黃云 黃建超 肖貴堅(jiān) 劉帥 林甌川 劉振揚(yáng)
摘要:當(dāng)前制備的超疏水表面耐磨性能普遍較差,因而其在各領(lǐng)域的應(yīng)用受到限制。研究表明微納結(jié)構(gòu)和低表面能是實(shí)現(xiàn)功能表面超疏水性能的關(guān)鍵因素,因此,首先基于超疏水表面作用機(jī)制,對(duì)超疏水表面織構(gòu)進(jìn)行了歸納,旨在通過(guò)優(yōu)化表面織構(gòu)來(lái)解決微納結(jié)構(gòu)易磨損難題;然后對(duì)超疏水表面加工技術(shù)進(jìn)行了梳理總結(jié),從成本和效率兩個(gè)方面分析了降低表面能的措施,為拓展超疏水表面加工體系提供思路;進(jìn)而詳細(xì)總結(jié)了超疏水表面耐磨性的分析手段,并闡述了提高超疏水表面耐磨性的方法;最后,展望了耐磨性超疏水表面的未來(lái)發(fā)展前景,以期推動(dòng)超疏水表面在工程中的大規(guī)模應(yīng)用。
關(guān)鍵詞:超疏水表面;加工技術(shù);耐磨性;微納結(jié)構(gòu);低表面能
中圖分類號(hào):TB34
DOI:10.3969/j.issn.1004132X.2024.01.001
Research Progresses of Superhydrophobic Surface Processing Technology
and Abrasion Resistance
HUANG Yun HUANG Jianchao XIAO Guijian LIU Shuai LIN Ouchuan LIU Zhenyang
College of Mechanical and Vehicle Engineering,Chongqing University,Chongqing,400044
Abstract: The abrasion resistance of currently prepared superhydrophobic surfaces is generally poor, which limite the applications in various fields. Studied results found that micro-nano structure and low surface energy were the key factors to achieve superhydrophobic properties. Firstly, based on the mechanism of superhydrophobic surface, the superhydrophobic surface texture was summarized, aiming to solve the wear-prone challenge of micro-nano structures by optimizing the surface texture. Secondly, the superhydrophobic surface processing technology was summarized, and measures to reduce surface energy were analyzed in terms of cost and efficiency which might provide ideas for expanding the superhydrophobic surface processing system. Then, the means of analyzing the abrasion resistance of superhydrophobic surfaces were concluded in detail and the methods of improving the abrasion resistance of superhydrophobic surfaces were described. Finally, the future development prospects of abrasion resistant superhydrophobic surfaces was prospected, with a view to promote the large-scale applications of superhydrophobic surfaces in engineering.
Key words: superhydrophobic surface; processing technology; abrasion resistance; micro-nano structure; low surface energy
0 引言
近年來(lái),隨著界面科學(xué)的不斷發(fā)展,功能性表面受到越來(lái)越多的關(guān)注,微納結(jié)構(gòu)的功能表面在5G通信[1]、功能芯片[2]、微機(jī)器人[3]、新興能源[4]和生物醫(yī)療[5]等領(lǐng)域應(yīng)用極其廣泛。此外,微納結(jié)構(gòu)可以改善表面性能[6-7]、降低能耗[8],為提高功能表面的服役性[9-10]和抗摩擦性[11]提供思路,這對(duì)建設(shè)經(jīng)濟(jì)節(jié)能型社會(huì)至關(guān)重要。在眾多的微納結(jié)構(gòu)功能應(yīng)用中,超疏水表面由于具備特殊的潤(rùn)濕性能而備受關(guān)注[12],其水接觸角大于150°,滑動(dòng)角小于10°[13],可以實(shí)現(xiàn)表面的拒水性[14]。研究人員對(duì)超疏水理論和機(jī)理進(jìn)行深入研究后發(fā)現(xiàn),構(gòu)建微納結(jié)構(gòu)和賦予基底低表面能物質(zhì)是實(shí)現(xiàn)功能表面超疏水性能的兩個(gè)關(guān)鍵因素[15]。目前已開發(fā)了諸多制備超疏水表面的方法,如噴涂法[16]、電沉積法[17]、模板法[18]、蝕刻法[19]、自組裝法[20]和靜電氣噴法[21]。此外,通過(guò)對(duì)超疏水表面的功能進(jìn)行研究,證實(shí)了超疏水表面可實(shí)現(xiàn)減阻[22]、輔助液體運(yùn)輸[23]、防腐[24]、抗結(jié)冰[25-26]、抗菌[27]和油水分離[28]等多種功能應(yīng)用,從而極大地促進(jìn)了前沿交叉領(lǐng)域的發(fā)展,其基礎(chǔ)研究工作在工業(yè)界和學(xué)術(shù)界得到極高的關(guān)注。
盡管超疏水表面的制備方法不斷涌現(xiàn),但超疏水表面耐磨性能普遍較差,從而阻礙了它在各領(lǐng)域的推廣應(yīng)用[29-30]。在實(shí)際服役過(guò)程中,引起表面超疏水性能降低的因素主要有兩方面:一是表面易受外界各種機(jī)械外力的影響,使表面的微納結(jié)構(gòu)遭到磨損[31];二是表面易受到化學(xué)腐蝕和環(huán)境因素的影響,導(dǎo)致低表面能物質(zhì)喪失或揮發(fā),從而破壞甚至失去超疏水性能[32]。因此,如何制備結(jié)構(gòu)穩(wěn)定的微納結(jié)構(gòu)和保證低表面能長(zhǎng)期附著在基底表面是解決超疏水表面耐磨性能較差的關(guān)鍵科學(xué)問(wèn)題。
本文基于超疏水表面的作用機(jī)制,歸納了仿生超疏水表面織構(gòu)及應(yīng)用和人工超疏水織構(gòu)及應(yīng)用的研究進(jìn)展,詳細(xì)總結(jié)了超疏水表面加工方法和降低超疏水表面能的措施,分析了超疏水表面耐磨性的分析手段和提高超疏水表面耐磨性的方法,最后展望了耐磨性超疏水表面未來(lái)的發(fā)展趨勢(shì)。
1 超疏水表面作用機(jī)制及織構(gòu)應(yīng)用
制備微納結(jié)構(gòu)是超疏水表面織構(gòu)研究的重點(diǎn)內(nèi)容,也是實(shí)現(xiàn)超疏水表面的關(guān)鍵因素之一。LIU等[33]指出,某些特殊的結(jié)構(gòu)(如雙重結(jié)構(gòu))具有非常低的液固接觸分?jǐn)?shù),可以使任何材料的表面具有超疏水性。為了提高微納結(jié)構(gòu)的性能,一些學(xué)者針對(duì)需求開展了表面織構(gòu)的設(shè)計(jì)研究[34]。本章首先總結(jié)超疏水表面的作用機(jī)制,再將超疏水表面織構(gòu)應(yīng)用設(shè)計(jì)分為仿生超疏水表面織構(gòu)及應(yīng)用和人工超疏水表面織構(gòu)及應(yīng)用進(jìn)行歸納。
1.1 超疏水表面作用機(jī)制
超疏水表面是高度疏水的特殊表面,能夠極大程度地抑制液體在表面的黏附和滲透。雖然制備超疏水表面方法很多,但作用機(jī)制主要受微納結(jié)構(gòu)和低表面能物質(zhì)所影響。
微納結(jié)構(gòu)的存在是材料表面表現(xiàn)出超疏水性的重要因素。超疏水表面通常存在微納米尺度的特殊結(jié)構(gòu)(如微孔、微柱和微錐)。特殊的微納結(jié)構(gòu)能夠顯著降低固液接觸分?jǐn)?shù),有利于實(shí)現(xiàn)超疏水功能。同時(shí),微納結(jié)構(gòu)也能有效阻礙液體在表面的滲透,表現(xiàn)為液體在具有微納結(jié)構(gòu)表面自由鋪展時(shí),并不能完全潤(rùn)濕表面,在液滴下方的微納結(jié)構(gòu)間隙中留有空氣,從而平衡液滴沖擊產(chǎn)生的高壓[35],使液體在表面上呈現(xiàn)出球狀。因此,微納結(jié)構(gòu)的存在是超疏水表面抵抗液體滲透和附著的重要原因。除了微納結(jié)構(gòu)特征外,低表面能物質(zhì)是超疏水表面作用機(jī)制的另一重要因素。低表面能通過(guò)溶劑、有機(jī)物附著等手段來(lái)改變表面張力,使液體在材料表面無(wú)法附著并迅速滾落表面。此外,低表面能可以使液體在表面保持較高的動(dòng)態(tài)特征,在一定程度上能減小表面之間的摩擦力。
超疏水性能是微納結(jié)構(gòu)和低表面能物質(zhì)共同作用于材料表面的結(jié)果。微納結(jié)構(gòu)通過(guò)特殊的表面結(jié)構(gòu)限制液體與表面的接觸,并阻礙液體在表面滲透,從而表現(xiàn)出超疏水性;低表面能物質(zhì)是使液體無(wú)法附著在材料上,同時(shí)保持表面的高動(dòng)態(tài)性能。超疏水表面的作用機(jī)制為制備超疏水表面提供了理論基礎(chǔ),固液接觸面的特征決定了表面的超疏水形式,這與超疏水表面織構(gòu)設(shè)計(jì)密切相關(guān)。
1.2 仿生超疏水表面織構(gòu)及應(yīng)用
自然界生物特殊而優(yōu)異的功能表面與生存環(huán)境密切相關(guān),生物表面的微觀結(jié)構(gòu)和化學(xué)成分為人類提供了仿生學(xué)靈感[36-37]。圖1所示為自然界存在的具有超疏水表面結(jié)構(gòu)的生物。許多研究者也借鑒自然界生物性能與結(jié)構(gòu)的耦合關(guān)系來(lái)制備超疏水表面,賦予其特定的功能性應(yīng)用。
1997年,BARTHLOTT 等[38]首次揭示了超疏水表面自清潔機(jī)制與粗糙度、顆粒黏附性和疏水性之間的依存關(guān)系,將其稱為“荷葉效應(yīng)”。FENG等[39]受啟發(fā)于荷葉表面隨機(jī)分布的微乳頭結(jié)構(gòu)和分枝狀納米結(jié)構(gòu),制備了聚合物納米纖維的超疏水表面,證實(shí)了表面微結(jié)構(gòu)的排列會(huì)影響水滴的移動(dòng)方式(圖1a)。ZHANG等[40]將聚二甲基硅氧烷(PDMS)、交聯(lián)劑和正己烷溶液在燒杯中混合,將混合液倒在具有荷葉表面的培養(yǎng)皿中,制備出具備荷葉結(jié)構(gòu)的PDMS表面,然后通過(guò)紫外納米壓印技術(shù)復(fù)刻了荷葉表面的微納層次結(jié)構(gòu),證實(shí)了表面的超疏水性和自清潔性(圖1b)。此外,其他具有超疏水表面的植物也備受研究者關(guān)注。如YANG等[41]以水稻葉微結(jié)構(gòu)為仿生對(duì)象,采用激光衍射掃描的方法制備超疏水表面,當(dāng)激光進(jìn)入透鏡前的光斑近似等于透鏡孔徑時(shí),在通過(guò)透鏡后發(fā)生衍射現(xiàn)象,激光衍射的強(qiáng)度呈條形分布,當(dāng)激光以一定速度運(yùn)動(dòng)時(shí),照射區(qū)域會(huì)形成不同深度的多層溝槽和微乳頭結(jié)構(gòu),然后通過(guò)光柵掃描得到大面積的周期性分層結(jié)構(gòu),該結(jié)構(gòu)表現(xiàn)為具有各向異性的超疏水表面(圖1c)。LIU等[42]模仿天然芋頭葉結(jié)構(gòu),利用激光干涉光刻方法制備了微柱陣列結(jié)構(gòu),結(jié)合水熱處理技術(shù)在微柱上生長(zhǎng)出納米草結(jié)構(gòu),實(shí)驗(yàn)結(jié)果表明該結(jié)構(gòu)具有較強(qiáng)的抗結(jié)冰性能(圖1d)。
