎縮紋以及屏障功能障礙等[2]。本文就外用GCs引起皮膚萎縮的病理機(jī)制和防治研究進(jìn)展作一綜述。
1? 外用GCs引起皮膚萎縮的病理機(jī)制
外用GCs對表皮、真皮和皮下組織均有負(fù)面影響,從而導(dǎo)致皮膚全層萎縮。GCs誘導(dǎo)的表皮萎縮早于真皮,一般開始于用藥后的3~14 d,最早變化是表皮細(xì)胞變小和細(xì)胞層數(shù)減少[3]。GCs減慢角質(zhì)形成細(xì)胞增殖而加快其分化成熟。轉(zhuǎn)錄組學(xué)研究發(fā)現(xiàn),GCs抑制角質(zhì)形成細(xì)胞早期分化標(biāo)志基因表達(dá),但促進(jìn)晚期分化標(biāo)志基因表達(dá),表明GCs抑制角質(zhì)形成細(xì)胞早期分化,但加快其終末分化成熟[4]。毛囊表皮干細(xì)胞對GCs的增殖抑制作用更加敏感,GCs治療顯著降低其增殖能力,使其無法參與受損表皮的再生[5]。外用GCs還會減少表皮脂質(zhì)含量,導(dǎo)致表皮滲透性和經(jīng)皮水分散失率增加。皮膚脂質(zhì)組學(xué)研究發(fā)現(xiàn),外用GCs導(dǎo)致表皮脂質(zhì)組成明顯變化,其中長鏈酯酰基神經(jīng)酰胺含量的減幅最大,其次是甘油三酯和游離脂肪酸,外用GCs還導(dǎo)致角質(zhì)形成細(xì)胞脂質(zhì)合成酶的表達(dá)水平降低[6]。
在真皮中,GCs抑制成纖維細(xì)胞增殖,并減少膠原蛋白和彈性蛋白的合成,導(dǎo)致真皮層變薄,皮膚的機(jī)械強(qiáng)度和彈性降低[4]。GCs不僅降低I型膠原COL1A1和COL1A2的表達(dá)水平,還降低透明質(zhì)酸合成酶-2活性,抑制透明質(zhì)酸合成[7]。長期外用GCs還造成彈性蛋白纖維的明顯變化,使真皮淺層彈性蛋白纖維片段化和稀少,而深層的彈性蛋白纖維固縮塌陷,導(dǎo)致皮膚變薄變脆,血管擴(kuò)張,臨床表現(xiàn)為毛細(xì)血管擴(kuò)張、紫癜和萎縮紋,這種病理變化尤其好發(fā)于面部[3]。外用GCs不僅導(dǎo)致表皮和真皮萎縮,還會導(dǎo)致皮下組織包括皮下脂肪脂質(zhì)和肌肉纖維萎縮[8]。
2? GCs所致皮膚萎縮的防治研究
2.1 糖皮質(zhì)激素受體的選擇性調(diào)節(jié)劑:GCs主要通過糖皮質(zhì)激素受體(Glucocorticoid receptor,GR)發(fā)揮作用[1]。GR是核受體超家族成員,為配體激活的轉(zhuǎn)錄因子。非活性形式的GR與伴侶分子熱休克蛋白和免疫親和素結(jié)合形成復(fù)合體,存在于胞質(zhì)中。GCs與GR結(jié)合導(dǎo)致其構(gòu)象改變,與伴侶分子解離,進(jìn)而發(fā)生磷酸化、二聚化,并轉(zhuǎn)移至細(xì)胞核。在核內(nèi),GR對下游靶基因產(chǎn)生兩種調(diào)節(jié)作用,即轉(zhuǎn)錄激活(Transactivation,TA)和轉(zhuǎn)錄抑制(Transrepression,TR)。TA是指配體激活的GR二聚體與靶基因啟動子/增強(qiáng)子區(qū)域的糖皮質(zhì)激素應(yīng)答元件(Glucocoineoide response elements,GRE)結(jié)合,誘導(dǎo)基因轉(zhuǎn)錄。