摘要:
華集嶺鉬礦床位于華北克拉通北緣東段,是近年來新發(fā)現(xiàn)的鉬礦床。該礦床中礦體呈NNW向展布,傾向西,傾角為45°~50°,主要賦存在花崗斑巖及花崗閃長巖中。礦石類型主要有細(xì)脈狀和浸染狀兩種,礦石礦物以輝鉬礦、磁鐵礦和黃鐵礦為主,少量赤鐵礦和鉬華,發(fā)育云英巖化、鉀化、硅化、綠泥石化和碳酸鹽化等圍巖蝕變。為了確定成礦時(shí)代、成礦流體特征及成礦物質(zhì)來源,本文對華集嶺鉬礦床中的輝鉬礦進(jìn)行了ReOs測年、流體包裹體測溫和HOSPb同位素分析。結(jié)果顯示:華集嶺鉬礦床中輝鉬礦ReOs年齡為(178.0±1.1)Ma,處于古太平洋板塊向歐亞板塊俯沖的構(gòu)造環(huán)境。成礦流體由早期的高溫、中低鹽度、中低密度向晚期的中低溫、中低鹽度、中等密度演化。石英的δ18OH2O值為-2.1‰~2.6‰,δDVSMOW值為-115.8‰~-109.7‰,成礦流體顯示巖漿水與大氣降水混合的特征;輝鉬礦w(Re)值為19.564×10-6~23.128×10-6,成礦物質(zhì)具有殼?;旌系奶卣?;黃鐵礦的δ34SVCDT值為1.9‰~4.2‰,均值為2.7‰,表明硫主要來自幔源;黃鐵礦的206Pb/204Pb、207Pb/204Pb、208Pb/204Pb值分別為17.865~18.279、15.546~15.611、38.011~38.486,進(jìn)一步表明成礦物質(zhì)具有殼?;旌系奶卣?。
關(guān)鍵詞:
輝鉬礦;ReOs測年;成礦流體;流體包裹體;同位素;成礦物質(zhì);華集嶺鉬礦床
doi:10.13278/j.cnki.jjuese.20240213
中圖分類號:P618.2; P611
文獻(xiàn)標(biāo)志碼:A
張雅靜,劉萬臻,盧禹含,等.吉林延邊和龍地區(qū)華集嶺鉬礦床成礦時(shí)代、成礦流體特征及成礦物質(zhì)來源.吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2024,54(6):21542170.doi:10.13278/j.cnki.jjuese.20240213.
Zhang Yajing, Liu Wanzhen, Lu Yuhan,et al.
Mineralization Age, Fluid Properties and Sources of Ore-Forming Materials for Huajiling Molybdenum Deposit in Helong Area of Yanbian, Jilin Province. Journal of Jilin University(Earth Science Edition),2024,54(6):21542170. doi:10.13278/j.cnki.jjuese.20240213.
收稿日期:20240506
作者簡介:張雅靜(1985—),女,講師,博士,主要從事礦物學(xué)、巖石學(xué)、礦床學(xué)等方面的研究,E-mail: yjzhang1985@jlu.edu.cn
基金項(xiàng)目:國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2023YFC2906903);吉林省地勘基金項(xiàng)目([2016]地勘2015)
Supported by the National Key Ramp;D Program of China (2023YFC2906903) and the Geological Prospecting Fund Project of Jilin Province ([2016] Geological Exploration 2015)
Mineralization Age, Fluid Properties and Sources of Ore-Forming Materials for Huajiling Molybdenum Deposit in Helong Area of Yanbian, Jilin Province
Zhang Yajing1, Liu Wanzhen2, Lu Yuhan3, Nie Xitao4, Zhang Jianan1
1. College of Earth Sciences, Jilin University, Changchun 130061, China
2. The Fifth Geological Survey Institute of Jilin Province, Changchun 130103, China
3." Jilin Nonferrous Metals Geological Exploration Bureau Research Institute, Changchun 130012, China
4. School of Geomatics and Prospecting Engineering, Jilin Jianzhu University, Changchun 130119, China
Abstract:
The Huajiling molybdenite deposit is a newly discovered molybdenum deposit located in the eastern section of the northern margin of the North China craton. It features an ore body oriented in NNW direction, dipping at 45° to 50°, surrounded by wall rocks of granite porphyry and granodiorite. The ore types include fine veinlet ores and disseminated ores, primarily consisting of molybdenite, magnetite and pyrite, with minor amounts of hematite. The alteration of wall rock involves dolomitization, potassium mineralization, silicification, chloritization, and carbonate mineralization. In order to determine the mineralization age, fluid properties and sources of ore-forming materials, this study conducted molybdenite ReOs dating, fluid inclusion temperature measurements, and HOSPb isotope analysis on Huajiling deposit. Results indicate that the ReOs age of Huajiling molybdenum deposit is (178.0 ± 1.1) Ma, formed in a tectonic environment where the ancient Pacific plate subducted beneath the Eurasian plate. The ore-forming fluid evolved from high temperature, low to medium salinity, and low to medium density to low temperature, low to medium salinity, and medium density. The δ18OH2O values of quartz range from -2.1‰ to 2.6‰, and δDVSMOW values range from -115.8‰ to -109.7‰, indicating contributions from both magma water and atmospheric precipitation. The w(Re) values of molybdenite range from 19.564×10-6 to 23.128×10-6, exhibiting a crust-mantle mixed source. The δ34SVCDT values of pyrite (1.9‰4.2‰, with an average of 2.7‰) indicate that the sulfur mainly originates from the mantle. Additionally, the 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb values of pyrite range from 17.86518.279, 15.54615.611, and 38.01138.486, respectively, further supporting the crust-mantle mixed source hypothesis for ore-forming materials.