除仿生植物超疏水表面外,仿生動(dòng)物表面的微納結(jié)構(gòu)同樣受到廣泛的關(guān)注。HAN等[43]以原始蟬翅為模板,通過(guò)加熱固化工藝,將結(jié)構(gòu)轉(zhuǎn)移到聚合物薄膜,該薄膜經(jīng)過(guò)模板法和溶膠凝膠技術(shù)加工后具有自清潔性和抗反射性能(圖1e)。WU等[44]采用選擇性激光熔化技術(shù)在316L不銹鋼表面打印仿生蝴蝶翅膀的凹坑原型,然后依次通過(guò)電化學(xué)拋光和氟硅烷改性工藝制備超疏水表面,形成了均勻的凹坑狀微納復(fù)合結(jié)構(gòu),該表面具有良好的抗腐蝕性(圖1f)。WANG等[45]通過(guò)激光在鋁合金上制備仿生魚鱗結(jié)構(gòu),控制激光束路徑密度和加工次數(shù),加工的稀疏區(qū)的曲線構(gòu)成斜槽的上部(即魚鱗的頂端),集中區(qū)的曲線構(gòu)成斜槽的下部(即魚鱗的底部),曲線開始處的線與曲線結(jié)束處的線相交角度為120°,多行魚鱗交錯(cuò)排列,獲得魚鱗表面傾斜的形貌,該結(jié)構(gòu)在層流條件下減阻率可達(dá)4.814%(圖1g)。WOOD等[46] 模仿羽毛的絲狀結(jié)構(gòu)特征,采用激光誘導(dǎo)周期性表面結(jié)構(gòu)方法,在編織的不銹鋼基底表面疊加納米溝槽,通過(guò)引入低表面能的碳質(zhì)化學(xué)物質(zhì)增大基底的表面接觸角,微米級(jí)粗糙度的引入增加了界面接觸面積,從而放大其潤(rùn)濕行為,該結(jié)構(gòu)容易導(dǎo)致界面裂解,具有極低的冰黏附強(qiáng)度(圖1h)。ZHANG等[47]受到人體皮膚分層結(jié)構(gòu)的啟發(fā),提出三層多功能超疏水涂層,采用氟化環(huán)氧樹脂和規(guī)則分散的氟化纖維素/SiO2顆粒構(gòu)建仿表皮頂層結(jié)構(gòu),中間層由氟化纖維素和SiO2含量減少了50%的氟化環(huán)氧樹脂組成,在底層使用無(wú)氟環(huán)氧樹脂,然后與含磷氧化物進(jìn)行分子混合,制備出超疏水涂層,證實(shí)了結(jié)構(gòu)具有液體排斥、防腐和阻燃性能(圖1i)。BABAN等[48]基于蜥蜴的自切尾仿生斷裂模型,制備了均勻分布的微柱結(jié)構(gòu),微柱頂部由納米孔組成,密集的納米孔和稀少的納米粒形成界面,通過(guò)微柱和頂部納米孔結(jié)構(gòu)復(fù)現(xiàn)了蜥蜴尾巴的高密度蘑菇狀微觀結(jié)構(gòu),該結(jié)構(gòu)通過(guò)微隙和納米孔的毛細(xì)管輔助能量耗散來(lái)提高其黏附性能(圖1j)。
通過(guò)模仿自然界生物表面的特征對(duì)表面織構(gòu)進(jìn)行優(yōu)化可有效提高超疏水性能。但實(shí)際應(yīng)用中仿生超疏水表面面臨著耐磨性和服役環(huán)境適用性等問(wèn)題。隨著材料科學(xué)和工程技術(shù)的進(jìn)步,仿生超疏水表面織構(gòu)將在更廣泛的應(yīng)用中更具可行性和適用性。
1.3 人工超疏水表面織構(gòu)及應(yīng)用
超疏水表面織構(gòu)直接影響基底材料與液體界面的潤(rùn)濕性,從而影響液體的滾落和擴(kuò)散等行為。調(diào)控微納結(jié)構(gòu)特征有利于實(shí)現(xiàn)液體在表面的超疏水性能[49]。調(diào)控工藝參數(shù)可以確保超疏水表面的形貌精度,有利于進(jìn)一步實(shí)現(xiàn)其應(yīng)用,比如:自清潔[50]、液滴操控[51]和摩擦發(fā)電[52]。
常見的人工表面織構(gòu)類型包括方柱結(jié)構(gòu)[53]、溝槽結(jié)構(gòu)[54]、圓柱結(jié)構(gòu)[55]、微錐結(jié)構(gòu)[56]、微凸結(jié)構(gòu)[57]和蜂窩狀結(jié)構(gòu)[58]等,如圖2所示。HUANG等[59]采用激光垂直交叉掃描技術(shù)在鎳基718高溫合金表面加工具有納米顆粒的方柱結(jié)構(gòu)(圖2a)。LI等[60]使用紫外激光工藝在建筑陶瓷上構(gòu)建溝槽狀微結(jié)構(gòu),該結(jié)構(gòu)具有低黏附性和自清潔性(圖2b)。MA等[61]利用納秒激光在S45C鋼表面制備不同間距的圓柱結(jié)構(gòu),然后通過(guò)氟化處理來(lái)降低表面能,制備了具有耐腐蝕性的超疏水表面(圖2c)。PAN等[62]利用超快激光燒蝕技術(shù)制備了微錐結(jié)構(gòu),將樣品在高溫下通過(guò)溶液進(jìn)行化學(xué)氧化,制備出具有微花的納米草微錐結(jié)構(gòu),經(jīng)改性后獲得的超疏水表面具有較好的防冰性能(圖2d)。WANG等[63]采用熱壓印模板技術(shù)復(fù)制不銹鋼網(wǎng)的表面結(jié)構(gòu),將不銹鋼網(wǎng)片平鋪在橡膠表面,硫化后再?gòu)南鹉z表面剝離,在表面形成了超疏水性能優(yōu)異的互聯(lián)微凸結(jié)構(gòu),該結(jié)構(gòu)可用于無(wú)損液滴轉(zhuǎn)移(圖2e)。ZHENG等[64]基于環(huán)氧樹脂硅溶膠體系的相分離方法,在玻璃表面制備出了蜂窩狀的無(wú)機(jī)多孔膜,制備的多孔結(jié)構(gòu)作為微米級(jí)“裝甲”防護(hù)結(jié)構(gòu),通過(guò)化學(xué)氣相沉積方法將納米SiO2顆粒沉積在多孔膜上,制備了微納分層結(jié)構(gòu),該結(jié)構(gòu)具有優(yōu)異的自清潔性和耐腐蝕性(圖2f)。
此外,部分研究者也從工藝參數(shù)和功能應(yīng)用角度進(jìn)行了表面織構(gòu)類型的設(shè)計(jì)[65],如圖3所示。LIN等[66]通過(guò)激光砂帶協(xié)同加工出表面宏/微多尺度復(fù)合結(jié)構(gòu),當(dāng)砂帶磨削進(jìn)給速度為0.1 mm/s時(shí)可以保證宏觀結(jié)構(gòu)精度,在3 W的低激光功率下增加掃描次數(shù)可以提高加工后微觀組織的形貌精度,該工藝可以實(shí)現(xiàn)多尺度表面結(jié)構(gòu)的高效率和高精度加工(圖3a)。LIU等[67]通過(guò)納秒激光燒蝕和低表面能材料改性,在超疏水樣品中嵌入超親水的連續(xù)楔形通道,有效地制備出了超潤(rùn)濕性表面,該結(jié)構(gòu)可用于定向無(wú)水運(yùn)輸(圖3b)。GUO等[68]通過(guò)納秒激光燒蝕技術(shù)在鈦合金基體上制造出具有層次結(jié)構(gòu)的不同凹坑,通過(guò)增加掃描次數(shù)可以提高凹坑的深度和凹坑周圍微納結(jié)構(gòu)的堆積,從而影響到層狀結(jié)構(gòu)的分布(圖3c)。MA等[69]采用納秒激光燒蝕技術(shù)制備了40Cr鋼疏水正弦織構(gòu)表面,工藝中油膜的存在大大減少了激光能量以及濺射形成的紋理邊緣凸起特征,從而影響表面粗糙度,可通過(guò)調(diào)節(jié)油膜厚度和引入織構(gòu)面積密度來(lái)補(bǔ)償粗糙度,進(jìn)而調(diào)控凸起特征(圖3d)。
微納結(jié)構(gòu)是實(shí)現(xiàn)超疏水性能的關(guān)鍵因素之一,可通過(guò)在表面引入微小的凹凸特征來(lái)增大表面粗糙度,降低液體與表面的接觸面積,改變液體在基底表面的接觸方式,從而實(shí)現(xiàn)超疏水性能。然而,在實(shí)際應(yīng)用中,超疏水表面織構(gòu)仍然存在一些問(wèn)題,比如微納結(jié)構(gòu)易磨損和難以實(shí)現(xiàn)大面積制備等。
2 超疏水表面加工技術(shù)
超疏水表面性能取決于材料表面的微納結(jié)構(gòu)和低表面能[70],因此,超疏水表面加工有兩個(gè)思路:第一,低表面能物質(zhì)修飾微納結(jié)構(gòu)表面;第二,在具有低表面能的材料表面構(gòu)建微納結(jié)構(gòu)。本章將超疏水表面加工技術(shù)分為超疏水表面加工方法和降低超疏水表面能的措施分別進(jìn)行分析。當(dāng)前超疏水表面的加工方法很多且技術(shù)相對(duì)成熟,根據(jù)基材的親疏水性不同,所選取的加工方法也有所不同,比如通常情況下,金屬基體為親水性[71],進(jìn)行微納結(jié)構(gòu)的制備后需要降低表面能。而聚合物材料,比如聚二甲基硅氧烷[72]、聚四氟乙烯[73]等,本身是低表面能疏水物質(zhì),無(wú)需進(jìn)行降低表面能處理。
2.1 超疏水表面加工方法
超疏水表面加工方法旨在賦予材料表面特殊的液體排斥能力,從而實(shí)現(xiàn)超疏水性能。目前可以通過(guò)機(jī)械加工、模板法、激光加工及復(fù)合工藝等方法制備超疏水表面。
2.1.1 機(jī)械加工
機(jī)械加工可以通過(guò)精密的機(jī)床和刀具,結(jié)合先進(jìn)的工藝和智能的控制系統(tǒng),加工出高精度的尺寸和幾何特征,從而實(shí)現(xiàn)制備微納尺度的結(jié)構(gòu)。加工出的微納結(jié)構(gòu)與工藝軌跡規(guī)劃、工藝參數(shù)選擇和所選刀具特征密切相關(guān),該方法在加工超疏水領(lǐng)域頗受研究者關(guān)注[74]。如YU等[75]利用高速精密微銑床在鋁合金表面加工微槽陣列結(jié)構(gòu),然后用1000號(hào)的氧化鋁砂帶在微槽結(jié)構(gòu)的正交方向進(jìn)行研磨,結(jié)果表明在平行溝槽方向上接觸角為142°,在垂直溝槽方向上接觸角為160°(圖4a)。GUO等[76]采用機(jī)械加工的方法在金屬基體上加工出尺度在200~400 μm的棘輪陣列結(jié)構(gòu),再采用晶體生長(zhǎng)的方式制備出納米結(jié)構(gòu)(圖4b)。ZHU[77]在C6140車床上利用60°螺紋刀,在6061鋁合金端面進(jìn)行切削加工,通過(guò)調(diào)整主軸轉(zhuǎn)速和進(jìn)給速度來(lái)制備具有不同粗糙度的微結(jié)構(gòu)特征(圖4c)。CHEN等[78]開發(fā)出無(wú)溶劑打磨方法,先用砂紙打磨基材引入表面粗糙度,然后在基材上添加粉末,通過(guò)砂入法改變表面粗糙度和表面能,從而在不同基材上制備超疏水表面,其防水性經(jīng)得起100次透明膠帶剝離實(shí)驗(yàn),并在惡劣環(huán)境條件下儲(chǔ)存18個(gè)月后保持相對(duì)穩(wěn)定(圖4d)。
2.1.2 模板法
機(jī)械加工方法因存在不可避免的工藝誤差從而影響幾何特征,利用模板法制備超疏水表面具有效率高和可控性好等優(yōu)勢(shì)[79],模板法制備的超疏水表面如圖5所示。模板法原理是將具有微納米結(jié)構(gòu)表面通過(guò)壓印技術(shù)賦予基底微納結(jié)構(gòu)特征,實(shí)現(xiàn)結(jié)構(gòu)“互補(bǔ)”,該方法的適用性較好。模板按照材料不同可分為“軟模板”和“硬模板”兩種,前者主要是聚四氟乙烯和聚二甲基硅氧烷等聚合物,通過(guò)聚合物固化和模板與基底分離的方法獲取超疏水表面;后者主要是金屬模板和玻璃模板等,將模板與基底貼合,并進(jìn)行高溫壓印或光刻技術(shù)等方法獲得超疏水表面。如YUAN等[80]通過(guò)飛秒激光在鋁合金表面加工出具有溝槽結(jié)構(gòu)的模具,利用壓印技術(shù)在聚丙烯材料表面制備出微納米結(jié)構(gòu),因聚丙烯本身是低表面能特性而獲得超疏水性能(圖5a)。MAGHSOUDI等[81]使用壓縮成形系統(tǒng)制造微納米結(jié)構(gòu)的橡膠超疏水表面,將化學(xué)蝕刻后鋁表面的粗糙圖案作為模板,在模板表面涂上防靜電涂層,確保脫模過(guò)程中可完全除去橡膠,之后將模板和橡膠在高溫高壓下壓縮,并進(jìn)行高溫硫化處理來(lái)增強(qiáng)疏水性能(圖5b)。TIAN等[82]基于光刻工藝制備模具,在旋轉(zhuǎn)涂層上將聚二甲基硅氧烷(PDMS)加入到模具中,固化和剝離PDMS后獲得垂直微米級(jí)的柱狀陣列,將樣品放置在強(qiáng)酸/強(qiáng)堿和鹽溶液60 h后仍保持超疏水性能(圖5c)。