TR是指配體激活的GR單體通過與其他蛋白直接結(jié)合,抑制NF-κB、AP-l、STATs等轉(zhuǎn)錄因子的活性,抑制炎癥因子基因的轉(zhuǎn)錄,從而產(chǎn)生抗炎效應(yīng)。由于GR的TA作用所激活表達(dá)的靶基因主要涉及糖、脂肪和蛋白質(zhì)的分解代謝,因而被認(rèn)為是GCs致萎縮副作用的主要機(jī)制,而TR作用則被認(rèn)為與GCs的抗炎治療效應(yīng)有關(guān)[1]。基于此發(fā)展出了一種新藥研發(fā)的策略,即研發(fā)能夠使GR的TR和TA作用分離的選擇性GR激活/調(diào)節(jié)劑(Selective activators/modulators,SEGRAMs),以達(dá)到在產(chǎn)生抗炎效應(yīng)的同時降低副作用的目的。迄今已發(fā)現(xiàn)多種SEGRAMs在動物體內(nèi)治療指數(shù)明顯優(yōu)于經(jīng)典GCs先導(dǎo)物,有些已進(jìn)入臨床試驗(yàn),如利奧制藥(LEO Pharma)研發(fā)的LEO 134310正在進(jìn)行銀屑病的臨床試驗(yàn),結(jié)果表明其導(dǎo)致皮膚萎縮的副作用非常小[9]。
許多天然化合物具有SEGRAM特性。一些萜烯/萜類化合物,包括黃芪甲苷IV、人參皂苷、β-紫羅蘭酮、β-乳香酸等,均被發(fā)現(xiàn)能與GR結(jié)合并選擇性調(diào)節(jié)其活性。黃芪甲苷IV抑制神經(jīng)炎癥的作用至少部分依賴其選擇性的GR調(diào)控活性,因?yàn)辄S芪甲苷IV能促進(jìn)小膠質(zhì)細(xì)胞GR核轉(zhuǎn)位,并調(diào)節(jié)GR介導(dǎo)的信號通路,包括PI3K、Akt和NF-κB的去磷酸化,減少下游促炎介質(zhì)產(chǎn)生,抑制小膠質(zhì)細(xì)胞激活[10]。人參皂苷Rg1可選擇性激活GR的TR作用,發(fā)揮抗炎效應(yīng),但不影響斑馬魚幼蟲的組織再生,表明Rg1是一種SEGRAM[11]。人參皂苷Rg3能通過促進(jìn)線粒體生物合成和肌管細(xì)胞生長保護(hù)地塞米松誘導(dǎo)的肌肉萎縮[12]。β-紫羅蘭酮可與GR結(jié)合并抑制其磷酸化及其TA活性,減輕GCs抑制人成纖維細(xì)胞合成膠原和透明質(zhì)酸的作用,提示其具有預(yù)防GCs引起的皮膚萎縮的潛力[7]。乳香的藥效成分β-乳香酸可誘導(dǎo)GR核移位,但不激活GRE依賴的熒光素酶報(bào)告基因表達(dá),但抑制TNF-α誘導(dǎo)的NF-κB的轉(zhuǎn)錄激活作用,表明β-乳香酸具有SEGRAM特性[13]。此外,來自朝鮮當(dāng)歸的香豆素類藥效成分紫花前胡素和來自薄荷油的L-檸檬烯也被發(fā)現(xiàn)可誘導(dǎo)GR易位,減輕炎癥反應(yīng),而不引起經(jīng)典GR激動劑的不良反應(yīng),提示紫花前胡素和L-檸檬烯是具有潛在抗炎活性的天然SEGRAMs[14]。但上述天然SEGRAMs對GCs引起的皮膚萎縮是否有保護(hù)作用,尚未有研究報(bào)道。