Key words:
molybdenite; ReOs dating; ore-forming fluid; fluid inclusions; isotope;ore-forming materials; Huajiling molybdenum deposit
0" 引言
吉中地區(qū)地處華北克拉通北緣東段與興蒙造山帶東部接壤部位,是我國鉬礦的重要成礦區(qū)[14]。因其獨(dú)特的大地構(gòu)造位置,該地區(qū)相繼發(fā)現(xiàn)了大黑山[59]、季德屯[1013]、大石河[1416]、福安堡[1720]、長安堡[2124]、劉生店[2526]等大中小型鉬礦床。吉林省延邊和龍地區(qū)位于吉中地區(qū)東側(cè),近年來在和龍地區(qū)陸續(xù)發(fā)現(xiàn)了石馬洞[27]、東風(fēng)北山[28]等大中型鉬礦床,該區(qū)成為尋找鉬礦的有利靶區(qū)。同時(shí),大批專家、學(xué)者對延邊和龍地區(qū)進(jìn)行了礦產(chǎn)勘查和科研工作,也進(jìn)一步推動(dòng)了區(qū)域礦產(chǎn)勘查理論研究的深入開展。
華集嶺鉬礦床是近年來在和龍地區(qū)新發(fā)現(xiàn)的鉬礦床,位于古洞河深大斷裂的北側(cè),目前正處于勘查階段,是一處資源潛力較大的鉬礦床。目前,華集嶺鉬礦床成礦時(shí)代和成礦流體的演化尚不明確,成礦物質(zhì)來源尚不清楚,這制約了該礦床成礦理論的研究。本文對華集嶺鉬礦床中輝鉬礦開展ReOs同位素定年,對石英中的流體包裹體開展測溫實(shí)驗(yàn)和HO同位素分析,對礦石中的黃鐵礦進(jìn)行SPb同位素測試,以揭示成礦時(shí)代和構(gòu)造背景,探討流體性質(zhì)及成礦物質(zhì)來源,為下一步的勘查工作提供理論指導(dǎo)和科學(xué)依據(jù)。
1" 區(qū)域地質(zhì)特征
華集嶺鉬礦床大地構(gòu)造位置位于華北克拉通北緣的陸緣增生帶內(nèi)(圖1a)。區(qū)域地層由老至新依次出露太古宇、元古宇、古生界、中生界和新生界[4]。太古宇表殼巖包括雞南巖組和官地巖組[29],呈殘留體零星出露;元古宇為一套穩(wěn)定的碳酸鹽臺地沉積,代表巖性為長仁大理巖;古生界為一套礫巖夾砂巖建造,僅在研究區(qū)最東側(cè)少量出露;中生界包括陸源碎屑沉積的河流相湖泊相和火山碎屑沉積爆發(fā)相噴溢相,大面積出露覆蓋在先存的地層或巖漿巖之上;新生界以船底山組玄武巖為代表,覆蓋了大面積的龍崗地塊。區(qū)域巖漿活動(dòng)十分頻繁,具有多期次、多旋回的特點(diǎn),其空間展布和形態(tài)明顯受區(qū)域性斷裂構(gòu)造控制[3033],巖性以二長花崗巖和花崗閃長巖為主,呈巖基侵入,大面積出露。中—淺成酸性侵入巖呈巖株出露,巖性以斑狀二長花崗巖、花崗斑巖為主;基性—超基性侵入巖呈巖株、巖脈分布,以長仁—獐項(xiàng)巖體為代表。區(qū)域構(gòu)造較為發(fā)育,以北西、北東向深大斷裂為主,其次發(fā)育北北東、近東西向次級構(gòu)造,形成了區(qū)域主要構(gòu)造格局(圖1b)。
1. 第四系;2. 中、新生界;3. 新生代火山巖;4. 中生代火山巖;5.古生代片巖;6. 中元古代—古生代沉積巖;7. 中、新元古代片巖;8. 古元古代淺變質(zhì)巖系;9. 古元古代陸核;10. 太古宙陸核;11. 白堊紀(jì)花崗巖;12. 中、晚侏羅世花崗巖;13. 早侏羅世花崗巖;14. 晚三疊世基性巖;15. 三疊紀(jì)花崗巖;16. 晚二疊世花崗巖;17. 古生代花崗巖;18. 元古宙花崗巖;19. 斷裂及推測斷裂;20. 典型鉬礦位置及編號;21. 華集嶺鉬礦床位置;22. 地名;23. 湖泊;24. 國界線。F1. 塔源—營口斷裂帶;F2. 黑河—嫩江斷裂帶;F3. 牡丹江斷裂帶;F4. 敦密斷裂帶;F5. 同江—當(dāng)斯斷裂帶;F6. 依蘭—沂蒙斷裂帶;F7. 西拉木倫河—長春—延吉斷裂帶;F8. 華北克拉通北緣斷裂帶。鉬礦床:1.長安堡;2.福安堡;3.大石河;4.季德屯;5.芹菜溝;6.大黑山;7.興文;8.四方甸子;9.后倒木;10.大冰湖溝;11.三岔;12.劉生店;13.新華龍;14.東風(fēng)北山;15.石馬洞;16.夾皮溝。據(jù)文獻(xiàn)[27]修編。
2" 礦床地質(zhì)特征
華集嶺鉬礦床位于吉林省安圖縣南部,古洞河深大斷裂北側(cè),礦區(qū)出露的地層僅見新元古界長仁組大理巖;礦區(qū)出露的侵入巖以呈巖基狀產(chǎn)出的二長花崗巖和花崗閃長巖為主,早侏羅世花崗斑巖為隱伏巖體,呈巖株?duì)?,僅在鉆孔中發(fā)現(xiàn),侵入到中三疊世花崗巖中[34]。閃長玢巖與礦體伴生,脈巖發(fā)生明顯的礦化現(xiàn)象(圖2),礦區(qū)內(nèi)可見少量北西走向的橄欖輝石巖。花崗巖與大理巖呈侵入接觸,接觸帶附近有明顯的同化混染現(xiàn)象。區(qū)內(nèi)至少發(fā)育兩期構(gòu)造作用:第一期為北西向斷裂,為成礦熱液提供運(yùn)移通道;第二期為成礦后構(gòu)造,使區(qū)內(nèi)巖石發(fā)生中等—強(qiáng)烈的韌性變形,形成弱片麻狀構(gòu)造的巖石。
勘查發(fā)現(xiàn)I號主礦體1條和未編號薄礦體25條,礦體總體呈北北西向展布,傾向西,傾角45°~50°,主要賦存在花崗斑巖及花崗閃長巖中(圖3)。其中,Ⅰ號礦體呈脈狀,控制長675 m,厚3~97 m,控制斜深20~455 m,Mo品位以0.030%~0.070%為主,0.070%~0.150%品位次之,最高品位為0.672%,傾向上品位變化不大,走向上略有差異。礦石手標(biāo)本上可見石英集合體被定向拉長、局部膨大的現(xiàn)象(圖4a)。
礦石有細(xì)脈狀和浸染狀兩種類型(圖4a、b)。圍巖蝕變主要有鉀化、云英巖化、硅化、綠泥石化和碳酸鹽化等(圖4c、d)。地表氧化礦石中可見鉬華(圖4b),礦石礦物以輝鉬礦、磁鐵礦和黃鐵礦為主,少量赤鐵礦(圖4e、f、g)。脈石礦物有石英、黑云母、微斜長石、綠泥石、方解石和白云母(圖4h、i)等。礦石結(jié)構(gòu)以交代結(jié)構(gòu)為主,也可見半自形粒狀結(jié)構(gòu)和他形粒狀結(jié)構(gòu)等,礦石構(gòu)造主要為細(xì)脈狀和浸染狀構(gòu)造。