模板法制備出金屬表面粗糙的微納米結(jié)構(gòu)后需要降低表面能來(lái)實(shí)現(xiàn)超疏水性能。然而,以自然基底為模板,在脫模過(guò)程中由于微納結(jié)構(gòu)表面受到張力和剪切力,模板本身以及脫模后獲得的結(jié)構(gòu)表面容易受到破壞[83],其次,利用有限的模板材料無(wú)法實(shí)現(xiàn)大規(guī)模的超疏水表面制備,將模板進(jìn)行拼接的方法也必將降低加工效率,因此需尋求其他的加工方法。
2.1.3 激光加工
脈沖激光具有精度高、非接觸和熱效應(yīng)小等優(yōu)點(diǎn)[84],在制備微納結(jié)構(gòu)加工方面具有優(yōu)勢(shì)。根據(jù)脈沖時(shí)間的長(zhǎng)短可以劃分為飛秒激光、皮秒激光和納秒激光,常見的激光加工制備超疏水表面如圖6所示。
飛秒激光由于脈沖時(shí)間極短,在燒蝕材料的過(guò)程中不會(huì)產(chǎn)生熱效應(yīng),是一種“冷加工”技術(shù)[85]。如BAI等[86]通過(guò)將還原氧化石墨烯(RGO)與熱響應(yīng)材料形狀記憶聚合物(SMP)進(jìn)行充分混合,然后進(jìn)行熱固化處理,制備了RGO-SMP復(fù)合材料,利用飛秒激光在RGO-SMP材料表面制備微柱陣列結(jié)構(gòu)來(lái)實(shí)現(xiàn)超疏水性能(圖6a)。HE等[87] 通過(guò)飛秒激光對(duì)結(jié)構(gòu)表面進(jìn)行“?!毙温窂郊庸ぃ诩す馓幚砗蟮慕Y(jié)構(gòu)表面覆蓋聚四氟乙烯薄膜,用飛秒激光進(jìn)行二次掃描沉積聚四氟乙烯微納米顆粒在表面,從而實(shí)現(xiàn)超疏水性能。WU等[88]通過(guò)飛秒激光在不銹鋼表面進(jìn)行微結(jié)構(gòu)加工,在亞微米尺度結(jié)構(gòu)表面,表面的接觸角為150.38°,在亞微米雙尺度的結(jié)構(gòu)表面,表面接觸角為166.38°,滑動(dòng)角為4.28°(圖6b)。
相對(duì)于飛秒激光而言,皮秒激光的加工速度更快、成本更低,且?guī)缀醪粫?huì)產(chǎn)生熱效應(yīng)。YAO等[89]利用皮秒激光系統(tǒng)在形狀記憶片上制備微柱結(jié)構(gòu),采用不同的激光掃描路徑形成不同狀態(tài)的微柱。NGUYEN等[90]通過(guò)皮秒激光織構(gòu)技術(shù)在搪瓷涂層表面加工出呈花椰菜狀和錐形的多尺度結(jié)構(gòu)(圖6c)。PAN等[91] 利用皮秒激光織構(gòu)技術(shù)在AISI 420馬氏體不銹鋼板上制備具有微乳頭狀的微納結(jié)構(gòu)。
相對(duì)于皮秒激光和飛秒激光而言,納秒激光的脈沖時(shí)間較長(zhǎng),會(huì)產(chǎn)生一定的熱效應(yīng),但納秒激光的成本更低、效率更高,有望用于大規(guī)模超疏水表面的制備。如CUI等[92]利用納秒激光在金屬玻璃表面燒蝕出分層微納結(jié)構(gòu),通過(guò)低溫退火進(jìn)行表面處理,因分層微納結(jié)構(gòu)的存在和空氣中低表面能物質(zhì)在表面的吸附,實(shí)現(xiàn)了超疏水性能(圖6d)。LIU等[93] 通過(guò)納秒激光在氧化鋯陶瓷表面制備微納結(jié)構(gòu),使用硅油和異丙醇混合物輔助熱處理來(lái)降低表面能,后處理工藝改變了氧化鋯陶瓷表面的化學(xué)性質(zhì),加速了表面潤(rùn)濕性由超親水性向超疏水性轉(zhuǎn)變,證實(shí)了納秒激光硅油熱處理復(fù)合工藝可以在氧化鋯陶瓷表面加工出超疏水結(jié)構(gòu)。
盡管激光加工可以產(chǎn)生由微納米顆粒構(gòu)成的微凸起結(jié)構(gòu),從而滿足對(duì)粗糙度的要求,但往往工藝參數(shù)對(duì)微納米顆粒的分布區(qū)域和分布密度具有不可控性,從而導(dǎo)致表面質(zhì)量較差。
2.1.4 復(fù)合工藝
利用復(fù)合工藝的特征來(lái)制備微納復(fù)合結(jié)構(gòu),然后進(jìn)行降低表面能處理,從而實(shí)現(xiàn)超疏水性能,已成為當(dāng)前研究熱點(diǎn)[94-96]。常見的復(fù)合工藝制備的超疏水表面[97-100]如圖7所示。
砂帶磨削技術(shù)的柔性、高效率和低損傷特征[101-102]在提高工件表面完整性和加工效率方面具有優(yōu)勢(shì),結(jié)合激光加工技術(shù),該復(fù)合工藝存在巨大開發(fā)潛力[103]。LIU等[97]利用激光砂帶加工方法在鎳基718合金表面制備具有高黏附的溝槽表面,該方法在溝槽表面制備的同時(shí)引入了微多孔結(jié)構(gòu)和納米顆粒,有利于增加表面各向異性(圖7a)。XIAO等[98]將低損傷砂帶磨削技術(shù)與超短脈沖激光誘導(dǎo)表面微結(jié)構(gòu)制備進(jìn)行有效結(jié)合,實(shí)現(xiàn)了分級(jí)微結(jié)構(gòu)的高效制備。在成形過(guò)程中,砂帶磨削保證材料型面精度,以高能束激光產(chǎn)生的熱影響催化產(chǎn)生表面多孔隙微結(jié)構(gòu)。熱影響催化的多孔結(jié)構(gòu)尺度在3~6 μm,孔隙表面會(huì)生成密集的納米顆粒(圖7b)。
此外,激光燒蝕技術(shù)與其他工藝結(jié)合是制備超疏水表面的有效方法。CHEN等[99]采用納秒脈沖激光燒蝕化學(xué)蝕刻工藝在316L不銹鋼表面制備了取向可控、周期和高度可調(diào)的微結(jié)構(gòu)。研究發(fā)現(xiàn),激光掃描速度是微結(jié)構(gòu)形成的先決條件,激光平均功率和激光掃描間隔是影響微結(jié)構(gòu)形成周期和高度的重要因素,優(yōu)化參數(shù)后表面的接觸角為154.7°(圖7c)。MA等[100]利用皮秒激光直寫技術(shù)在304不銹鋼表面制備了不同形貌的微柱陣列結(jié)構(gòu),將激光處理后樣品放在低真空環(huán)境中進(jìn)行熱處理,可實(shí)現(xiàn)超疏水功能(圖7d)。
2.1.5 其他方法
除上述加工方法外,還有其他方法用于超疏水表面的制備。如GUO等[104]將環(huán)氧樹脂溶于乙酸乙酯作為涂層溶液,先將涂層溶液噴涂到基材上,再噴涂二氧化硅(SiO2)納米顆粒、聚二甲基硅氧烷(PDMS)和環(huán)氧樹脂(EP)的復(fù)合懸浮
液,經(jīng)過(guò)室溫固化,得到SiO2/PDMS/EP復(fù)合涂層,該涂層具有優(yōu)異的超疏水性,接觸角為163°,滑動(dòng)角為3.5°(圖8a)。VILARO等[105]采用在銅基底上進(jìn)行氧氣和氬氣的等離子蝕刻方式制備粗糙結(jié)構(gòu),然后通過(guò)化學(xué)氣相沉積方法在金屬表面沉積共聚物來(lái)降低金屬表面能,形貌表現(xiàn)出納米蠕蟲狀結(jié)構(gòu),該結(jié)構(gòu)與銅基底表面的粗糙結(jié)構(gòu)共同實(shí)現(xiàn)超疏水性能(圖8b)。KE等[106]通過(guò)溶膠凝膠法技術(shù)制備超疏水涂層,先制備Si(OH)4溶膠與SiO2懸浮液,然后將溶液滴在玻璃基底上,經(jīng)過(guò)熱處理來(lái)提高機(jī)械強(qiáng)度,通過(guò)己烷溶液來(lái)降低涂層的表面能,隨后在烤箱中固化,制備超疏水涂層,其接觸角可達(dá)154°(圖8c)。SHI等[107]以荷葉的微納結(jié)構(gòu)為靈感,采用靜電紡絲技術(shù)大規(guī)模制備了可調(diào)微珠和納米纖維膜的微納結(jié)構(gòu),從而控制了靜電紡膜的粗糙度,實(shí)驗(yàn)結(jié)果表明該膜的水接觸角高達(dá)151°(圖8d)。
超疏水表面在實(shí)際應(yīng)用中前景廣闊,但在超疏水表面實(shí)際應(yīng)用中,仍需克服工藝復(fù)雜性和長(zhǎng)期穩(wěn)定性方面的挑戰(zhàn)。不斷涌現(xiàn)的理論創(chuàng)新和技術(shù)突破為未來(lái)實(shí)現(xiàn)工藝簡(jiǎn)單、結(jié)構(gòu)可靠的加工技術(shù)帶來(lái)新的可能。
2.2 降低超疏水表面能的措施
降低表面能是實(shí)現(xiàn)超疏水性能的核心策略,目前常用措施包括低表面能修飾、氧化吸附和熱處理。在微納結(jié)構(gòu)表面加入低表面能物質(zhì)是實(shí)現(xiàn)超疏水性能常用的方法[108-109]。如WANG等[110]將清洗后的銅網(wǎng)浸入硝酸銀溶液,在銅表面生長(zhǎng)出微納枝晶結(jié)構(gòu),通過(guò)硬脂酸修飾來(lái)降低表面能,從而實(shí)現(xiàn)超疏水功能(圖9a)。CHEN等[111]將亞微米級(jí)二氧化硅顆粒的粒徑進(jìn)行優(yōu)化,經(jīng)聚二甲基硅氧烷改性后浸涂在棉織物上,固化過(guò)程中涂層與基體通過(guò)交聯(lián)反應(yīng)形成較強(qiáng)的共價(jià)鍵,分層凸出結(jié)構(gòu)增大了表面粗糙度,在水滴與涂層間提供大量的氣穴,該表面接觸角為161°,滑動(dòng)角為2.4°(圖9b)。LI等[112]在氬氣環(huán)境下,通過(guò)激光直寫技術(shù)在鋁表面制備多孔微納結(jié)構(gòu)特征,然后將氟硅烷通過(guò)熱蒸發(fā)技術(shù)嵌入到多孔結(jié)構(gòu)中,存在的硅鋁鍵、氫鍵、毛細(xì)管力和范德華力與鋁表面結(jié)合,實(shí)現(xiàn)了表面能的最小化,從而具有超疏水性能(圖9c)。
低表面能物質(zhì)修飾的方法適用性強(qiáng)且疏水效果好,但部分溶劑氣味有毒,對(duì)環(huán)境和人類并不友好,因此,研究低成本的氧化吸附方式來(lái)降低表面能的方法是必要的[113]。KHAN等[114]通過(guò)飛秒和皮秒脈沖激光加工不同金屬表面,當(dāng)激光燒蝕后表面狀態(tài)為超親水狀態(tài),將樣品放在環(huán)境大氣條件下氧化30天后可演變?yōu)槭杷疇顟B(tài)(圖10a)。PAN等[115]通過(guò)在皮秒激光誘導(dǎo)的復(fù)合結(jié)構(gòu)表面原位沉積梯度分布并氧化的多孔鈦納米顆粒來(lái)制備微納米結(jié)構(gòu)表面,利用超短激光的冷加工特性使TiO2上產(chǎn)生氧空位,鈦原子與親水基團(tuán)氧元素結(jié)合,將疏水基團(tuán)留在外面形成疏水表面(圖10b)。疏水基團(tuán)和納米結(jié)構(gòu)的氣墊效應(yīng)相結(jié)合,使得表面接觸角可達(dá)167°,滑動(dòng)角僅為4°。ZHAO等[116]利用超聲振動(dòng)輔助激光制備超疏水銅表面,證實(shí)了超聲振動(dòng)結(jié)合激光可以加速空氣中碳?xì)湓卦谖⒓{結(jié)構(gòu)表面的吸附,從而提高降低表面能的效率。
通過(guò)在空氣中氧化吸附降低表面能具有成本低的優(yōu)勢(shì),但所需要的時(shí)間長(zhǎng),影響潤(rùn)濕性轉(zhuǎn)變的效率。在加熱條件下,空氣中有機(jī)化合物能在表面快速吸附,加速表面潤(rùn)濕性的改變,從而實(shí)現(xiàn)效率的提升[93]。TRAN 等[117]利用激光技術(shù)在合金表面制備微納結(jié)構(gòu)后,通過(guò)無(wú)毒硅油進(jìn)行10 min的熱處理(圖11a),當(dāng)硅油表面改性后,疏水有機(jī)基團(tuán)的吸收在表面得到加速,以極快的速度制備出超疏水表面。NGO等[118]用納秒脈沖激光在鋁、銅和鈦合金表面燒蝕出網(wǎng)格圖案,然后在不同溫度下進(jìn)行熱處理(圖11b),結(jié)果表明潤(rùn)濕性轉(zhuǎn)變時(shí)間從幾個(gè)星期/幾個(gè)月縮短到幾個(gè)小時(shí)。HE等[119]采用納秒激光燒蝕技術(shù)在銅表面制備溝槽網(wǎng)格結(jié)構(gòu),然后通過(guò)乙醇輔助低溫退火,在數(shù)小時(shí)內(nèi)獲得了超疏水表面。ZHAO等[120]通過(guò)水熱處理在銅表面構(gòu)建了直徑為500 nm~4.5 μm的微納米顆粒,通過(guò)增加表面粗糙度來(lái)放大潤(rùn)濕效果,在含碳環(huán)境中保存14 h后,因表面吸附了C—C和C—H非極性疏水有機(jī)化合物,從而實(shí)現(xiàn)超疏水功能(圖11c)。
本章介紹了超疏水表面加工方法和降低超疏水表面能的措施,為超疏水表面加工技術(shù)提供了指導(dǎo)。選擇超疏水表面加工技術(shù)時(shí)應(yīng)考慮服役環(huán)境、材料屬性和制備成本等多個(gè)因素。在實(shí)現(xiàn)預(yù)期性能時(shí),還應(yīng)當(dāng)考慮制備的復(fù)雜性、可持續(xù)性和創(chuàng)新性,以滿足在特定應(yīng)用中提供最佳的功能性表面。
3 超疏水表面耐磨性分析