2.2 靶向抑制促萎縮基因及相關(guān)的信號通路:對外用GCs治療的人和小鼠皮膚中上調(diào)的靶基因進(jìn)行生物信息學(xué)分析,發(fā)現(xiàn)數(shù)十種被GCs共同上調(diào)的差異表達(dá)基因,其中包括多種負(fù)向調(diào)節(jié)Akt/mTOR通路的信號蛋白,如REDD1(Regulated in development and DNA damage 1)和FKBP51(FK506 binding protein 51)[15]。FKBP51和REDD1均通過控制Akt去磷酸化,負(fù)向調(diào)控Akt/mTOR信號的活化[16]。研究發(fā)現(xiàn),REDD1和FKBP51基因敲除動物對GCs誘導(dǎo)的皮膚萎縮更具抵抗力,REDD1或FKBP51的缺失對表皮、真皮和皮下脂肪組織均起保護(hù),并保護(hù)CD34+的毛囊表皮干細(xì)胞免受GCs的負(fù)面影響,表明REDD1和FKBP51作為促萎縮基因在GCs誘導(dǎo)皮膚萎縮中起到關(guān)鍵作用[17]。進(jìn)一步研究發(fā)現(xiàn)多個PI3K/Akt/mTOR通路抑制劑,包括LY294002、Wortmannin、雷帕霉素(RapA)和AZD8055等,能夠抑制GCs誘導(dǎo)的REDD1和FKBP51表達(dá),并對GCs引起的皮膚和肌肉萎縮有保護(hù)作用[15,18-19]。這些PI3K/Akt/mTOR通路抑制劑還具有調(diào)節(jié)GR功能,使其向TR方向偏移的能力,并且能負(fù)向調(diào)節(jié)GR的磷酸化、核轉(zhuǎn)移及其與REDD1/FKBP51基因啟動子的結(jié)合,同時增強(qiáng)GCs對NF-κB的抑制作用以及對促炎細(xì)胞因子表達(dá)的下調(diào)作用[19],表明該類藥物在預(yù)防GCs引起的皮膚萎縮方面有潛在的應(yīng)用前景。
2.3 聯(lián)合使用其他核受體的激動劑:皮膚細(xì)胞除了表達(dá)GR之外,還表達(dá)多種其他的核受體,包括維A酸受體(RARs)、維A酸X受體 (RXRs)、維生素D受體(VDR)、甲狀腺激素受體(TRs)、過氧化物酶體增殖物激活受體(PPARs)、肝X受體(LXRs)、鹽皮質(zhì)激素受體(MR)等。這些受體及相關(guān)的配體在皮膚中均發(fā)揮重要的生物學(xué)作用。
維A酸是RARs和RXRs的配體,該類藥物對各種角化異常性皮膚病、光老化性皮膚病以及多種皮膚腫瘤具有較好的療效[20]。維A酸是最早被發(fā)現(xiàn)能夠預(yù)防GCs誘導(dǎo)的皮膚萎縮而不影響其抗炎活性的藥物[21]。在維A酸和GCs聯(lián)合外用治療銀屑病的臨床試驗(yàn)中,維A酸不會降低外用GCs治療銀屑病的療效,但可改善GCs引起的皮膚萎縮[22]。維A酸改善皮膚萎縮的作用與其激活成纖維細(xì)胞,促進(jìn)膠原蛋白和彈性蛋白合成等作用有關(guān)[23]。
皮膚是人體最大的合成維生素D的器官,維生素D的活性形式1,25-(OH)2D3通過VDR調(diào)節(jié)基因轉(zhuǎn)錄,發(fā)揮廣泛的生物學(xué)效應(yīng)。1,25-(OH)2D3的類似物如鈣泊三醇、他卡西醇等對銀屑病、魚鱗病等皮膚病具有良好的療效[24]。鈣泊三醇與倍他米松聯(lián)合使用是一種有效的尋常型銀屑病治療方法,已被證明可以預(yù)防倍他米松誘導(dǎo)的皮膚萎縮[25]。