通過野外地質(zhì)調(diào)查和室內(nèi)綜合研究,認(rèn)為該礦床經(jīng)歷了熱液成礦期,并可劃分為4個(gè)階段:磁鐵礦石英階段,磁鐵礦集合體在石英脈中呈中細(xì)粒,磁鐵礦的邊緣常??梢姾谠颇负臀⑿遍L石;黃鐵礦石英階段,浸染狀分布的黃鐵礦在石英脈中呈半自形粒狀結(jié)構(gòu),同時(shí)伴生大量的白云母;輝鉬礦石英階段,該階段是鉬的主要形成階段;石英綠泥石碳酸鹽階段,石英脈中可見少量方解石和綠泥石。
據(jù)文獻(xiàn)[34]修編。
3" 樣品采集及測試方法
用于ReOs測試的6件細(xì)脈浸染狀鉬礦石樣品采自探槽的不同部位。處理樣品時(shí),首先將選取的樣本進(jìn)行破碎處理,在雙目鏡下挑純輝鉬礦單礦物(純度gt;98%);然后清洗晾干,用瑪瑙研缽研磨至200目。樣品的ReOs同位素測試工作在中國地質(zhì)科學(xué)院國家地質(zhì)實(shí)驗(yàn)測試中心的ReOs同位素實(shí)驗(yàn)室完成。實(shí)驗(yàn)儀器為TJA Xseries ICPMS,采用Cariustube熔樣法,具體操作步驟參照文獻(xiàn)[35]。
通過詳細(xì)的野外地質(zhì)考察,采集了黃鐵礦石英、輝鉬礦石英、石英綠泥石碳酸鹽3個(gè)成礦階段的樣品。首先將不同成礦階段的樣品制成厚0.5~0.6 mm的測溫片,然后在丙酮中浸泡3~4 h,之后用清水徹底清洗并晾干備用。本次流體包裹體巖相學(xué)觀察和顯微測溫在吉林大學(xué)地質(zhì)流體實(shí)驗(yàn)室進(jìn)行。實(shí)驗(yàn)所使用的測溫儀器為英國制造的Linkam THMS600型冷熱臺,其測溫范圍為-180~500 ℃。
石英、黃鐵礦分選在廊坊市拓軒巖礦檢測服務(wù)有限公司完成。穩(wěn)定同位素分析在核工業(yè)北京地質(zhì)研究院進(jìn)行。HO測試使用Finnigan-MAT253質(zhì)譜儀,δD通過爆裂法取水測定,氫同位素測定精度為±2‰。S同位素測試使用Delta V Plus氣體同位素質(zhì)譜儀,以VCDT為標(biāo)準(zhǔn),精度優(yōu)于±0.2‰。Pb同位素測試使用IsoProbeT質(zhì)譜儀,對1 μg樣品的208Pb/206Pb和207Pb/206Pb測試精度優(yōu)于±0.005‰。
4" 測試結(jié)果
4.1" 輝鉬礦ReOs測年結(jié)果
6件輝鉬礦ReOs同位素測試結(jié)果列于表1。由表1可知,w(Re)為(19.564~23.128)×10-6,單件輝鉬礦樣品ReOs同位素模式年齡介于(176.1±3.1)~(178.7±2.9)Ma之間,利用IsoplotR將6件樣品數(shù)據(jù)擬合后,得到一條相關(guān)性較好的直線,獲得ReOs等時(shí)線年齡為(173±15)Ma(MSWD=0.67)(圖5a)。6件樣品的加權(quán)平均年齡為(178.0±1.1)Ma(MSWD=0.41)(圖5b),與等時(shí)線年齡在誤差范圍內(nèi)一致,表明數(shù)據(jù)具有可靠性。另外,由等時(shí)線測得的187Os初始值為(1.1±3.4)×10-6,接近于0,表明輝鉬礦形成時(shí)只含微量的187Os,輝鉬礦中的187Os主要是由187Re衰變形成,符合ReOs同位素年齡的計(jì)算條件,說明該年齡可以代表輝鉬礦的結(jié)晶年齡。
a. 石英集合體被定向拉長,呈透鏡狀;b. 礦石氧化后表面可見鉬華;c. 鉀化蝕變巖;d. 云英巖化蝕變巖;e. 輝鉬礦呈束狀集合體;f. 半自形的磁鐵礦被赤鐵礦交代;g. 黃鐵礦顆粒;h. 云英巖化蝕變巖中的白云母和石英;i. 鉀化(微斜長石)和白云母化蝕變巖。Qtz. 石英;Mob. 鉬華;Mot. 輝鉬礦;Mag. 磁鐵礦;Hem. 赤鐵礦;Py. 黃鐵礦;Ms. 白云母;Mc. 微斜長石。
4.2" 流體包裹體
4.2.1" 流體包裹體巖相學(xué)特征
對華集嶺鉬礦床黃鐵礦石英、輝鉬礦石英、石英綠泥石碳酸鹽3個(gè)成礦階段的石英中流體包裹體進(jìn)行了室溫下的相態(tài)特征和加熱過程相變研究。原生流體包裹體分為氣液兩相(Ⅰ型)和含CO2三相(Ⅱ型)包裹體,形態(tài)多呈長條狀、橢圓狀或不規(guī)則狀,零星分布。其中:氣液兩相包裹體比較發(fā)育,大小為6~16 μm(圖6),氣液比集中在10%~40%,分布在各成礦階段中;含CO2三相包裹體常溫下由氣相CO2、液相CO2和液相H2O組成,主要發(fā)育在輝鉬礦石英和石英綠泥石碳酸鹽成礦階段,大小為5~15 μm,CO2占包裹體體積的40%~60%,氣相CO2占CO2總體積的30%~40%,個(gè)別可達(dá)50%。
4.2.2" 包裹體顯微測溫
包裹體顯微測溫結(jié)果見表2。氣液兩相包裹體的鹽度和密度由經(jīng)驗(yàn)公式[3638]求得,含CO2三相包裹體的鹽度利用籠合物熔化溫度[39]計(jì)算獲得,密度據(jù)CO2相部分均一溫度[40]求得。
黃鐵礦石英階段氣液兩相包裹體(Ⅰ型)和含CO2三相包裹體(Ⅱ型)均有發(fā)育,二者緊密共生。其中:Ⅰ型包裹體冰點(diǎn)溫度為-9.8~-3.8 ℃,計(jì)算得到相應(yīng)鹽度為6.1%~13.7%,溫度升高均一至液相,最終均一溫度介于301.0~361.4 ℃之間(圖7a),計(jì)算得到密度為0.68~0.87 g/cm3;Ⅱ型包裹體籠合物熔化溫度為3.0~5.9 ℃,最終均一溫度為313.7~365.2 ℃(圖7a),計(jì)算得到相應(yīng)鹽度為7.6%~12.0%(圖7b),密度為0.62~0.82 g/cm3。
輝鉬礦石英階段同樣發(fā)育氣液兩相包裹體(Ⅰ型)和含CO2三相包裹體包裹體(Ⅱ型)。其中:Ⅰ型包裹體冰點(diǎn)溫度為-9.8~-3.7 ℃,溫度升高均一至液相,最終均一溫度介于218.7~308.7 ℃之間(圖7a),計(jì)算得到相應(yīng)鹽度為6.0%~13.8%(圖7c),密度為0.77~0.93 g/cm3;Ⅱ型包裹體籠合物熔化溫度為5.4~6.1 ℃,最終均一溫度介于259.9~308.4 ℃之間,計(jì)算得到相應(yīng)鹽度為7.3%~8.5%,密度為0.75~0.83 g/cm3。
石英綠泥石碳酸鹽階段僅見氣液兩相包裹體(Ⅰ型),冰點(diǎn)溫度為-7.1~-4.5 ℃,溫度升高均一至液相,最終均一溫度介于150.3~219.7 ℃之間(圖7a),計(jì)算得到相應(yīng)鹽度為7.2%~11.0%(圖7d),密度為0.91~0.98 g/cm3。