微納結(jié)構(gòu)和低表面能物質(zhì)是實(shí)現(xiàn)超疏水性能的關(guān)鍵因素,任何因素缺失或破壞都可能導(dǎo)致超疏水性能的喪失。但超疏水表面在實(shí)際的應(yīng)用過(guò)程中極易受到外界的干擾和環(huán)境影響(如機(jī)械加載[121]、化學(xué)腐蝕[122])。超疏水表面的耐磨性已經(jīng)成為影響功能表面應(yīng)用的關(guān)鍵科學(xué)問(wèn)題[123],因此本章從超疏水表面耐磨性的測(cè)試手段和提高耐磨性的方法進(jìn)行綜述。
3.1 超疏水表面耐磨性的測(cè)試手段
保證超疏水表面持久性仍是目前面臨的一個(gè)挑戰(zhàn)。超疏水表面的微納粗糙結(jié)構(gòu)在載荷作用下會(huì)因局部壓力較高而破壞微納結(jié)構(gòu),導(dǎo)致接觸角減小。此外,低表面能材料抗酸、堿、有機(jī)溶劑和紫外線輻射能力較差,且低表面能修飾的表面容易氧化、揮發(fā),從而失去超疏水性能。對(duì)于超疏水表面耐磨性測(cè)試,研究者已經(jīng)開發(fā)出多種方法,如磨損試驗(yàn)[124]、膠帶剝離[125]、沖擊實(shí)驗(yàn)[126]、彎曲變形[127]、高溫實(shí)驗(yàn)[128]和化學(xué)腐蝕[129]等。
線性磨損是超疏水表面耐磨性分析的常用方法,通常選用不同類型的磨損材料、設(shè)置磨損長(zhǎng)度和循環(huán)周期來(lái)分析實(shí)驗(yàn)結(jié)果。HE等[87]將玻璃樣品平鋪在砂紙上,然后在樣品上加載50 g重物,進(jìn)行磨損試驗(yàn),當(dāng)樣品在磨損距離為50 cm時(shí),表面的接觸角為152.2°(圖12a)。LI等[130]將1000號(hào)SiC砂紙附在運(yùn)動(dòng)探針上,該探針在120 kPa的恒壓下以5 cm/s的速度在表面來(lái)回移動(dòng),當(dāng)移動(dòng)總距離為1.2 m時(shí),樣品表面的接觸角為154.5°±1.8°,滑動(dòng)角為8.8°±0.7°。WANG等[131]采用線性磨損(500號(hào)砂紙),在200 g的加載質(zhì)量下對(duì)表面進(jìn)行距離為20 cm的水平和垂直磨損,即使經(jīng)過(guò)120次磨損循環(huán),表面仍保持超疏水性。但砂紙磨損因試驗(yàn)條件(如阻力、加載壓力和砂紙目數(shù))而異,因此,缺乏橫向?qū)Ρ刃?。使用Taber磨損方法可以定量表征表面耐磨性[132]。如PENG等[133] 使用ASTM標(biāo)準(zhǔn)的Taber磨損方法進(jìn)行測(cè)試,當(dāng)載荷質(zhì)量為150 g和200 g時(shí),樣品表面在經(jīng)過(guò)100次磨損循環(huán)后,接觸角保持在150°以上(圖12b)。GOLOVIN等[134]基于ASTM標(biāo)準(zhǔn),使用Taber旋轉(zhuǎn)磨具為CS-10彈性磨輪,輪臂的后部放置250 g重物,施加的正常載荷質(zhì)量約為60 g,然后將樣品相對(duì)于自由旋轉(zhuǎn)的磨輪旋轉(zhuǎn),從而發(fā)生剪切磨損作用,實(shí)驗(yàn)結(jié)果表明樣品在進(jìn)行10×104 cm的磨損距離后仍保持大的接觸角和小的滑動(dòng)角。Taber磨損實(shí)驗(yàn)具有可參考的條件和標(biāo)準(zhǔn),可定量分析超疏水表面的耐磨性,提高試驗(yàn)結(jié)果的可靠性。
一些特定的服役工況會(huì)對(duì)超疏水表面會(huì)產(chǎn)生持續(xù)的沖擊,破壞表面的微納結(jié)構(gòu)和低表面能物質(zhì),進(jìn)而影響到超疏水性能。沖擊法常作為測(cè)試超疏水表面抗沖擊的常用方法[135-136]。GUO等[104]將試樣傾斜45°,在樣品正上方50 cm處放置砂漏,釋放砂粒(平均直徑在0.4~0.7 mm),砂子的質(zhì)量從0增加到360 g時(shí),樣品的接觸角降至156.0°±0.4°,滑動(dòng)角略升至7.5°±0.2°。然后將樣品進(jìn)行水沖擊實(shí)驗(yàn),噴嘴到樣品距離為20 cm的高速自來(lái)水沖擊試樣1 h后,其接觸角保持在156.3°±0.5°,接觸角保持在6.4°±0.8°。沖擊實(shí)驗(yàn)設(shè)備主要是自行研發(fā)的,實(shí)驗(yàn)條件也是自行設(shè)定的,因此,利用專用設(shè)備進(jìn)行實(shí)驗(yàn),建立具有可比性的評(píng)價(jià)標(biāo)準(zhǔn)很有必要。
在外力作用下超疏水表面與基底的脫離是常見的失效問(wèn)題。剝離實(shí)驗(yàn)是測(cè)試超疏水表面與基底黏附強(qiáng)度的有效方法。CHEN等[137]使用3M 3036膠帶對(duì)表面進(jìn)行剝離實(shí)驗(yàn),在經(jīng)過(guò)300次膠帶剝離實(shí)驗(yàn)后,接觸角保持在150°~152°,滑動(dòng)角從6°略微增大到11°,樣品表面具有良好耐磨性。YU等[138]將3M膠帶粘在樣品表面,用100 g重物滾動(dòng)壓實(shí)后,迅速?gòu)拇怪狈较騽冸x,然后更換新的膠帶繼續(xù)實(shí)驗(yàn),重復(fù)10次為1個(gè)循環(huán),當(dāng)經(jīng)過(guò)9個(gè)循環(huán)膠帶剝離后,樣品表面的接觸角為153.1°,滑動(dòng)角為9°。當(dāng)選擇膠帶剝離實(shí)驗(yàn)來(lái)測(cè)試超疏水表面耐磨性時(shí),不同類型膠帶的黏附強(qiáng)度不同,實(shí)驗(yàn)結(jié)果難以比較好壞,因此,統(tǒng)一評(píng)判標(biāo)準(zhǔn)和膠帶類型來(lái)開展實(shí)驗(yàn)可以增強(qiáng)結(jié)果的可比性[139]。
彎曲變形是檢測(cè)超疏水表面柔韌性的主要檢測(cè)方法,主要涉及到材料的拉伸、壓縮和扭轉(zhuǎn)。拉伸和壓縮通過(guò)控制應(yīng)變率、扭轉(zhuǎn)通過(guò)控制扭轉(zhuǎn)角度來(lái)反映材料的柔韌性。YAMAUCHI等[140]將復(fù)合材料樣品經(jīng)過(guò)1000次的彎曲和扭轉(zhuǎn)的機(jī)械變形,結(jié)果復(fù)合材料仍保持超疏水性能,原因是由無(wú)機(jī)框架和彈性聚合物樹脂組成的復(fù)合材料,承受外力時(shí)柔性聚合物樹脂會(huì)變形,而無(wú)機(jī)框架則保持不變。雖然彎曲變形可以直觀判斷超疏水表面柔韌性,但實(shí)驗(yàn)過(guò)程是研究者徒手進(jìn)行的,應(yīng)變率和扭轉(zhuǎn)角度的控制無(wú)法統(tǒng)一,有待對(duì)實(shí)驗(yàn)標(biāo)準(zhǔn)進(jìn)行規(guī)范化。
除上述常用方法外,還有其他耐磨性測(cè)試方法。如WANG等[141]將超疏水表面在100±5 ℃下加熱120 min后,記錄水滴在加熱表面的動(dòng)態(tài)行為,結(jié)果表明高溫處理后超疏水性能得到保持,具有良好的熱穩(wěn)定性。PANG等[142]將樣品放在50 ℃的HCl(質(zhì)量分?jǐn)?shù)為38%)和H2SO4(質(zhì)量分?jǐn)?shù)為70%)溶液中浸泡1個(gè)月,樣品的質(zhì)量損失低至3%~5%,樣品具有優(yōu)異的抗腐蝕性。ZHU等[143]通過(guò)蝕刻工藝在鎂合金表面制備多層微納米結(jié)構(gòu),該表面即使暴露在空氣中、強(qiáng)酸和強(qiáng)堿溶液中仍保持超疏水性能,具有很好的化學(xué)穩(wěn)定性。高溫處理和化學(xué)腐蝕是評(píng)估超疏水表面化學(xué)穩(wěn)定性的常用方法,但對(duì)實(shí)驗(yàn)條件的控制仍然缺乏標(biāo)準(zhǔn),試驗(yàn)結(jié)果具有較大差異性,因此很難將研究結(jié)果作為參考進(jìn)行對(duì)比分析。
3.2 提高超疏水表面耐磨性的方法
超疏水表面的微納結(jié)構(gòu)和低表面能物質(zhì)存在弱的機(jī)械和化學(xué)魯棒性,阻礙了超疏水表面的實(shí)際應(yīng)用。提高超疏水表面耐磨性主要從構(gòu)建微納結(jié)構(gòu)和降低表面能兩方面考慮,解決策略主要包括特定的結(jié)構(gòu)設(shè)計(jì)、多層結(jié)構(gòu)復(fù)合、多組分的協(xié)同作用和自修復(fù)。
微米結(jié)構(gòu)通常提供機(jī)械魯棒性,以保護(hù)納米結(jié)構(gòu)功能[12],同時(shí)微米結(jié)構(gòu)可以獲得大量空氣層,納米結(jié)構(gòu)有利于提供超疏水性能[16]。WANG等[144]制備了兩種不同尺度的超疏水表面,其中納米結(jié)構(gòu)提供抗水性,微觀結(jié)構(gòu)提供耐磨性。微觀結(jié)構(gòu)是一個(gè)相互連接的表面框架,容納極其脆弱的納米結(jié)構(gòu)。表面框架起到“盔甲”的作用,防止納米結(jié)構(gòu)被比框架尺寸大的磨料去除。使用聚丙烯探針作為壓頭,在規(guī)定的垂直壓力下對(duì)表面進(jìn)行1000次的往復(fù)線性磨損,表面的靜態(tài)接觸角仍然大于150°,滑動(dòng)角小于12°,相比于傳統(tǒng)的超疏水表面耐磨性,該材料的耐磨性提高了10倍(圖13a)。ZHANG等[145]在偶氮二甲酰胺(AC)顆粒表面附加二氧化硅(SiO2),通過(guò)溶膠凝膠技術(shù)制備AC-SiO2復(fù)合顆粒,將納米碳纖維(CNF)與全氟辛基三氯硅烷氟化的AC-SiO2顆粒結(jié)合,將聚偏氟乙烯(PVDF)顆粒、CNF和FAC-SiO2在超聲中分散,噴灑在鋁板基材上,熱固化制備出具有“微蛋殼”和“網(wǎng)狀”結(jié)構(gòu)的PVDF/FAC-SiO2/CNF涂層。FAC-SiO2熱分解形成的“蛋殼”結(jié)構(gòu)具有大腔小孔的特征,可以在表面捕獲更多的氣體。此外,CNF 通過(guò)在涂層表面形成網(wǎng)狀結(jié)構(gòu),將孔隙結(jié)構(gòu)分割成更小的空間。在蛋殼結(jié)構(gòu)和網(wǎng)狀結(jié)構(gòu)的共同作用下,PVDF/FAC-SiO2/CNF超疏水表面能穩(wěn)定地鎖住氣體,阻止腐蝕性介質(zhì)向涂層的擴(kuò)散(圖13b)。
特定的結(jié)構(gòu)設(shè)計(jì)可以有效保護(hù)具有納米結(jié)構(gòu)的疏水性能,也能制備出具有特征的微結(jié)構(gòu)來(lái)維持超疏水性能,但該方法制備工藝復(fù)雜,制備成本較高。
在表面制備分層復(fù)合結(jié)構(gòu)可以有效保證超疏水表面的耐磨性,微結(jié)構(gòu)常常作為犧牲層來(lái)保護(hù)納米結(jié)構(gòu),維護(hù)超疏水性能的穩(wěn)定性。CHEN等[146]利用激光在鋁合金表面制備微錐結(jié)構(gòu),然后將其浸泡在NaOH、NaSbO3和Zn(NO3)2的混合溶液中,在微結(jié)構(gòu)表面生長(zhǎng)出菜花狀結(jié)構(gòu),將聚二甲基硅氧烷均勻涂覆在表面,制備出由微錐陣列、菜花狀結(jié)構(gòu)和PDMS層組成的復(fù)合結(jié)構(gòu),經(jīng)過(guò)25次磨損循環(huán)、1.5 h的水沖擊和500次膠帶剝離循環(huán)后,表面仍保持超疏水性(圖14a)。CHEN等[147]采用激光燒蝕技術(shù)在銅基底上制備出微錐結(jié)構(gòu),然后將其浸泡在NaOH和(NH4)2SO4的混合溶液中,在表面制備出Cu(OH)2納米線,將聚二甲基硅氧烷溶液均勻分布在樣品上,制備微米納米納米線三重結(jié)構(gòu)的PDMS超疏水表面(圖14b)。通過(guò)在1000號(hào)砂紙上施加1.2 kPa的壓力進(jìn)行線性磨損實(shí)驗(yàn),經(jīng)過(guò)20次磨損循環(huán)后,接觸角達(dá)到154.5°,滑動(dòng)角為17.7°,三重結(jié)構(gòu)的PDMS超疏水表面的納米線僅出現(xiàn)裂紋和長(zhǎng)度的縮短,微錐結(jié)構(gòu)仍被納米結(jié)構(gòu)所覆蓋,因此具有優(yōu)異的機(jī)械耐磨性。HAN等[148]利用超快激光在金屬表面制備微納米結(jié)構(gòu)(圖14c),通過(guò)調(diào)整加工策略和激光參數(shù),實(shí)現(xiàn)了微錐結(jié)構(gòu)的高度和空間周期的可調(diào),其接觸角高達(dá)163°,滑動(dòng)角小于2°。通過(guò)對(duì)微結(jié)構(gòu)加工參數(shù)進(jìn)行優(yōu)化,制備出超疏水表面分層結(jié)構(gòu),該表面承受70次線性磨損試驗(yàn)、28 min固體顆粒沖擊實(shí)驗(yàn)后,接觸角保持在150°以上,滑動(dòng)角保持在20°以下,表現(xiàn)出優(yōu)異的綜合耐磨性能。