甲狀腺素通過皮膚細(xì)胞內(nèi)的TRs參與調(diào)控皮膚穩(wěn)態(tài)[26]。TRs在成纖維細(xì)胞中參與調(diào)控膠原蛋白等細(xì)胞外基質(zhì)的生成。外用甲狀腺激素類似物三碘甲狀腺乙酸可使皮膚組織中的膠原含量明顯升高,從而減少皮膚萎縮的發(fā)生,并可部分逆轉(zhuǎn)GCs誘導(dǎo)的皮膚萎縮[27]。
PPARs是以游離脂肪酸及其代謝產(chǎn)物為內(nèi)源性配體的核受體,LXRs是以各種膽固醇氧化產(chǎn)物為配體的核受體,兩者均參與調(diào)控角質(zhì)形成細(xì)胞增殖、分化、脂質(zhì)代謝和表皮屏障穩(wěn)態(tài)[28]。動物實(shí)驗(yàn)發(fā)現(xiàn)外用PPARs和LXRs的激動劑能夠減輕GCs引起的角質(zhì)形成細(xì)胞增殖和分化抑制,改善皮膚屏障功能,提示激活PPARs和LXRs能緩解GCs引起的皮膚不良作用[29]。
在皮膚細(xì)胞中,GCs不僅與GR結(jié)合,還能與MR結(jié)合。外用GCs可引起MR過度激活,并介導(dǎo)了GCs的副作用,包括皮膚萎縮、老化和傷口愈合延遲。螺內(nèi)酯、依普利酮等MR的拮抗劑可減輕GCs引起的皮膚萎縮[30-31]。具有MR拮抗活性的天然化合物7,3',4'-三羥基異黃酮能改善GCs引起的角質(zhì)形成細(xì)胞分化抑制[32]。上述研究表明,GCs引起的皮膚萎縮由MR和GR共同介導(dǎo),可通過外用MR拮抗劑來預(yù)防。
2.4 其他的防治策略:GCs引起皮膚萎縮和屏障功能障礙的機(jī)制之一是抑制表皮脂質(zhì)的生成,特別是減少神經(jīng)酰胺含量。使用富含神經(jīng)酰胺和不同鏈長FAs的脂質(zhì)混合物可顯著恢復(fù)外用GCs誘導(dǎo)的皮膚屏障功能障礙[33]。外用類肝素也具有防治激素性皮膚萎縮的療效。喜療妥乳膏主要功效成分是類肝素,和GCs聯(lián)合使用可防止GCs誘導(dǎo)的表皮屏障損害和萎縮,可能是由于上調(diào)表皮細(xì)胞增殖分化相關(guān)蛋白核脂質(zhì)合成酶表達(dá)水平[34]。但上述療法還需要進(jìn)行臨床試驗(yàn)以驗(yàn)證其在人體的療效。
3? 小結(jié)
近年來,對外用GCs引起皮膚萎縮的病理機(jī)制和防治研究取得了一定進(jìn)展,但GCs引起皮膚萎縮的發(fā)生機(jī)制仍不明確,防治方法尚在探索之中。目前,提出的防治皮膚萎縮的方法多數(shù)處于臨床前階段,有些方法盡管已在臨床試驗(yàn)中取得了一些成效,仍然需要開展大規(guī)模隨機(jī)雙盲臨床試驗(yàn)證實(shí)其療效和安全性。因此,對于GCs所致的不良反應(yīng)仍需不斷加大研究力度,以尋求一種既能避免GCs副作用,又能發(fā)揮其治療作用的合理用藥方案。
[參考文獻(xiàn)]
[1]Vandewalle J,Luypaert A,De Bosscher K,et al.Therapeutic mechanisms of glucocorticoids[J].Trends Endocrinol Metab,2018,29(1):42-54.