4.3" 石英HO同位素
本文對華集嶺鉬礦床中黃鐵礦石英階段和輝鉬礦石英階段的石英進(jìn)行了HO同位素分析(表3、圖8)。結(jié)果顯示:黃鐵礦石英階段的δ18OH2O值為2.2‰和2.3‰,δDVSMOW值為-112.1‰和-109.7‰;輝鉬礦石英階段的δ18OH2O值為-2.1‰~2.6‰,δDVSMOW值為-115.8‰~-114.7‰。在HO同位素圖解(圖8)中,石英的HO同位素值均分布于大氣降水線與巖漿水之間,顯示成礦流體巖漿水與大氣降水混合的特征。
底圖據(jù)文獻(xiàn)[41]。
4.4" 黃鐵礦SPb同位素
華集嶺鉬礦床9件黃鐵礦樣品的S同位素測試結(jié)果見表4。黃鐵礦的δ34SVCDT值(1.9‰~4.2‰,均值為2.7‰)在零值附近,為較小的正值。研究表明,華集嶺鉬礦床中礦石的S同位素組成具有深源巖漿硫的特征。
華集嶺鉬礦床中黃鐵礦的鉛同位素結(jié)果見表5。其中,208Pb/204Pb值變化范圍為38.011~38.486,207Pb/204Pb值變化范圍為15.546~15.611,206Pb/204Pb值變化范圍為17.865~18.279。測試結(jié)果顯示,鉛具有較均一的同位素組成,且變化范圍較小,表明該鉬礦床的鉛來自較穩(wěn)定的鉛源。
5" 討論
5.1" 成礦時(shí)代及地球動(dòng)力學(xué)背景
在吉林中東部地區(qū)有大量鉬礦床形成時(shí)代的報(bào)道,如:大黑山鉬礦床成礦年齡為(168.7±3.1)~(168.2±3.2)Ma[4344],福安堡鉬礦床成礦年齡為(166.9±6.7)Ma[22],劉生店鉬礦床成礦年齡為(169.4±1.0)~(168.7±0.7)Ma[19,44],季德屯鉬礦床成礦年齡為(168.4±2.5)Ma[45],大石河鉬礦床成
礦年齡為(186.7±5.0)~(186±3)Ma[1819],四方甸子鉬礦床成礦年齡為(176.4±4.2) Ma[45],東風(fēng)北山鉬礦床成礦年齡為(194.0±2.0) Ma[46],石馬洞鉬礦成礦年齡為(169.3±1.9)~(163.2±1.0)Ma[15,32]。華集嶺鉬礦床中輝鉬礦的ReOs同位素測年結(jié)果顯示,其平均模式年齡為(178.0±1.1)Ma,表明華集嶺鉬礦床形成于早侏羅世。通過對該地區(qū)多個(gè)鉬礦床的年代學(xué)研究,表明華集嶺鉬礦的形成并非孤立事件,而是吉林中部—延邊地區(qū)廣泛存在的鉬多金屬成礦作用的一部分。這一成礦作用主要集中在早—中侏羅世,顯示出該時(shí)期吉林中部—延邊地區(qū)成礦作用的集中性。
目前,關(guān)于吉林中部—延邊地區(qū)早—中侏羅世成巖成礦動(dòng)力學(xué)背景已有較多的論述。研究表明,在小興安嶺—張廣才嶺、延邊等地區(qū)出露大量的侏羅紀(jì)花崗巖,具有相似的物質(zhì)組成[47],均顯示活動(dòng)大陸邊緣的特征[1,45,4852]。結(jié)合晚三疊世古亞洲洋的閉合,推測早侏羅世吉林中部—延邊地區(qū)已經(jīng)處于古太平洋板塊向歐亞板塊俯沖的構(gòu)造環(huán)境。同時(shí),研究區(qū)內(nèi)報(bào)道的早侏羅世A型花崗巖和基性—超基性巖的組合,代表了局部伸展的構(gòu)造背景[5354]。綜上所述,研究區(qū)內(nèi)早—中侏羅世時(shí)期發(fā)生了大規(guī)模的鉬礦成礦作用,可能與古太平洋板塊向歐亞板塊下方俯沖所引發(fā)的局部伸展作用相關(guān)。
5.2" 成礦流體性質(zhì)及演化
礦床地質(zhì)特征表明,華集嶺鉬礦床的形成經(jīng)歷了磁鐵礦石英、黃鐵礦石英、輝鉬礦石英和石英綠泥石碳酸鹽4個(gè)成礦階段。對該礦床3個(gè)成礦階段石英中包裹體的觀察、測試研究表明,黃鐵礦石英成礦階段流體性質(zhì)為高溫、中低鹽度、中低密度,輝鉬礦石英成礦階段流體性質(zhì)為中高溫、中低鹽度、中低密度,石英綠泥石碳酸鹽成礦階段流體性質(zhì)為中低溫、中低鹽度、中等密度。
在氫氧同位素圖解(圖8)中,石英的氫氧同位素值均分布于大氣降水線與巖漿水之間,顯示巖漿水與大氣降水混合的特征。具有代表性的流體包裹體測溫結(jié)果顯示:在黃鐵礦石英階段和輝鉬礦石英階段的包裹體中,可以觀察到氣液兩相包裹體和含CO2的三相包裹體共生的現(xiàn)象,溫度升高,其具有相似的均一溫度,表明成礦流體在形成過程中經(jīng)歷了沸騰作用[55]。沸騰是大規(guī)模礦物質(zhì)沉淀,形成細(xì)脈狀、浸染狀礦體的重要機(jī)制。成礦晚期有少量大氣降水的加入,降低了流體的溫度與鹽度,形成中低溫、中低鹽度的氣液兩相包裹體。綜合特征顯示,初始含礦流體在分離遷移過程中,溫度和壓力下降導(dǎo)致流體沸騰。揮發(fā)性成分逸出改變了流體的物理化學(xué)條件,打破了平衡,促使成礦元素沉淀富集,形成礦床。
5.3" 成礦物質(zhì)來源
輝鉬礦ReOs同位素體系不僅可以確定成礦時(shí)代,同時(shí)可以示蹤成礦物質(zhì)來源。前人[5657]研究認(rèn)為輝鉬礦w(Re)值依次為幔源(n×10-4)、殼幔混源(n×10-5)和殼源(n×10-6)。吉林中東部地區(qū)早—中侏羅世各鉬礦的w(Re)值[2,14,27](圖9)表明,成礦物質(zhì)來源以殼?;煸礊橹?。本文測得華集嶺鉬礦床中6件輝鉬礦w (Re)值為19.564×10-6~
底圖據(jù)文獻(xiàn)[44];石馬洞鉬礦床數(shù)據(jù)來自文獻(xiàn)[27];大石河鉬礦床數(shù)據(jù)來自文獻(xiàn)[14];劉生店、新華龍、大黑山、福安堡、長安堡、后倒木鉬礦床數(shù)據(jù)來自文獻(xiàn)[2]。
23.128×10-6,平均值為22.028×10-6,顯示成礦物質(zhì)具有殼幔混源的特征(圖9)。
硫化物中的硫同位素組成特征能夠有效地追蹤和揭示成礦物質(zhì)的來源。不同來源的硫化物具有不同的δ34S值[5862]。例如,隕石或幔源的硫同位素比值介于-3‰~3‰之間,花崗質(zhì)巖漿的硫同位素比值范圍為-5‰~10‰,大多數(shù)變質(zhì)巖類的硫同位素比值為0‰~20‰,而沉積源還原硫的比值則小于0‰。華集嶺鉬礦床金屬礦物以輝鉬礦、磁鐵礦和黃鐵礦為主,另發(fā)育少量赤鐵礦等,黃鐵礦的δ34S值基本可以代表成礦流體總硫同位素組成的特征,范圍為1.9‰~4.2‰(表4),均值為2.7‰,與幔源巖漿硫值(-3‰~3‰)接近,與吉林中東部地區(qū)典型礦床硫同位素值[5,45,63]接近(圖10),表明成礦物質(zhì)主要來自幔源硫。