分層復(fù)合結(jié)構(gòu)通過(guò)在微結(jié)構(gòu)的表面和間隙制備疏水物質(zhì)來(lái)實(shí)現(xiàn)超疏水性能,在磨損時(shí),通常犧牲表面的部分結(jié)構(gòu)來(lái)避免納米結(jié)構(gòu)的破壞,有效保證了超疏水性能的穩(wěn)定性。該制備方法簡(jiǎn)單易行,具有通用性。但面對(duì)嚴(yán)重磨損時(shí),往往難以保持超疏水性能,并且隨著磨損的持續(xù)進(jìn)行,超疏水性能呈現(xiàn)減弱的趨勢(shì)。
多組分協(xié)同作用提高超疏水耐磨性主要通過(guò)加入黏結(jié)劑來(lái)增強(qiáng)涂層與基底的黏結(jié)強(qiáng)度、改善涂層與基底的附著力和增強(qiáng)基底本身的強(qiáng)度,如圖15所示。XUE等[125]先用Al(OH)3與H3PO4混合溶液制備無(wú)機(jī)磷酸鋁(AP)黏結(jié)劑,加入SiO2納米顆粒和十六烷基三甲氧基硅烷(HDTMS)制成AP-SiO2@HDTMS超疏水噴霧,通過(guò)噴涂技術(shù)將超疏水噴霧噴涂在棉織物上,在120 ℃下固化處理制備超疏水涂層。黏結(jié)劑的引入使得涂層在經(jīng)過(guò)10次膠帶剝離和長(zhǎng)達(dá)3 m的砂紙磨損后,水接觸角仍大于150°,滑動(dòng)角小于10°(圖15a)。SHARMA等[149]采用火焰噴涂技術(shù)在低碳鋼表面制備鋁涂層,通過(guò)硅烷處理來(lái)實(shí)現(xiàn)超疏水性能,在不同溫度下進(jìn)行退火,使涂層表面呈現(xiàn)出納米級(jí)層次化結(jié)構(gòu),退火后火焰噴涂的納米海綿樣形貌轉(zhuǎn)化為孔隙率低的納米球體,從而改善層間的附著力,使超疏水涂層具有更高的耐磨性和抗沖擊性。LI等[150]將二氧化硅(SiO2)納米顆粒與十四烷基三甲氧基硅烷(FAS)混合制備不同尺寸的超疏水SiO2納米顆粒(F-SiO2 NPs),將納米顆粒加入到由丙烯酸樹脂和乙酸丁酯(BA)組成的稀釋樹脂溶液中,然后噴涂在基材上,分別在80 ℃和120 ℃下固化30 min,制備成超疏水涂層。選用2000號(hào)砂紙紙面朝下,在3.3 kPa的載荷下進(jìn)行往復(fù)打磨,對(duì)于含有微米級(jí)疏水納米顆粒而言,經(jīng)過(guò)2000次磨損后,接觸角仍高達(dá)160°,滾動(dòng)角約為10°,保持了優(yōu)異的超疏水性能(圖15b)。WU等[151]采用選擇性激光燒結(jié)(SLS)3D打印技術(shù),利用SiO2顆粒與聚丙烯微顆?;旌系膹?fù)合材料,可以實(shí)現(xiàn)耐磨損、大尺度的超疏水表面的制備。在激光燒結(jié)過(guò)程中,聚丙烯顆粒會(huì)局部融合連接相鄰顆粒,以增加表面粗糙度和機(jī)械強(qiáng)度(圖15c)。
雖然通過(guò)多組分協(xié)同作用能有效提高超疏水表面的耐磨性,但多組分的溶劑比例、溶劑類型和制備工藝是重要的影響因素[152],且往往黏結(jié)劑受到基底材料的限制。
近年來(lái),超疏水表面的自修復(fù)是提高超疏水表面耐磨性的新方法(圖16)。當(dāng)超疏水表面由于機(jī)械外力和化學(xué)腐蝕而喪失超疏水性能時(shí),可以通過(guò)再生粗糙度和重新遷移低表面能物質(zhì)至新表面來(lái)重構(gòu)微納結(jié)構(gòu),恢復(fù)超疏水性能。LIU等[153]用正硅酸四乙酯(TEOS)在碳納米管(CNTs)表面原位生長(zhǎng)制備了SiO2顆粒,然后用全氟癸基三甲氧基硅烷對(duì)CNTs@SiO2復(fù)合顆粒進(jìn)行改性,將其分散在熱塑性聚氨酯(TPU)基體中,得到TPU/CNTs@SiO2超疏水涂層。涂層在500 g(或4 kPa)的載荷下使用600目砂紙進(jìn)行打磨,TPU/CNTs@SiO2涂層在130次循環(huán)后接觸角仍大于157.4°。將1 kg的載荷質(zhì)量通過(guò)膠帶加載到涂層表面,經(jīng)過(guò)40次循環(huán)剝離后,TPU/CNTs@SiO2涂層的接觸角保持在153°。通過(guò)TPU和CNTs@SiO2的復(fù)合結(jié)構(gòu)對(duì)機(jī)械耐磨性進(jìn)行強(qiáng)化以及將CNTs@SiO2嵌入在TPU中,當(dāng)表面損傷后,表面粗糙度可再現(xiàn),暴露的新表面仍具有微納米結(jié)構(gòu),使其超疏水性得以保持(圖16a)。LIU等[154]將聚二甲基硅氧烷、乙烯基三乙氧基硅氧烷和二氧化硅顆粒材料分別作為聚合物骨架、橋接材料和嵌入材料,通過(guò)“光聚合+水解縮聚”方法制備了超疏水膜,在聚合物骨架中建立了雙交聯(lián)網(wǎng)絡(luò)和雙尺度粗糙結(jié)構(gòu),使超疏水膜具有優(yōu)異的超疏水性,因膜內(nèi)部整體具有超疏水性,且分層結(jié)構(gòu)具有粗糙度再生特性,超疏水膜在經(jīng)過(guò)15次砂紙摩擦后仍具有很強(qiáng)的機(jī)械耐磨性(圖16b)。LI等[155]以十六烷基三甲氧基硅烷、四乙氧基硅烷和二氧化硅納米顆粒為原料,在鹽酸催化下合成了SiO2@HD-POS懸浮液,以聚氨酯(PU)為黏合劑在基材上進(jìn)行噴涂。涂層在9.8 kPa下的200次砂紙磨損和90.5 kPa下的200次膠帶剝離中表現(xiàn)出優(yōu)異的機(jī)械穩(wěn)定性。由于修復(fù)劑(HD-POS)在受損表面的遷移,涂層還表現(xiàn)出快速穩(wěn)定的自修復(fù)能力(圖16c)。
此外,熱處理常常是誘導(dǎo)超疏水表面自修復(fù)能力的因素[156]。FU等[157]通過(guò)兩步硫醇點(diǎn)擊反應(yīng)合成SiO2-FPU超疏水涂層,支化的氟烷基鏈接枝到聚氨酯骨架上,聚氨酯鍵則位于基體,柔性氟烷基鏈在溶劑制備過(guò)程中傾向于向表面遷移。在玻璃基板上的SiO2-FPU涂層在經(jīng)過(guò)30 m的砂紙磨損、450次膠帶剝離和1.5 h的水沖擊后仍能保持超疏水性。由于柔性和支化的氟烷基鏈在加熱作用下加速向涂層表面遷移并使納米結(jié)構(gòu)重建,可使得SiO2-FPU涂層在損傷后快速恢復(fù)超疏水性(圖16d)。ZHANG等[158]將拋光后的鋁合金用沸水處理,使表面產(chǎn)生粗糙組織,然后加入到由十六烷基三甲氧基硅烷(HDTMS)、鹽酸多巴胺(DA)和三甲基(Tris)緩沖液組成的PDA@HDTMS納米膠囊混合溶液中,制備出具有超疏水特性的鋁合金基材。通過(guò)等離子處理后,表面接觸角接近0°,在120 ℃下處理10 min,接觸角恢復(fù)到153.8°(圖16e)。原因是PDA@HDTMS納米膠囊中的烷基鏈可以通過(guò)基于烷基鏈表面自由能低的熱處理再次成功遷移到PDA@HDTMS納米膠囊的表面,恢復(fù)超疏水鋁合金表面的超疏水性。
超疏水自修復(fù)能力是指在材料制備過(guò)程中,將額外的可再生物質(zhì)成分和低表面能物質(zhì)增加到組分中,當(dāng)微納米粗糙度破壞時(shí),可以通過(guò)先前額外增加的低表面能物質(zhì)自發(fā)遷移來(lái)實(shí)現(xiàn)可再生修復(fù)。但自修復(fù)過(guò)程將導(dǎo)致制備工藝復(fù)雜以及自修復(fù)過(guò)程的效率低等問(wèn)題。
本章總結(jié)了超疏水表面耐磨性的分析手段,基于提高超疏水表面耐磨性的方法,對(duì)比了特定的結(jié)構(gòu)設(shè)計(jì)、多重復(fù)合結(jié)構(gòu)、多組分的協(xié)同作用和建立自修復(fù)能力的策略,為提高超疏水表面耐磨性提供了指導(dǎo),如表1所示??偟膩?lái)說(shuō),研究者評(píng)估耐磨性采用的實(shí)驗(yàn)裝置和實(shí)驗(yàn)方法大多數(shù)是自制的實(shí)驗(yàn)平臺(tái)和自設(shè)的實(shí)驗(yàn)條件,很難做到標(biāo)準(zhǔn)化,因此缺乏實(shí)驗(yàn)結(jié)果的可比性,這將阻礙超疏水表面耐磨性的橫向?qū)Ρ取4送?,?duì)磨損的超疏水表面恢復(fù)超疏水性能,存在制備工藝復(fù)雜、成本較高等問(wèn)題,在一定程度上阻礙了超疏水表面的推廣應(yīng)用。
4 未來(lái)發(fā)展趨勢(shì)
超疏水表面存在易破壞的微納結(jié)構(gòu)和易喪失的低表面能物質(zhì),保證超疏水表面持久的耐磨性仍具有挑戰(zhàn)。雖然在制備耐磨性超疏水表面方法研究上取得了一定的進(jìn)展,但如何以低成本、高效率和大規(guī)模制備環(huán)境友好的耐磨性超疏水表面仍存在困難,實(shí)現(xiàn)工程化應(yīng)用推廣仍是難題。結(jié)合耐磨性超疏水表面制備存在的問(wèn)題,對(duì)未來(lái)該領(lǐng)域的展望如下:
(1)探索高效率、大規(guī)模制備耐磨性超疏水表面加工新方法。高效率、大規(guī)模制備耐磨性超疏水表面是先進(jìn)制造領(lǐng)域的研究熱點(diǎn),過(guò)去通常采用優(yōu)化工藝參數(shù)和改善實(shí)驗(yàn)條件來(lái)提高表面的特殊潤(rùn)濕性,但超疏水表面制備的效率和規(guī)模仍是亟需解決的問(wèn)題。因此,綜合應(yīng)用力學(xué)、材料學(xué)、生物學(xué)和仿生學(xué)等多學(xué)科知識(shí)開展相關(guān)基礎(chǔ)研究,同時(shí)慮及多能場(chǎng)協(xié)同作用對(duì)微納結(jié)構(gòu)的成形特征和潤(rùn)濕性轉(zhuǎn)變機(jī)理進(jìn)行深入探討,引入激光輔助、超聲振動(dòng)輔助等新型工藝對(duì)微納結(jié)構(gòu)進(jìn)行強(qiáng)化,從效率和規(guī)模角度探索制備耐磨性超疏水表面的新方法。
(2)推動(dòng)在復(fù)雜自由曲面上制備耐磨性超疏水表面的工程應(yīng)用。耐磨性超疏水表面加工新方法能夠拓展超疏水表面加工體系,作為面向高端裝備制造業(yè)的前沿領(lǐng)域,是實(shí)現(xiàn)復(fù)雜自由曲面性能提升的重要手段。然而當(dāng)前存在難以與工業(yè)化應(yīng)用融合的難題,從而阻礙了工程化的推廣應(yīng)用。目前,超疏水表面研究工作大多數(shù)是在平面,對(duì)復(fù)雜自由曲面的超疏水表面研究甚少,可以通過(guò)加強(qiáng)聯(lián)合產(chǎn)學(xué)研合作,聚焦工程需求,推動(dòng)超疏水表面的工程化應(yīng)用。此外,超疏水表面耐磨性評(píng)估普遍存在的問(wèn)題是試驗(yàn)設(shè)備、試驗(yàn)條件和磨損材料等缺乏標(biāo)準(zhǔn)化。因此,標(biāo)準(zhǔn)化超疏水表面的實(shí)驗(yàn)方法可能成為未來(lái)研究的重要內(nèi)容。
(3)面向復(fù)雜極端環(huán)境的智能超疏水表面調(diào)控。耐磨性超疏水表面在工程應(yīng)用服役中,面向復(fù)雜極端服役環(huán)境時(shí)會(huì)嚴(yán)重影響服役周期,這常常與材料的耐熱性、承載性直接相關(guān)。智能超疏水表面研究為解決極端服役環(huán)境提供了新的思路。針對(duì)特殊環(huán)境效應(yīng)或環(huán)境交變下的實(shí)際工況,需要特殊潤(rùn)濕性的智能表面(如可逆潤(rùn)濕性和多功能集成),這將提高超疏水表面對(duì)復(fù)雜環(huán)境的適應(yīng)性和耐磨性。此外,為獲得復(fù)雜極端環(huán)境下優(yōu)異的智能表面服役周期,需揭示智能表面調(diào)控參數(shù)與服役周期之間的多因素映射關(guān)系,形成完善的智能調(diào)控策略,進(jìn)而建立面向全生命周期的智能超疏水表面調(diào)控體系,為實(shí)現(xiàn)超長(zhǎng)周期服役超疏水性能提供工藝參考。
參考文獻(xiàn):
[1] WEI J, ZHANG J, CAO X,et al. Durable Superhydrophobic Coatings for Prevention of Rain Attenuation of 5G/Weather Radomes[J]. Nature Communications, 2023, 14(1):2862.