[2]Niculet E,Bobeica C,Tatu A L.Glucocorticoid-induced skin atrophy: The old and the new[J].Clin Cosmet Investig Dermatol,2020,13:1041-1050.
[3]Jung S,Lademann J,Darvin M E,et al.In vivo characterization of structural changes after topical application of glucocorticoids in healthy human skin[J].J Biomed Opt,2017,22(7):76018.
[4]Meszaros K,Patocs A.Glucocorticoids influencing wnt/beta-catenin pathway; multiple sites, heterogeneous effects[J].Molecules,2020,25(7): 1489.
[5]Chebotaev D V,Yemelyanov A Y,Lavker R M,et al.Epithelial cells in the hair follicle bulge do not contribute to epidermal regeneration after glucocorticoid-induced cutaneous atrophy[J].J Invest Dermatol,
2007,127(12):2749-2758.
[6]Ropke M A,Alonso C,Jung S,et al.Effects of glucocorticoids on stratum corneum lipids and function in human skin-a detailed lipidomic analysis[J].J Dermatol Sci,2017,88(3):330-338.
[7]Choi D,Kang W,Park S,et al.Beta-ionone attenuates dexamethasone-induced suppression of collagen and hyaluronic acid synthesis in human dermal fibroblasts [J].Biomolecules,2021,11(5):619.
[8]Britto F A,Cortade F,Belloum Y,et al.Glucocorticoid-dependent redd1 expression reduces muscle metabolism to enable adaptation under energetic stress[J].BMC Biol,2018,16(1):65.
[9]Dack K N,Johnson P S,Henriksson K,et al.Topical 'dual-soft' glucocorticoid receptor agonist for dermatology[J].Bioorg Med Chem Lett,2020,30(17):127402.
[10]Liu H S,Shi H L,Huang F,et al.Astragaloside IV inhibits microglia activation via glucocorticoid receptor mediated signaling pathway[J].Sci Rep,2016,6:19137.
[11]He M,Halima M,Xie Y,et al.Ginsenoside Rg1 acts as a selective glucocorticoid receptor agonist with anti-inflammatory action without affecting tissue regeneration in zebrafish larvae[J].Cells,2020,9(5):1107.
[12]Kim R,Kim J W,Lee S J,et al.Ginsenoside rg3 protects glucocorticoidinduced muscle atrophy in vitro through improving mitochondrial biogenesis and myotube growth[J].Mol Med Rep,2022,25(3):94.
[13]Karra A G,Tziortziou M,Kylindri P,et al.Boswellic acids and their derivatives as potent regulators of glucocorticoid receptor actions[J].Arch Biochem Biophys,2020,695:108656.
[14]Kang C,Kim S,Lee E,et al.Genetically encoded sensor cells for the screening of glucocorticoid receptor (gr) effectors in herbal extracts[J].Biosensors (Basel),2021,11(9):341.
[15]Agarwal S,Mirzoeva S,Readhead B,et al.Pi3k inhibitors protect against glucocorticoid-induced skin atrophy[J].E Bio Med,2019,41:526-537.
[16]Baida G,Bhalla P,Yemelyanov A,et al.Deletion of the glucocorticoid receptor chaperone fkbp51 prevents glucocorticoid-induced skin atrophy[J].Oncotarget,2018,9(78):34772-34783.
[17]Rivera-Gonzalez G C,Klopot A,Sabin K,et al.Regulated in development and DNA damage responses 1 prevents dermal adipocyte differentiation and is required for hair cycle-dependent dermal adipose expansion[J].J Invest Dermatol,2020,140(9):1698-1705,e1691.
[18]Lesovaya E A,Savinkova A V,Morozova O V,et al.A novel approach to safer glucocorticoid receptor-targeted anti-lymphoma therapy via redd1 (regulated in development and DNA damage 1) inhibition[J].Mol Cancer Ther,2020,19(9):1898-1908.