鉛屬于親硫元素,能夠直接進(jìn)入硫化物的晶格結(jié)構(gòu)中[64]。在金屬硫化物中,鈾和釷的質(zhì)量分?jǐn)?shù)甚微,同時(shí)含有一定量的鉛。硫化物結(jié)晶后,其衰變產(chǎn)生的放射性鉛質(zhì)量分?jǐn)?shù)極微,幾乎可以忽略。而鉛同位素的組成受環(huán)境因素的影響相對較小,因此,它能夠有效地反映礦床中成礦物質(zhì)的來源[6566]。通過分析礦石內(nèi)硫化物的鉛同位素比值,并將其與潛在源區(qū)的鉛同位素組成進(jìn)行對比,可以判定礦床形成體系中鉛的來源,這一方法目前在國際上得到了廣泛的認(rèn)可。已有眾多學(xué)者采用鉛同位素技術(shù)來示蹤成礦物質(zhì)來源[6673]。在華集嶺鉬礦床中,黃鐵礦
的鉛同位素組成變化范圍較小。具體來說,
大黑山鉬礦床數(shù)據(jù)來自文獻(xiàn)[45,63];福安堡鉬礦床數(shù)據(jù)來自文獻(xiàn)[5]。
206Pb/204Pb值介于17.865~18.279之間,207Pb/204Pb值介于15.546~15.611之間,208Pb/204Pb值介于38.011~38.486之間。在鉛同位素構(gòu)造模式圖(圖11)中,投影點(diǎn)主要位于造山帶附近,表明其具有混合源的特征[7475]。根據(jù)黃鐵礦鉛同位素測試結(jié)果,得到了黃鐵礦中鉛的相對偏差數(shù)值,具體包括Δα、Δβ和Δγ 3個(gè)參數(shù)(表5)。在ΔγΔβ成因分類圖解(圖12)上進(jìn)行了投圖分析。結(jié)果顯示,典型礦床大黑山鉬礦床和華集嶺鉬礦床所有點(diǎn)均落于上地殼與地?;旌系膸r漿作用成因鉛區(qū)域之內(nèi),表明其物質(zhì)來源具有殼?;煸吹奶攸c(diǎn)。
綜上所述,w(Re)值和S、Pb同位素證據(jù)表明華集嶺鉬礦床成礦物質(zhì)主要來源于殼?;煸础?/p>
6" 結(jié)論
1)華集嶺鉬礦床中輝鉬礦ReOs年齡為(178.0±1.1)Ma,表明華集嶺鉬礦床形成于早侏羅世,處于古太平洋板塊向歐亞板塊俯沖的構(gòu)造環(huán)境。
2)華集嶺鉬礦床成礦流體性質(zhì)由高溫、中低鹽度、中低密度的巖漿流體向中低溫、中低鹽度、中等密度演化,晚期有少量大氣降水的加入。
3)華集嶺鉬礦床w(Re)值和S、Pb同位素特征顯示,成礦物質(zhì)的來源主要為殼幔混源。
參考文獻(xiàn)(References):
[1]" 孫景貴,張勇,邢樹文,等, 興蒙造山帶東緣內(nèi)生鉬礦床的成因類型、成礦年代及成礦動(dòng)力學(xué)背景[J]. 巖石學(xué)報(bào), 2012, 28(4): 13171332.
Sun Jinggui, Zhang Yong, Xing Shuwen, et al. Genetic Types,Ore-Forming Age and Geodynamic Setting of Endogenic Molybdenum Deposits in the Eastern Edge of Xing-Meng Orogenic Belt[J]. Acta Petrologica Sinica, 2012, 28(4): 13171332.
[2]" Zhang Y, Sun J G, Xing S W, et al. Geochronology and Metallogenesis of Morphyry Mo Deposits in East-Central Jilin Province, China: Constraints from Molybdenite ReOs Isotope Systematics[J]. Ore Geology Reviews, 2015, 71: 363372.
[3]" 陳衍景,張成,李諾,等.中國東北鉬礦床地質(zhì)[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版), 2012, 42(5): 12231268.
Chen Yanjing, Zhang Cheng, Li Nuo, et al. Geology of the Mo Deposits in Northeast China [J]. Journal of Jilin University (Earth Science Edtion), 2012, 42(5): 12231268.
[4]" 鞠楠.吉林中部斑巖型鉬礦成礦規(guī)律與遠(yuǎn)景預(yù)測[D]. 長春:吉林大學(xué), 2020: 1132.
Ju Nan. Metallogenic Regularity and Prospective Prediction of Porphyry Molybdenum Deposits in Central Jilin Province, NE China[D]. Changchun: Jilin University, 2020: 1132.
[5]" 于曉飛, 侯增謙, 張晗,等. 吉林永吉縣大黑山斑巖型鉬礦床成礦流體地球化學(xué)特征及成礦機(jī)制[J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版), 2012, 42 (6): 16881699.
Yu Xiaofei, Hou Zengqian, Zhang Han, et al. Characteristics of Ore-Forming Fluids and Metallogenic Mechanism of the Daheishan Porphyry Mo Deposit in Yongji Area,Jilin Province[J]. Journal of Jilin University (Earth Science Edition), 2012, 42 (6): 16881699.
[6]" Ju N, Zhang D, Zhang G B, et al. Geology and Mineralization of the Daheishan Supergiant Porphyry Molybdenum Deposit(1.65 Bt), Jilin, China: A Review[J]. China Geology, 2023, 6(3): 494530.