[2] LYU T, CHENG Z, ZHANG D,et al. Superhydrophobic Surface with Shape Memory Micro/Nanostructure and Its Application in Rewritable Chip for Droplet Storage[J]. ACS Nano, 2016, 10(10):9379-9386.
[3] WANG X, LIN D, ZHOU Y,et al. Multistimuli-responsive Hydroplaning Superhydrophobic Microrobots with Programmable Motion and Multifunctional Applications[J]. ACS Nano, 2022, 16(9):14895-14906.
[4] SHI C, WU Z, LI Y,et al. Superhydrophobic/Superhydrophilic Janus Evaporator for Extreme High Salt-resistance Solar Desalination by an Integrated 3D Printing Method[J]. ACS Applied Materials & Interfaces, 2023, 15(19):23971-23979.
[5] WU L, ZHOU C, ZHANG B,et al. Construction of Biomimetic Natural Wood Hierarchical Porous-structure Bioceramic with Micro/Nanowhisker Coating to Modulate Cellular Behavior and Osteoinductive Activity[J]. ACS Applied Materials & Interfaces, 2020, 12(43):48395-48407.
[6] LU J Z, XUE K N, LU H F,et al. Laser Shock Wave-induced Wear Property Improvement and Formation Mechanism of Laser Cladding Ni25 Coating on H13 Tool Steel[J]. Journal of Materials Processing Technology, 2021, 296:117202.
[7] MENG Y, DENG J, GE D,et al. Surface Textures Fabricated by Laser and Ultrasonic Rolling for Improving Tribological Properties of TiAlSiN Coatings[J]. Tribology International, 2021, 164:107248.
[8] FENG X, FAN D, TIAN G,et al. Coupled Bionic Drag-reducing Surface Covered by Conical Protrusions and Elastic Layer Inspired from Pufferfish Skin[J]. ACS Applied Materials & Interfaces, 2022, 14(28):32747-32760.
[9] BUHL S, SCHMIDT K, SAPPOK D,et al. Surface Structuring of Case Hardened Chain Pins by Cold-sprayed Microparticles to Modify Friction and Wear Properties[J]. Particuology, 2015, 21:32-40.
[10] APTE G, HIRTZ M, NGUYEN T H.Fluid FM-based Fabrication of Nanopatterns:Promising Surfaces for Platelet Storage Application[J]. ACS Applied Materials & Interfaces, 2022, 14(21):24133-24143.
[11] HAO X, SUN P, XIAO S,et al. Tribological Performance of Surface with Different Wettability under Ball-on-disc Test[J]. Applied Surface Science, 2020, 501:144228.
[12] ZHOU M, ZHANG L, ZHONG L,et al. Robust Photothermal Icephobic Surface with Mechanical Durability of Multi-bioinspired Structures[J]. Advanced Materials, 2023:2305322.
[13] WANG N, WANG Q, XU S,et al. Robust Superhydrophobic Wood Surfaces with Mechanical Durability[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 608 :125624.
[14] LI X, YAN J, YU T,et al. Versatile Nonfluorinated Superhydrophobic Coating with Self-cleaning, Anti-fouling, Anti-corrosion and Mechanical Stability[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 642:128701.
[15] FAN P, PAN R, ZHONG M. Ultrafast Laser Enabling Hierarchical Structures for Versatile Superhydrophobicity with Enhanced Cassie-baxter Stability and Durability[J]. Langmuir, 2019, 35(51):16693-16711.
[16] XIN L, LI H, GAO J,et al. Large-scale Fabrication of Decoupling Coatings with Promising Robustness and Superhydrophobicity for Antifouling, Drag Reduction, and Organic Photodegradation[J]. Friction, 2023, 11(5):716-736.
[17] JIANG J, SHEN Y, WANG Z,et al. Design and Fabrication Superhydrophobic Surface with Enhanced Mechanical Durability:Interface Bonding Effects Regulated by an Introduced Transition Oxide Layer[J]. Applied Surface Science, 2022, 592:153199.
[18] ZHAO F, ZHAN F, WANG L. Hybrid Topography of Lotus Leaf under Hydrostatic/Hydrodynamic Pressure[J]. Advanced Materials Interfaces, 2022, 10(4):2202044.
[19] SAMANTA A, HUANG W, BELL M,et al. Large-area Surface Wettability Patterning of Metal Alloys via a Maskless Laser-assisted Functionalization Method[J]. Applied Surface Science, 2021, 568(42):150788.
[20] WANG X, YU H, YANG T,et al. Density Regulation and Localization of Cell Clusters by Self-assembled Femtosecond-laser-fabricated Micropillar Arrays[J]. ACS Applied Materials & Interfaces,2021, 13(49):58261-58269.
[21] 陳逢軍,向望,胡天.靜電氣噴磁響應(yīng)復(fù)合微結(jié)構(gòu)功能表面制備研究[J]. 機(jī)械工程學(xué)報(bào), 2022, 58(9):298-306.
CHEN Fengjun, XIANG Wang, HU Tian. Fabrication of Magnetic Responsive Surface with Multiscale Microstructures by Electrostatic Air Spray Deposition[J]. Journal of Mechanical Engineering, 2022, 58(9):298-306.
[22] KIM M, YOO S, JEONG H E,et al. Fabrication of Salvinia-inspired Surfaces for Hydrodynamic Drag Reduction by Capillary-force-induced Clustering[J]. Nature Communications, 2022, 13(1):5181.
[23] WANG L, YIN K, DENG Q,et al. Wetting Ridge-guided Directional Water Self-transport[J]. Advanced Science, 2022, 9(34):e2204891.
[24] XIN G, WU C, LIU W,et al. Anti-corrosion Superhydrophobic Surfaces of Al Alloy Based on Micro-protrusion Array Structure Fabricated by Laser Direct Writing[J]. Journal of Alloys and Compounds, 2021, 881:160649.
[25] 陳炳彬,張征,魯聰達(dá),等.復(fù)合材料層合結(jié)構(gòu)在防覆冰/除冰系統(tǒng)中的應(yīng)用[J]. 中國(guó)機(jī)械工程, 2019, 30(7):771-776.
CHEN Bingbin;ZHANG Zheng;LU Congda, et al.CHAI Guozhong. Applications of Composite Laminated Structures in Anti-icing and De-icing Systems[J]. China Mechanical Engineering, 2019, 30(7):771-776.
[26] HOU Y, ZHAN F, FAN W,et al. Dynamic Anti-icing Performance of Flexible Hybrid Superhydropohobic Surfaces[J]. ACS Applied Materials & Interfaces, 2023, 15(34):41162-41169.
[27] LAN L, DI Y L, WANG H D,et al. One-step Modification Method of a Superhydrophobic Surface for Excellent Antibacterial Capability[J]. Friction, 2022, 11(4):524-537.
[28] LIU Z, LIAN Z, CAI Q,et al. A Scalable Method toward Robust Underwater Superoleophobic Surfaces with Microstructure Arrays on 304 Stainless Steel Substrates[J]. Applied Surface Science, 2023,630(1/3):157465.
[29] LI R, LI Y, JIA X,et al. In-situ Grown of NiAl-LDHs for Self-healing Fabric with Flame-retardant, UV-protection and Antifouling Performance[J]. Ceramics International, 2023, 49(9):14635-14644.
[30] ZHANG W, WANG D, SUN Z,et al. Robust Superhydrophobicity:Mechanisms and Strategies[J]. Chemical Society Reviews, 2021, 50(6):4031-4061.
[31] FENG Y, SUN J, XU L,et al. Angle-independent Structurally Colored Materials with Superhydrophobicity and Self-healing Capability[J]. Advanced Materials Interfaces, 2021, 8(7), 2001950.
[32] BARATI DARBAND G, ALIOFKHAZRAEI M, KHORSAND S,et al. Science and Engineering of Superhydrophobic Surfaces:Review of Corrosion Resistance, Chemical and Mechanical Stability[J]. Arabian Journal of Chemistry, 2020, 13(1):1763-1802.
[33] LIU T L, KIM C J. Repellent Surfaces. Turning a Surface Superrepellent Even to Completely Wetting Liquids[J]. Science, 2014, 346(6213):1096-1100.
[34] XU L, YANG L, YANG S,et al. Earthworm-inspired Ultradurable Superhydrophobic Fabrics from Adaptive Wrinkled Skin[J]. ACS Applied Materials & Interfaces, 2021, 13(5):6758-6766.
[35] SUN P, JIN Y, YIN Y,et al. Achieving Extreme Pressure Resistance to Liquids on a Super-omniphobic Surface with Armored Reentrants[J]. Small Methods, 2023:2201602.
[36] 王立新,張碩研,閆世興,等.豬籠草滑移區(qū)微納復(fù)合結(jié)構(gòu)液滴浸潤(rùn)程度的數(shù)值模擬[J]. 機(jī)械工程學(xué)報(bào), 2022, 58(3):203-212.
WANG Lixin, ZHANG Shuoyan, YAN Shixing, et al. Numerical Simulation of Droplet Infiltration of Micro-nano Structure in Nepenthes Slippery Zone[J]. Journal of Mechanical Engineering, 2022, 58(3):203-212.
[37] LI Y, CUI Z, LI G,et al. Directional and Adaptive Oil Self-transport on a Multi-bioinspired Grooved Conical Spine[J]. Advanced Functional Materials, 2022, 32(27):2201035.
[38] BARTHLOTT W, NEINHUIS C. Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces[J]. Planta, 1997, 202:1-8.
[39] FENG L, LI S, LI Y,et al. Super-hydrophobic Surfaces:from Natural to Artificial[J]. Advanced Materials, 2002, 14(24):1857-1860.
[40] ZHANG H, GAN J, WU Y,et al. Biomimetic High Water Adhesion Superhydrophobic Surface via UV Nanoimprint Lithography[J]. Applied Surface Science, 2023, 633:157610.
[41] YANG L, SHEN X, YANG Q,et al. Fabrication of Biomimetic Anisotropic Super-hydrophobic Surface with Rice Leaf-like Structures by Femtosecond Laser[J]. Optical Materials, 2021, 112:110740.
[42] LIU R, CHI Z, CAO L,et al. Fabrication of Biomimetic Superhydrophobic and Anti-icing Ti6Al4V Alloy Surfaces by Direct Laser Interference Lithography and Hydrothermal Treatment[J]. Applied Surface Science, 2020, 534: 147576.
[43] HAN Z, WANG Z, LI B,et al. Flexible Self-cleaning Broadband Antireflective Film Inspired by the Transparent Cicada Wings[J]. ACS Applied Materials & Interfaces, 2019, 11(18):17019-17027.
[44] WU W, WANG J, LIU Q,et al. Electrochemical Polishing Assisted Selective Laser Melting of Biomimetic Superhydrophobic Metallic Parts[J]. Applied Surface Science, 2022, 596:153601.
[45] WANG Y, ZHANG Z, XU J,et al. One-step Method Using Laser for Large-scale Preparation of Bionic Superhydrophobic & Drag-reducing Fish-scale Surface[J]. Surface and Coatings Technology, 2021, 409:126801.
[46] WOOD M J, BROCK G, DEBRAY J,et al. Robust Anti-icing Surfaces Based on Dual Functionality Horizontal Line Microstructurally-induced Ice Shedding with Superimposed Nanostructurally-enhanced Water Shedding[J]. ACS Applied Materials & Interfaces, 2022,14(41):47310-47321.
[47] ZHANG H, BU X, LI W,et al. A Skin-inspired Design Integrating Mechano-chemical-thermal Robustness into Superhydrophobic Coatings[J]. Advanced Materials, 2022, 34(31):e2203792.
[48] BABAN N S, OROZALIEV A, KIRCHHOF S,et al. Biomimetic Fracture Model of Lizard Tail Autotomy[J]. Science, 2022, 375(6582):770-774.
[49] 連峰,王增勇,張會(huì)臣.雙疏鋁合金表面的水/油潤(rùn)滑摩擦學(xué)性能[J]. 機(jī)械工程學(xué)報(bào), 2016, 52(11):115-120.
LIAN Feng, WANG Zengyong, ZHANG Hui-cheng. Tribological Performance of Amphiphobic Aluminum Alloy Surface under Water/Oil Lubrication[J]. Journal of Mechanical Engineering, 2016, 52(11):115-120.
[50] WANG Y, ZHANG M, YIN J,et al. Effect of Ultrasonic Vibration-assisted Laser Treatment on Surface Roughness and Wettability of Aluminum[J]. Optics & Laser Technology, 2022, 150:107969.