[19]Lesovaya E,Agarwal S,Readhead B,et al.Rapamycin modulates glucocorticoid receptor function, blocks atrophogene redd1, and protects skin from steroid atrophy [J].J Invest Dermatol,2018,138(9):1935-
1944.
[20]Szymanski L,Skopek R,Palusinska M,et al.Retinoic acid and its derivatives in skin[J].Cells,2020,9(12):2660.
[21]Lesnik R H,Mezick J A,Capetola R,et al.Topical all-trans-retinoic acid prevents corticosteroid-induced skin atrophy without abrogating the anti-inflammatory effect[J].J Am Acad? Dermatol,1989,21(2 Pt 1):
186-190.
[22]Mcmichael A J,Griffiths C E,Talwar H S,et al.Concurrent application of tretinoin (retinoic acid) partially protects against corticosteroid-induced epidermal atrophy[J].Br J Dermatol,1996,135(1):60-64.
[23]Zasada M,Budzisz E.Retinoids: Active molecules influencing skin structure formation in cosmetic and dermatological treatments[J].Postepy Dermatol Alergol,2019,36(4):392-397.
[24]Reichrath J,Zouboulis C C,Vogt T,et al.Targeting the vitamin d endocrine system (vdes) for the management of inflammatory and malignant skin diseases: An historical view and outlook[J].Rev Endocr Metab Disord,2016,17(3):405-417.
[25]Kin K C,Hill D,F(xiàn)eldman S R.Calcipotriene and betamethasone dipropionate for the topical treatment of plaque psoriasis[J].Expert Rev Clin Pharmacol,2016,9(6):789-797.
[26]Mancino G,Miro C,Di Cicco E,et al.Thyroid hormone action in epidermal development and homeostasis and its implications in the pathophysiology of the skin [J].J Endocrinol Invest,2021,44(8):1571-1579.
[27]Gunin A G,Golubtsova N N.Thyroid hormone receptors in human skin during aging[J].Adv Gerontol,2018,8(3):216-223.
[28]Minzaghi D,Pavel P,Dubrac S.Xenobiotic receptors and their mates in atopic dermatitis[J].Int J Mol Sci,2019,20(17):4234.
[29]Demerjian M,Choi E H,Man M Q,et al.Activators of ppars and lxr decrease the adverse effects of exogenous glucocorticoids on the epidermis[J].Exp Dermatol,2009,18(7):643-649.
[30]Sevilla L M,Perez P.Roles of the glucocorticoid and mineralocorticoid receptors in skin pathophysiology[J].Int J Mol Sci,2018,19(7):1906.
[31]Perez P.The mineralocorticoid receptor in skin disease[J].Br J
Pharmacol,2022,179(13):3178-3189.
[32]Lee H,Choi E J,Kim E J,et al.A novel mineralocorticoid receptor antagonist, 7,3',4'-trihydroxyisoflavone improves skin barrier function impaired by endogenous or exogenous glucocorticoids[J].Sci Rep,2021,11(1):11920.
[33]Lim S H,Kim E J,Lee C H,et al.A lipid mixture enriched by ceramide np with fatty acids of diverse chain lengths contributes to restore the skin barrier function impaired by topical corticosteroid[J].Skin Pharmacol Physiol,2022,35(2):112-123.
[34]Wen S,Wu J,Ye L,et al.Topical applications of a heparinoid-containing product attenuate glucocorticoid-induced alterations in epidermal permeability barrier in mice[J].Skin Pharmacol Physiol,2021,34(2):86-93.
[收稿日期]2022-06-06
本文引用格式:楊丹丹,沈杰,趙琪,等.外用糖皮質(zhì)激素引起的皮膚萎縮及其防治研究進(jìn)展[J].中國美容醫(yī)學(xué),2024,33(1):181-184.