[7]" Zhou L L, Zeng Q D, Liu J M, et al. Geochronology of Magmatism and Mineralization of the Daheishan Giant Porphyry Molybdenum Deposit, Jilin Province, Northeast China: Constraints on Ore Genesis and Implications for Geodynamic Setting[J]. International Geology Review, 2014, 56(8): 929953.
[8]" Wang C H, Song Q H, Wang D H, et al. Re-OsIsotopic Dating of Molybdenite from the Daheishan Molybdenum Deposit of Jilin Province and Its Geological Significance[J]. Rock and Mineral Analysis, 2009, 28(3): 269273.
[9]" Han C M, Xiao W J, Windley B F, et al. Re-Os Age of Molybdenite from the Daheishan Mo Deposit in the Eastern Central Asian Orogenic Belt, NE China[J]. Resource Geology, 2014, 64(4): 379386.
[10]" Wang Z G, Wang K Y, Wan D, et al. Metallogenic Age and Hydrothermal Evolution of the Jidetun Mo Deposit in Central Jilin Province, Northeast China: Evidence from Fluid Inclusions, Isotope Systematics, and Geochronology[J]. Ore Geology Reviews, 2017, 89: 731751.
[11]" 盧志強(qiáng),李緒俊,秋晨,等.吉林中東部季德屯鉬礦床含礦巖體地質(zhì)、地球化學(xué)及年代學(xué)研究[J].礦床地質(zhì), 2016, 35(2): 349364.
Lu Zhiqiang, Li Xujun, Qiu Chen, et al.
Geology, Geochemistry and Geochronology of Ore-Bearing Intrusions in Jidetun Molybdenum Deposit in Mid-East Jilin Province[J]. Geology of Ore Deposits, 2016, 35(2): 349364.
[12]" 孟慶豐,于曉飛,鄭偉.吉林季德屯鉬礦區(qū)石英二長巖SIMS鋯石UPb年代學(xué)、地球化學(xué)特征及其成因[J].地質(zhì)學(xué)報(bào), 2016, 90(5):917932.
Meng Qingfeng, Yu Xiaofei, Zheng Wei. Zircon UPb Geochronology, Geochemistry and Petrogenesis of the Quartz Monzonite from the Jidetun Molybdenum Deposit in Jilin Province[J]. Acta Geologica Sinica, 2016, 90(5): 917932.
[13]" 邵建波,王洪濤,陳殿義,等.吉林省中東部季德屯及石馬洞大型鉬礦床輝鉬礦ReOs同位素年齡及地質(zhì)意義[J].世界地質(zhì), 2016, 35(3): 717728.
Shao Jianbo, Wang Hongtao, Chen Dianyi, et al. ReOs Isotopic Dating of Molybdenites from Jidetun and Shimadong Large Molybdenum Deposits in Centro-Eastern Jilin and Its Geological Significance[J]. Global Geology, 2016, 35(3): 717728.
[14]" 鞠楠,任云生,王超,等.吉林敦化大石河鉬礦床成因與輝鉬礦ReOs同位素測年[J].世界地質(zhì), 2012, 31 (1): 6876.
Ju Nan, Ren Yunsheng, Wang Chao, et al. Ore Genesis and Molybdenite ReOs Dating of Dashihe Molybdenum Deposit in Dunhua,Jilin[J]. Global Geology, 2012, 31 (1): 6876.
[15]" 王輝,任云生,侯鶴楠.延邊大石河鉬礦床成因及成礦時(shí)代[J].礦物學(xué)報(bào), 2011, 31 (增刊1): 9697.
Wang Hui, Ren Yunsheng, Hou Henan. Genesis and Ore-Forming Age of Dashihe Molybdenum Deposit in Yanbian[J]. Acta Mineralogica Sinica, 2011, 31 (Sup.1): 9697.
[16]" 劉興橋,劉俊斌,張俊影.吉林省敦化市大石河鉬礦地質(zhì)特征及找礦方向[J].吉林地質(zhì), 2009, 28(3): 3942.
Liu Xingqiao, Liu Junbin, Zhang Junying. Geological Characteristics and Prospecting Direction of Dashihe Molybdenum Deposit in Dunhua City, Jilin Province[J]. Jilin Geology, 2009, 28 (3): 3942.
[17]" 李立興,松權(quán)衡,王登紅,等.吉林福安堡鉬礦中輝鉬礦錸鋨同位素定年及成礦作用探討[J].巖礦測試, 2009, 28(3): 283287.
Li Lixing, Song Quanheng, Wang Denghong, et al. ReOs Isotope Dating and Molybdenite from the Fu’
anpu Molybdenum Deposit of Jilin Province and Discussion on Its Metallogenesis[J]. Rock and Mineral Analysis, 2009, 28 (3): 283287.
[18]" 于曉飛,侯增謙,錢燁,等.吉林中東部福安堡鉬礦床成礦流體、穩(wěn)定同位素及成礦時(shí)代研究[J].地質(zhì)與勘探, 2012, 48(6): 11511162.
Yu Xiaofei, Hou Zengqian, Qian Ye, et al. Ore-Forming Fluids,Stable Isotopes and Metallogenic Epoch of the Fu’anpu Molybdenum Deposit in Mid-East Jilin Province[J].
Geology and Exploration, 2012, 48 (6): 11511162.
[19]" 劉萬臻.吉林省福安堡鉬礦礦床地質(zhì)特征及成因類型研究[D].長春:吉林大學(xué), 2014: 165.
Liu Wanzhen. Study on Geological Features and Genetic Type of Fu’anbao Molybdenum Deposit, Jilin Province[D]. Changchun: Jilin University, 2014: 165.
[20]" 史玥師,李雪瑩,史致元.吉林省舒蘭市福安堡大型鉬礦床勘查過程回顧[J].吉林地質(zhì), 2015, 34(1): 5456.
Shi Yueshi, Li Xueying, Shi Zhiyuan. Review of the Exploration Process of the Fu’anbao Large Molybdenum Deposit in Shulan City, Jilin Province[J]. Jilin Geology, 2015, 34(1): 5456.
[21]" Zhang J, Yang Y C, Han S J, et al. Geochronology, Geochemistry, and Lu-Hf Isotopic Compositions of Monzogranite Intrusion from the Chang’anpu Mo Deposit, NE China: Implications for Tectonic Setting and Mineralization[J]. Minerals, 2022, 12(8): 967.
[22]" 松權(quán)衡,邢樹文,張勇,等.吉林長安堡鉬(銅)礦床成礦時(shí)代及物質(zhì)來源:來自輝鉬礦ReOs同位素證據(jù)[J].巖礦測試, 2016, 35(5): 550557.
Song Quanheng, Xing Shuwen, Zhang Yong, et al. Origin and Geochronology of Chang’anpu MoCu Deposit in Jilin Province: Constraints from Molybdenite ReOs Isotope Systematics[J]. Rock and Mineral Analysis, 2016, 35(5): 550557.