[51] FAN L, YAN Q, QIAN Q,et al. Laser-induced Fast Assembly of Wettability-finely-tunable Superhydrophobic Surfaces for Lossless Droplet Transfer[J]. ACS Applied Materials & Interfaces, 2022, 14(31):36246-36257.
[52] SUN Y, ZHENG Y, WANG R,et al. 3D Micro-nanostructure Based Waterproof Triboelectric Nanogenerator as an Outdoor Adventure Power Source[J]. Nano Energy, 2022, 100:107506.
[53] LIU S, XIAO G, LIN O,et al. Laser Belt Processed Micropillars with Microporous Structure and Nanoparticles to Control the Surface Wettability of Superhydrophobic Inconel 718 Alloy[J]. Surfaces and Interfaces, 2023, 42:103429.
[54] LONG J, CHU P, LI Y,et al. Dual-scale Porous/Grooved Microstructures Prepared by Nanosecond Laser Surface Texturing for High-performance Vapor Chambers[J]. Journal of Manufacturing Processes, 2022, 73:914-923.
[55] XU Y, CHEN L, CHEN J,et al. Flexible and Transparent Pressure/Temperature Sensors Based on Ionogels with Bioinspired Interlocked Microstructures[J]. ACS Applied Materials & Interfaces, 2022, 14(1):2122-2131.
[56] ZHENG J, YANG B, WANG H,et al. Temperature-responsive, Femtosecond Laser-ablated Ceramic Surfaces with Switchable Wettability for On-demand Droplet Transfer[J]. ACS Applied Materials & Interfaces, 2023, 15(10):13740-13752.
[57] WANG L, TIAN Z, JIANG G,et al. Spontaneous Dewetting Transitions of Droplets during Icing & Melting Cycle[J]. Nature Communications, 2022, 13(1):378.
[58] CAO H, CHEN X, LI H. Dressing Strategy and Grinding Control for Cylindrical Microstructural Surface[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99(1/4):707-727.
[59] HUANG Y, HUANG J, XIAO G,et al. Morphology and Wettability Analysis of Square Micropillar Structure Prepared by Laser-belt Machining on Inconel 718 Alloy Surface[J]. The International Journal of Advanced Manufacturing Technology, 2023, 127:1-15.
[60] LI K, YAO W, LIU Y,et al. Wetting and Anti-fouling Properties of Groove-like Microstructured Surfaces for Architectural Ceramics[J]. Ceramics International, 2022, 48(5):6497-6505.
[61] MA Q, TONG Z, WANG W,et al. Fabricating Robust and Repairable Superhydrophobic Surface on Carbon Steel by Nanosecond Laser Texturing for Corrosion Protection[J]. Applied Surface Science, 2018, 455:748-757.
[62] PAN R, ZHANG H, ZHONG M. Triple-scale Superhydrophobic Surface with Excellent Anti-icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication[J]. ACS Applied Materials & Interfaces, 2021, 13(1):1743-1753.
[63] WANG J, ZHANG Y, HE Q. Stretchable Superhydrophobic Fluororubber Fabricated by Transferring Mesh Microstructures[J]. Soft Matter, 2023, 19(8):1560-1568.
[64] ZHENG J, YANG J, CAO W,et al. Fabrication of Transparent Wear-resistant Superhydrophobic SiO2 Film via Phase Separation and Chemical Vapor Deposition Methods[J]. Ceramics International, 2022, 48(21):32143-32151.
[65] 趙重陽(yáng),陸俊宇,王曉博,等.超聲縱扭輔助銑削高強(qiáng)鋁合金表面潤(rùn)濕性能研究[J]. 中國(guó)機(jī)械工程, 2022, 33(16):1912-1918.
ZHAO Chongyang, LU Junyu, WANG Xiaobo, et al. Wettability of High-performance Aluminum Alloy Surfaces Machined Longitudinal-torsion Ultrasonic-assisted Milling[J]. China Mechanical Engineering, 2022, 33(16):1912-1918.
[66] LIN O, XIAO G, LIU S,et al. Rapid Multiscale Surface Texture Manufacturing Process Using Hybrid Laser Belt Machining[J]. Journal of Materials Processing Technology, 2023, 319:118092.
[67] LIU Z, LIU H, LI W,et al. Optimization of Bioinspired Surfaces with Enhanced Water Transportation Capacity[J]. Chemical Engineering Journal, 2022, 433:134568.
[68] GUO C, ZHANG M, HU J. Fabrication of Hierarchical Structures on Titanium Alloy Surfaces by Nanosecond Laser for Wettability Modification[J]. Optics & Laser Technology, 2022, 148:107728.
[69] MA J, LIU Y, ZHANG N,et al. Wettability Transition and Tribological Properties of Hydrophobic Alloy Surfaces Prepared by One-step Method[J]. Tribology International, 2023, 178:108020.
[70] IQBAL M, DINH D K, ABBAS Q,et al. Controlled Surface Wettability by Plasma Polymer Surface Modification[J]. Surfaces, 2019, 2(2):349-371.
[71] NAKAJIMA D, KIKUCHI T, NATSUI S,et al. Mirror-finished Superhydrophobic Aluminum Surfaces Modified by Anodic Alumina Nanofibers and Self-assembled Monolayers[J]. Applied Surface Science, 2018, 440:506-513.
[72] XIE Y, TU P, XIAO Y,et al. Designing Non-fluorinated Superhydrophobic Fabrics with Durable Stability and Photocatalytic Functionality[J]. ACS Applied Materials & Interfaces, 2023,15(33):40011-40021.
[73] GE C, YUAN G, GUO C,et al. Femtosecond Laser Fabrication of Square Pillars Integrated Siberian-cocklebur-like Microstructures Surface for Anti-icing[J]. Materials & Design, 2021, 204:109689.
[74] 李小磊,張磊,馬曉雯,等.基于微肋板伸縮疏水/超疏水表面設(shè)計(jì)及其潤(rùn)濕性調(diào)控[J]. 機(jī)械工程學(xué)報(bào), 2017, 53(5):167-174.
LI Xiaolei, ZHANG Lei, MA Xiaowen, et al. Design and Wettability Control of Hydrophobic/Superhydrophobic Surfaces Based on the Extendable Micro-rib[J]. Journal of Mechanical Engineering, 2017, 53(5):167-174.
[75] YU H D, ZHANG X R, WAN Y L,et al. Superhydrophobic Surface Prepared by Micromilling and Grinding on Aluminium Alloy[J]. Surface Engineering, 2016, 32(2):108-113.
[76] GUO P, ZHENG Y, WEN M,et al. Icephobic/Anti-icing Properties of Micro/Nanostructured Surfaces[J]. Advanced Materials, 2012, 24(19):2642-2648.
[77] ZHU J. A Novel Fabrication of Superhydrophobic Surfaces on Aluminum Substrate[J]. Applied Surface Science, 2018, 447:363-367.
[78] CHEN W, WANG W, LUONG D X,et al. Robust Superhydrophobic Surfaces via the Sand-in Method[J]. ACS Applied Materials & Interfaces, 2022, 14(30):35053-35063.
[79] WANG H, ZHANG Z, ZHENG J,et al. Multifunctional Superhydrophobic Surface with Dynamically Controllable Micro/Nanostructures for Droplet Manipulation and Friction Control[J]. Chemical Engineering Journal, 2021, 417:127944.
[80] YUAN G, LIU Y, XIE F,et al. Fabrication of Superhydrophobic Gully-structured Surfaces by Femtosecond Laser and Imprinting for High-efficiency Self-cleaning Rain Collection[J]. Langmuir, 2022, 38(8):2720-2728.
[81] MAGHSOUDI K, MOMEN G, JAFARI R,et al. Direct Replication of Micro-nanostructures in the Fabrication of Superhydrophobic Silicone Rubber Surfaces by Compression Molding[J]. Applied Surface Science, 2018, 458:619-628.
[82] TIAN W, LI C, LIU K,et al. Fabrication of Transferable and Micro/Nanostructured Superhydrophobic Surfaces Using Demolding and iCVD Processes[J]. ACS Applied Materials & Interfaces, 2023, 15(1):2368-2375.
[83] LI Q, LI Y, XU P,et al. One-step Fabrication Bioinspired Flexible Hierarchical Micro-nano Structures with Different Morphologies[J]. ACS Applied Materials & Interfaces, 2023, 15(36):43016-43025.
[84] WANG B, WANG X, ZHENG H,et al. Surface Wettability Modification of Cyclic Olefin Polymer by Direct Femtosecond Laser Irradiation[J]. Nanomaterials(Basel), 2015, 5(3):1442-1453.
[85] ZHU Z, WU J R, WU Z P,et al. Femtosecond Laser Micro/Nano Fabrication for Bioinspired Superhydrophobic or Underwater Superoleophobic Surfaces[J]. Journal of Central South University, 2022, 28(12):3882-3906.
[86] BAI X, YANG Q, LI H,et al. Sunlight Recovering the Superhydrophobicity of a Femtosecond Laser-structured Shape-memory Polymer[J]. Langmuir, 2022, 38(15):4645-4656.
[87] HE Y, WANG L, WU T,et al. Facile Fabrication of Hierarchical Textures for Substrate-independent and Durable Superhydrophobic Surfaces[J]. Nanoscale, 2022, 14(26):9392-9400.
[88] WU B, ZHOU M, LI J,et al. Superhydrophobic Surfaces Fabricated by Microstructuring of Stainless Steel Using a Femtosecond Laser[J]. Applied Surface Science, 2009, 256(1):61-66.
[89] YAO J, YAN Q, QIAN Q,et al. Directional Droplet Transfer on Micropillar-textured Superhydrophobic Surfaces Fabricated Using a ps Laser[J]. Applied Surface Science, 2022, 594, 153414.
[90] NGUYEN H H, TIEU A K, WAN S,et al. Surface Characteristics and Wettability of Superhydrophobic Silanized Inorganic Glass Coating Surfaces Textured with a Picosecond Laser[J]. Applied Surface Science, 2021, 537:147808.
[91] PAN Q, CAO Y, XUE W,et al. Picosecond Laser-textured Stainless Steel Superhydrophobic Surface with an Antibacterial Adhesion Property[J]. Langmuir, 2019, 35(35):11414-11421.
[92] CUI M, HUANG H, WANG C,et al. Achieving Superhydrophobicity of Zr-based Metallic Glass Surfaces with Tunable Adhesion by Nanosecond Laser Ablation and Annealing[J]. ACS Applied Materials & Interfaces, 2022, 14(34):39567-39576.
[93] LIU C, ZHENG J, LIU X,et al. Facile Laser-based Process of Superwetting Zirconia Ceramic with Adjustable Adhesion for Self-cleaning and Lossless Droplet Transfer[J]. Applied Surface Science, 2023, 638:158069.
[94] HE Y, XIAO G, ZHU S,et al. Surface Formation in Laser-assisted Grinding High-strength Alloys[J]. International Journal of Machine Tools and Manufacture, 2023, 186:104002.
[95] 李晶,趙言輝,于化東,等.鋁合金電刷鍍與激光微加工耦合制備超疏水表面及其特性[J]. 中國(guó)機(jī)械工程, 2017, 28(1):82-87.
LI Jing, ZHAO Yanhui, YU Huadong, et al. WAN Yanling. Fabrication and Properties of Superhydrophobic Surface on Aluminum Alloys Substrates by Brush Plating and Laser Processing Technology[J]. China Mechanical Engineering, 2017, 28(1):82-87.
[96] 顧秦銘,張朝陽(yáng),周暉,等.激光-電化學(xué)沉積制備超疏水銅表面及其Cassie狀態(tài)穩(wěn)定性研究[J].機(jī)械工程學(xué)報(bào), 2020, 56(1):223-232.
GU Qinming, ZHANG Zhaoyang, ZHOU Hui, et al. An Investigation into Preparation and Cassie State Stability Analysis of Superhydrophobic Copper Surface Produced by Laser Ablation and Electrodeposition[J]. Journal of Mechanical Engineering, 2020, 56(1):223-232.
[97] LIU S, XIAO G, LIN O,et al. A New One-step Approach for the Fabrication of Microgrooves on Inconel 718 Surface with Microporous Structure and Nanoparticles Having Ultrahigh Adhesion and Anisotropic Wettability:Laser Belt Processing[J]. Applied Surface Science, 2023, 607:155108.
[98] XIAO G, LIN O, ZHOU Y,et al. Fabrication of Micro-nano Multi-scale Hierarchical Porous Structure on the Surface of Inconel718 Nickel-base Superalloy by One-step Method[J]. Journal of Materials Processing Technology, 2022, 308:117734.
[99] CHEN Q, ZHANG C, CAI Y,et al. Periodically Oriented Superhydrophobic Microstructures Prepared by Laser Ablation-chemical Etching Process for Drag Reduction[J]. Applied Surface Science, 2023, 615:156403.
[100] MA C, KANG M, NDIITHI N J,et al. Wettability Transition of the Picosecond Laser-ablated 304 Stainless-steel Surface via Low-vacuum Heat Treatment[J]. Langmuir, 2021, 37(49):14314-14322.
[101] ZHOU K, XIAO G, XU J,et al. Wear Evolution of Electroplated Diamond Abrasive Belt and Corresponding Surface Integrity of Inconel 718 during Grinding[J]. Tribology International, 2023, 177:107972.
[102] ZHOU K, XIAO G, XU J,et al. Material Removal Behavior of Cf/SiC Ceramic Matrix Composites as a Function of Abrasive Wear during Diamond Abrasive Belt Grinding[J]. Wear, 2021:486-487.
[103] ZHOU K, XU J, XIAO G,et al. A Novel Low-damage and Low-abrasive Wear Processing Method of Cf/SiC Ceramic Matrix Composites:Laser-induced Ablation-assisted Grinding[J]. Journal of Materials Processing Technology, 2022, 302:117503.