[23]" 張劍,楊言辰,尹成偉.吉林省舒蘭市長安堡鉬銅礦床地質(zhì)特征及找礦意義[J].吉林地質(zhì), 2013, 32(1):6366,76.
Zhang Jian, Yang Yanchen, Yin Chengwei. Geologic Features and Prospecting Significance of the Chang’-
anpu MoCu Deposit, Shulan Area, Jilin Province[J]. Jilin Geology, 2013, 32 (1): 6366,76.
[24]" Ju N, Ren Y S, Zhang S, et al. The Early Jurassic Chang’anpu Porphyry CuMo Deposit in Northeastern China: Constraints from Zircon UPb Geochronology and HOSPb Stable Isotopes[J]. Geological Journal, 2018, 53(6): 24372448.
[25]" 王輝,任云生,趙華雷,等.吉林安圖劉生店鉬礦床輝鉬礦ReOs同位素定年及其地質(zhì)意義[J].地球?qū)W報(bào), 2011, 32(6): 707715.
Wang Hui, Ren Yunsheng, Zhao Hualei, et al. ReOs Dating of Molybdenite from the Liushengdian Molybdenum Deposit in Antu Area of Jilin Province and Its Geological Significance[J]. Acta Geoscientica Sinica, 2011, 32 (6): 707715.
[26]" 王景德,陳惠鵬,趙娟.安圖縣劉生店鉬礦床地質(zhì)特征及找礦標(biāo)志[J].吉林地質(zhì), 2007, 26(2): 69.
Wang Jingde, Chen Huipeng, Zhao Juan. Geologic Features and Ore-Hunting Indicator of the Liushengdian Mo Deposit, Antu County, Jilin Province[J]. Jilin Geology, 2007, 26(2): 69.
[27]" Nie X T, Sun J G, Sun F Y, et al. Zircon UPb and Molybdenite ReOs Dating and Geological Implications of the Shimadong Porphyry Molybdenum Deposit in Eastern Yanbian, NE China[J]. Canadian Journal of Earth Sciences, 2020, 57(5): 630646.
[28]" 高岫生,吳衛(wèi)群,韓壽軍.天寶山東風(fēng)北山鉬礦床地質(zhì)特征及成因探討[J].吉林地質(zhì), 2010, 29(4): 4353.
Gao Xiusheng, Wu Weiqun, Han Shoujun. Geological Features and Genesis of Dongfengbeishan Molybdenum Deposit in Tianbaoshan[J]. Jilin Geology, 2010, 29 (4): 4353.
[29]" 商青青,任云生,陳聰,等. 延邊官地鐵礦構(gòu)造背景與和龍地塊太古宙地殼增生:來自巖石地球化學(xué)、鋯石UPb年代學(xué)及Hf同位素證據(jù)[J]. 地球科學(xué), 2017, 42 (12): 22082228.
Shang Qingqing, Ren Yunsheng, Chen Cong, et al. Tectonic Setting of Guandi Iron Deposit and Archean Crustal Growth of Helong Massif in NE China: Evidence from Petrogeochemistry, Zircon UPb Geochronology and Hf Isotope[J]. Earth Science, 2017, 42 (12): 22082228.
[30]" 褚小磊. 吉黑東部陸緣中生代斑巖型銅成礦作用研究[D]. 長春:吉林大學(xué), 2022: 1270.
Chu Xiaolei. Mesozoic Porphyry Copper Mineralization in the Eastern Continental Margin of Jilin and Heilongjiang Province[D]. Changchun: Jilin University, 2022: 1270.
[31]" 王琳琳. 中國東北小興安嶺及鄰區(qū)斑巖型礦床成礦作用研究[D]. 長春:吉林大學(xué), 2018: 1180.
Wang Linlin. Study on Metallogenesis of Porphyry Deposits in Lesser Xing’an Range and Its Adjacent Areas, NE China[D]. Changchun: Jilin University, 2018: 1180.
[32]" 薛昊日. 吉林省鎂鐵質(zhì)超鎂鐵質(zhì)巖特征及成礦作用研究[D]. 長春:吉林大學(xué), 2020: 1245.
Xue Haori. Features of the Mafic-Ultramafic Rocks in Jilin Province and Their Metallogenesis[D]. Changchun: Jilin University, 2020: 1245.
[33]" 趙華偉,李德洪,臧興運(yùn),等. 吉中—延邊地區(qū)燕山期巖漿作用與礦床成礦系列研究[J]. 地質(zhì)學(xué)報(bào), 2020, 94 (1): 241254.
Zhao Huawei, Li Dehong, Zang Xingyun, et al. A Study of Magmatism and Ore Deposit Series of Yanshanian Magmatism in the Central Jilin-Yanbian Area[J]. Acta Geologica Sinica, 2020, 94 (1): 241254.
[34]" 吉林省地質(zhì)調(diào)查院. 吉林省和龍市華集嶺地區(qū)鉛鋅多金屬礦普查報(bào)告[R].長春:吉林省地質(zhì)調(diào)查院, 2023.
Jilin Institute of Geological Survey. Geological Prospecting Report of Lead-Zinc Polymetallic Deposit in Huajiling Area, Helong City, Jilin Province[R]. Changchun: Jilin Institute of Geological Survey, 2023.
[35]" 杜安道,趙敦敏,王淑賢,等.Carius管溶樣負(fù)離子熱表面電離質(zhì)譜準(zhǔn)確測定輝鉬礦錸鋨同位素地質(zhì)年齡[J].巖礦測試, 2001, 20(4): 247252.
Du Andao, Zhao Dunmin, Wang Shuxian, et al. Precise ReOs Dating for Molybdenite by IDNTIMS with Carius Tube Sample Preparation [J]. Rock and Mineral Analysis, 2001, 20(4): 247252.
[36]" Bodnar R J. A Method of Calculating Fluid Inclusion Volumes Based on Vapor Bubble Diameters and PVTX Properties of Inclusion Fluids [J]. Economic Geology, 1983, 78(3): 535542.
[37]" Bodnar R J. Revised Equation and Table for Determining the Freezing Point Depression of H2ONaCl Solutions[J]. Geochimica et Cosmochimica Acta, 1993, 57(3): 683684.
[38]" Hall D L. Freezing Point Depression of NaClKClH2O Solution[J]. Economic Geology, 1988, 83: 197202.
[39]" Bozzo A T, Hsiao-Sheng C, Kass J R, et al. The Properties of the Hydrates of Chlorine and Carbon Dioxide[J]. Desalination, 1975, 16(3): 303320.
[40]" Touret J, Bottinga Y. quations D’état Pour Le CO2: Application Aux Inclusions Carboniques[J]. Bull Mineral, 1979, 102(5/6): 577583.
[41]" Taylor H P. The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition[J]. Economic Geology, 1974, 69(6): 843883.
[42]" 路遠(yuǎn)發(fā).GeoKit: 一個(gè)用VBA構(gòu)建的地球化學(xué)工具軟件包[J] .地球化學(xué), 2004,33(5): 459464.