[104] GUO X J, ZHANG D, XUE C H,et al. Scalable and Mechanically Durable Superhydrophobic Coating of SiO2/Polydimethylsiloxane/Epoxy Nanocomposite[J]. ACS Applied Materials & Interfaces, 2023, 15(3):4612-4622.
[105] VILARO I, YAGUE J L, BORROS S. Superhydrophobic Copper Surfaces with Anticorrosion Properties Fabricated by Solventless CVD Methods[J]. ACS Applied Materials & Interfaces, 2017, 9(1):1057-1065.
[106] KE C, ZHANG C, WU X,et al. Highly Transparent and Robust Superhydrophobic Coatings Fabricated via a Facile Sol-gel Process[J]. Thin Solid Films, 2021, 723:138583.
[107] SHI S, ZHI C, ZHANG S,et al. Lotus Leaf-inspired Breathable Membrane with Structured Microbeads and Nanofibers[J]. ACS Applied Materials & Interfaces, 2022, 14(34):39610-39621.
[108] 崔煒,郝秀清,陳馨雯,等.脈沖光纖激光制備聚晶金剛石疏液表面的研究[J].中國(guó)機(jī)械工程, 2019, 30(1):30-37.
CUI Wei, HAO Xiuqing, CHEN Xinwen, et al. Study on Fabrication of Lyophobic PCD by Pulsed Fiber Laser[J]. China Mechanical Engineering, 2019, 30(1):30-37.
[109] YANG Y, BIAN Y, GAO Q,et al. Corrosion Resistance Study of Zn-Ni-B4C Composite Superhydrophobic Coatings with Hierarchical Rough Structure[J]. Applied Surface Science, 2023, 622:156882.
[110] WANG N, WANG Q, XU S,et al. Fabrication of Hierarchical Structures on Concrete Surfaces with Superhydrophobicity Using Replicated Micro-nano Dendritic Structures[J]. Journal of Industrial and Engineering Chemistry, 2021, 103:314-321.
[111] CHEN J, YUAN L, SHI C,et al. Nature-inspired Hierarchical Protrusion Structure Construction for Washable and Wear-resistant Superhydrophobic Textiles with Self-cleaning Ability[J]. ACS Applied Materials & Interfaces, 2021, 13(15):18142-18151.
[112] LI N, ZHANG Y, ZHI H,et al. Micro/Nano-cactus Structured Aluminium with Superhydrophobicity and Plasmon-enhanced Photothermal Treap for Icephobicity[J]. Chemical Engineering Journal, 2022, 429:132183.
[113] ZHENG B Y, KANG J J, DI Y L,et al. Study of the Wettability of Laser-built 3Cr13 Stainless Steel[J]. Surface Engineering, 2020, 37(12):1484-1495.
[114] KHAN S A, BOLTAEV G S, IQBAL M,et al. Ultrafast Fiber Laser-induced Fabrication of Superhydrophobic and Self-cleaning Metal Surfaces[J]. Applied Surface Science, 2021, 542:148560.
[115] PAN A, MEI X, WANG W,et al. In-situ Deposition of Oxidized Porous Metal Nanoparticles on the Surface of Picosecond Laser-induced Micro/Nano Structures:a New Kind of Meta-surface Equipped with Both Super-hydrophobicity and Anti-reflectivity[J]. Chemical Engineering Journal, 2023, 460:141582.
[116] ZHAO M, YANG Z, ZHAO J,et al. Ultrasonic Vibration Assisted Laser(UVAL) Treatment of Copper for Superhydrophobicity[J]. Surface and Coatings Technology, 2021, 421:127386.
[117] TRAN N G, CHUN D M. Ultrafast and Eco-friendly Fabrication Process for Robust, Repairable Superhydrophobic Metallic Surfaces with Tunable Water Adhesion[J]. ACS Applied Materials & Interfaces, 2022, 14(24):28348-28358.
[118] NGO C V, CHUN D M. Effect of Heat Treatment Temperature on the Wettability Transition from Hydrophilic to Superhydrophobic on Laser-ablated Metallic Surfaces[J]. Advanced Engineering Materials, 2018, 20(7) :1701086.
[119] HE A, LIU W, XUE W,et al. Nanosecond Laser Ablated Copper Superhydrophobic Surface with Tunable Ultrahigh Adhesion and Its Renewability with Low Temperature Annealing[J]. Applied Surface Science, 2018, 434:120-125.
[120] ZHAO X, LI L, SHANG B,et al. Deep Understanding of the Dependence between Cu Surface Wettability and C-Adsorption/Desorption[J]. Applied Surface Science, 2023, 626, 157230.
[121] CHEN J T, SHEN C H, YANG S D,et al. Acid and Temperature Dual-responsive Cotton Fabrics with Polymer Coating[J]. Composites Communications, 2017, 4:10-15.
[122] XUE C H, LI M, GUO X J,et al. Fabrication of Superhydrophobic Textiles with High Water Pressure Resistance[J]. Surface & Coatings Technology, 2017, 310:134-142.
[123] WU L, ZHANG J P, LI B C,et al. Facile Preparation of Super Durable Superhydrophobic Materials[J]. Journal of Colloid and Interface Science, 2014, 432:31-42.
[124] ZHENG J, QU G, YANG B,et al. Facile Preparation of Robust Superhydrophobic Ceramic Surfaces with Mechanical Stability, Durability, and Self-cleaning Function[J]. Applied Surface Science, 2022, 576:151875.
[125] XUE F, SHI X, BAIW,et al. Enhanced Durability and Versatile Superhydrophobic Coatings via Facile One-step Spraying Technique[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 640:128411.
[126] SU J, SU F, YU H,et al. Synthesis of Superhydrophobic FAS-EP/PTFE Coating with Excellent Drag Reduction Performance and Mechanical Robustness[J]. Applied Surface Science, 2023, 634:157644.
[127] LU C, GAO Y, YU S,et al. Non-fluorinated Flexible Superhydrophobic Surface with Excellent Mechanical Durability and Self-cleaning Performance[J]. ACS Applied Materials & Interfaces, 2022, 14(3):4750-4758.
[128] TANG X, HUANG W, XIE Y,et al. Superhydrophobic Hierarchical Structures from Self-assembly of Cellulose-based Nanoparticles[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(42):14101-14111.
[129] XU W, YI P, GAO J,et al. Large-area Stable Superhydrophobic Poly(dimethylsiloxane) Films Fabricated by Thermal Curing via a Chemically Etched Template[J]. ACS Applied Materials & Interfaces, 2019, 12(2):3042-3050.
[130] LI M, LUO W, SUN H,et al. Micropatterned Amorphous Zr-based Alloys Coated with Silica Nanoparticles as Superhydrophobic Surfaces Against Abrasion[J]. ACS Applied Nano Materials, 2021, 4(11):12300-12307.
[131] WANG S, WANG Y, ZOU Y,et al. Scalable-manufactured Superhydrophobic Multilayer Nanocomposite Coating with Mechanochemical Robustness and High-temperature Endurance[J]. ACS Applied Materials & Interfaces, 2020, 12(31):35502-35512.
[132] GU W, LI W, ZHANG Y,et al. Ultra-durable Superhydrophobic Cellular Coatings[J]. Nature Communications, 2023, 14(1):5953.
[133] PENG C, CHEN Z, TIWARI M K. All-organic Superhydrophobic Coatings with Mechanochemical Robustness and Liquid Impalement Resistance[J]. Nature Materials, 2018, 17(4):355-360.
[134] GOLOVIN K, BOBAN M, MABRY J M,et al. Designing Self-healing Superhydrophobic Surfaces with Exceptional Mechanical Durability[J]. ACS Applied Materials & Interfaces, 2017, 9(12):11212-11223.
[135] KE C, FANG Y, ZHOU Z,et al. Superhydrophobic Composite Coating with Excellent Mechanical Durability[J]. Coatings, 2022, 12(2):185.
[136] MA W, YANG Z, ASIF M B,et al. Scalable-manufactured Anticorrosion and Wear-resistant Superhydrophobic Surfaces[J]. ACS Applied Engineering Materials, 2022, 1(1):519-529.
[137] CHEN C H, CHENG I C, CHEN J Z. Facile Method to Convert Petal Effect Surface to Lotus Effect Surface for Superhydrophobic Polydimethylsiloxane[J]. Surfacesand Interfaces, 2022, 30:101901.
[138] YU Y, DONG Y, NING H,et al. A Robust Superhydrophobic Coating with Multi-dimensional Micro-nano Structure on 5052 Aluminum Alloy[J]. Surface and Coatings Technology, 2023, 465(25):129564.
[139] FU J, SUN Y, JIY,et al. Fabrication of Robust Ceramic Based Superhydrophobic Coating on Aluminum Substrate via Plasma Electrolytic Oxidation and Chemical Vapor Deposition Methods[J]. Journal of Materials Processing Technology, 2022, 306:117641.
[140] YAMAUCHI Y, TENJIMBAYASHI M, SAMI-TSU S,et al. Durable and Flexible Superhydrophobic Materials:Abrasion/Scratching/Slicing/Droplet Impacting/Bending/Twisting-tolerant Composite with Porcupinefish-like Structure[J]. ACS Applied Materials & Interfaces, 2019, 11(35):32381-32389.
[141] WANG H, HE M, LIU H,et al. One-step Fabrication of Robust Superhydrophobic Steel Surfaces with Mechanical Durability, Thermal Stability, and Anti-icing Function[J]. ACS Applied Materials & Interfaces, 2019, 11(28):25586-25594.
[142] PANG B, QIAN J, ZHANG Y,et al. 5S Multifunctional Intelligent Coating with Superdurable, Superhydrophobic, Self-monitoring, Self-heating, and Self-healing Properties for Existing Construction Application[J]. ACS Applied Materials & Interfaces, 2019, 11(32):29242-29254.
[143] ZHU J, DUAN Y. Facilely Etching of Superhydrophobic Surface with Regular Mulriple Hierarchical Micro-nano Structures for Crowning Wettability[J]. Applied Surface Science, 2023,648:159009.
[144] WANG D, SUN Q, HOKKANEN M J,et al. Design of Robust Superhydrophobic Surfaces[J]. Nature, 2020, 582(7810):55-59.
[145] ZHANG X, LIU Z, LI Y,et al. Durable Superhydrophobic Surface Prepared by Designing “Micro-Eggshell” and “Web-Like” Structures[J]. Chemical Engineering Journal, 2020, 392:123741.
[146] CHEN C, TIAN Z, LUO X,et al. Cauliflower-like Micro-nano Structured Superhydrophobic Surfaces for Durable Anti-icing and Photothermal De-icing[J]. Chemical Engineering Journal, 2022, 450:137936.
[147] CHEN C, TIAN Z, LUO X, et al. Micro-nano-nanowire Triple Structure-held PDMS Superhydrophobic Surfaces for Robust Ultra-long-term Icephobic Performance[J]. ACS Applied Materials & Interfaces, 2022, 14(20):23973-23982.
[148] HAN J, CAI M, LIN Y, et al. Comprehensively Durable Superhydrophobic Metallic Hierarchical Surfaces via Tunable Micro-cone Design to Protect Functional Nanostructures[J]. RSC Advances, 2018, 8(12):6733-6744.
[149] SHARMA A, ARORA H, GREWAL H S. Self-regenerative Superhydrophobic Metallic Coatings with Enhanced Durability[J]. Surface and Coatings Technology, 2023,462(15):128459.
[150] LI M, LI Y, XUE F, et al. A Robust and Versatile Superhydrophobic Coating:Wear-resistance Study upon Sandpaper Abrasion[J]. Applied Surface Science, 2019, 480:738-748.
[151] WU Z, SHI C, CHEN A, et al. Large-scale, Abrasion-resistant, and Solvent-free Superhydrophobic Objects Fabricated by a Selective Laser Sintering 3D Printing Strategy[J]. Advanced Science, 2023, 10(9):e2207183.
[152] WANG P, LI C, ZHANG D. Recent Advances in Chemical Durability and Mechanical Stability ofSuperhydrophobic Materials:Multi-strategy Design and Strengthening[J]. Journal of Materials Science & Technology, 2022, 129:40-69.
[153] LIU Y, CAO X, SHI J, et al. A Superhydrophobic TPU/CNTs@SiO2 Coating with Excellent Mechanical Durability and Chemical Stability for Sustainable Anti-fouling and Anti-corrosion[J]. Chemical Engineering Journal, 2022, 434:134605.
[154] LIU M, LUO Y, JIA D. Polydimethylsiloxane-based Superhydrophobic Membranes:Fabrication, Durability, Repairability, and Applications[J]. Polymer Chemistry, 2020, 11(13):2370-2380.
[155] LI Y, LI B, ZHAO X, et al. Totally Waterborne, Nonfluorinated, Mechanically Robust, and Self-healing Superhydrophobic Coatings for Actual Anti-icing[J]. ACS Applied Materials & Interfaces, 2018, 10(45):39391-39399.
[156] LYU T, CHENG Z, ZHANG E, et al. Self-restoration of Superhydrophobicity on Shape Memory Polymer Arrays with both Crushed Microstructure and Damaged Surface Chemistry[J]. Small, 2017, 13(4):1503402.
[157] FU K, LU C, LIU Y, et al. Mechanically Robust, Self-healing Superhydrophobic Anti-icing Coatings Based on a Novel Fluorinated Polyurethane Synthesized by a Two-step Thiol Click Reaction[J]. Chemical Engineering Journal, 2021, 404:127110.
[158] ZHANG Z, XUE F, BAI W, et al. Superhydrophobic Surface on Al Alloy with Robust Durability and Excellent Self-healing Performance[J]. Surface and Coatings Technology, 2021, 410:126952.