Lu Yuanfa.GeoKit: A Geochemical Toolkit for Microsoft Excel[J]. Geochimica, 2004, 33 (5): 459464.
[43]" 王成輝,松權(quán)衡,王登紅,等.吉林大黑山超大型鉬礦輝鉬礦錸鋨同位素定年及其地質(zhì)意義[J]. 巖礦測試, 2009, 28(3): 269273.
Wang Chenghui, Song Quanheng, Wang Denghong, et al. ReOs Isotopic Dating of Molybdenite from the Daheishan Molybdenum Deposit of Jilin Province and Its Geological Significance[J]. Rock and Mineral Analysis, 2009, 28(3): 269273.
[44]" Zhang Y, Sun J G, Xing S W, et al. Geochronology and Metallogenesis of Porphyry Mo Deposits in East-Central Jilin Province, China: Constraints from Molybdenite ReOs Isotope Systematics[J]. Ore Geology Reviews, 2015, 71: 363372.
[45]" 張勇. 吉林省中東部地區(qū)侏羅紀(jì)鉬礦床的地質(zhì)、地球化學(xué)特征與成礦機(jī)理研究[D]. 長春:吉林大學(xué), 2013: 1157.
Zhang Yong. Research on Characteristics of Geology, Geochemistry and Metallogenic Mechanism of the Jurassic Molybdenum Deposits in the Mid-East Area of Jilin[D]. Changchun: Jilin University, 2013: 1157.
[46]" Guo W K, Zeng Q D, Zhang B, et al. Genesis of the Jurassic Dongfengbeishan Porphyry Mo Deposit in Eastern Yanbian, NE China Inferred from Molybdenite ReOs and Zircon UPb Ages, and Whole-Rock Elemental and Zircon Hf Isotopic Compositions[J]. Journal of Asian Earth Sciences, 2018, 165: 256269.
[47]" 張艷斌,吳福元,翟明國,等.和龍地塊的構(gòu)造屬性與華北地臺北緣東段邊界[J].中國科學(xué):D輯:地球科學(xué), 2004,34(9): 795806.
Zhang Yanbin, Wu Fuyuan, Zhai Mingguo, et al. Tectonic Setting of the Helong Block: Implications for the Northern Boundary of the Eastern North China Craton[J]. Chinese Science:Series D: Earth Science, 2004, 34(9): 795806.
[48]" Zhang Y B, Wu F Y, Wilde S A, et al. Zircon UPb Ages and Tectonic Implications of ‘Early Paleozoic’ Granitoids at Yanbian, Jilin Province, Northeast China[J]. Island Arc, 2004, 13: 484505.
[49]" 許文良,王楓,裴福萍,等. 中國東北中生代構(gòu)造體制與區(qū)域成礦背景:來自中生代火山巖組合時(shí)空變化的制約[J]. 巖石學(xué)報(bào), 2013, 29(2): 339353.
Xu Wenliang, Wang Feng, Pei Fuping, et al. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations[J]. Acta Petrologica Sinica, 2013, 29(2): 339353.
[50]" 唐杰,許文良,王楓,等.古太平洋板塊在歐亞大陸下的俯沖歷史: 東北亞陸緣中生代古近紀(jì)巖漿記錄[J]. 中國科學(xué): 地球科學(xué), 2018, 48(5): 549583.
Tang Jie, Xu Wenliang, Wang Feng, et al. Subduction History of the Paleo-Pacific Slab Beneath Eurasian Continent: Mesozoic-Paleogene Magmatic Records in Northeast Asia[J]. Science China: Earth Science, 2018, 48(5): 549583.
[51]" 錢燁,趙昌吉,張濤,等.吉林中部早侏羅世A型花崗巖的地球化學(xué)特征及地質(zhì)意義[J].黑龍江科技大學(xué)學(xué)報(bào), 2021, 31(5): 562568,577.
Qian Ye, Zhao Changji, Zhang Tao, et al. Geochemical Characteristics and Geological Significance of Early Jurassic A-Type Granite in Central Jilin Province[J]. Journal of Heilongjiang University of Science and Technology, 2021, 31 (5): 562568,577.
[52]" 聶喜濤.延邊和龍地區(qū)中生代熱液金銀、鉬和鐵銅多金屬成礦作用與成礦地質(zhì)模式研究[D].長春:吉林大學(xué), 2019: 1241.
Nie Xitao. Research on the Metallogenesis and Geological Model of the Mesozoic Hydrothermal AuAg, Mo and FeCu Polymetallic Deposits in Helong of Yanbian Aera, Jilin Province[D]. Changchun: Jilin University, 2019: 1241.
[53]" Yu J J, Wang Feng, Xu W L, et al. Early Jurassic Mafic Magmatism in the Lesser Xing’an-Zhangguangcai Range, NE China, and Its Tectonic Implications: Constraints from Zircon UPb Chronology and Geochemistry[J]. Lithos, 2012, 142: 256266.
[54]" 葉希青,孫立影,徐智濤,等.吉林中部靠山地區(qū)早侏羅世正長花崗巖鋯石UPb年代學(xué)、地球化學(xué)特征及其動(dòng)力學(xué)意義[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版), 2023, 53(3): 964983.
Ye Xiqing, Sun Liying, Xu Zhitao, et al. Zircon UPb Geochronology, Geochemical Characteristics" and Geodynamic
Significance of" the Early Jurassic Syenogranite in the Kaoshan Area of Central Jilin Province [J]. Journal of Jilin University (Earth Science Edition), 2023, 53(3): 964983.
[55]" 盧煥章,范宏瑞,倪培,等. 流體包裹體[M]. 北京:科學(xué)出版社, 2004: 1487.
Lu Huanzhang, Fan Hongrui, Ni Pei, et al. Fluid Inclusions[M]. Beijing: Science Press, 2004: 1487.
[56]" Mao J W, Zhang Z C, Zhang Z H, et al. ReOs Isotopic Dating of Molybdenites in the Xiaoliugou W(Mo) Deposit in the Northen Qilian Mountaions and Its Geological Significance[J]. Geochimica et Cosmochimica Acta, 1999, 63:18151818.
[57]" 孟祥金,侯增謙,董光裕,等.江西金溪熊家山鉬礦床特征及其ReOs年齡[J]. 地質(zhì)學(xué)報(bào), 2007, 81(7): 946951.
Meng Xiangjin, Hou Zengqian, Dong Guangyu, et al. The Geological Characteristics and ReOs Isotope Age of Molybdenite of the Xiongjiashan Molybdenum Deposit Jiangxi Province[J]. Acta Geologica Sinica, 2007, 81(7): 946951.
[58]" 陶利鑫, 甄世民, 白海軍,等. 河北大白陽金礦床黃鐵礦微量元素及SPb同位素地球化學(xué)特征[J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版), 2020, 50 (5): 15821598.
Tao Lixin, Zhen Shimin, Bai Haijun, et al. Pyrite Trace Elements Composition and SPb Isotope Characters of the Dabaiyang Gold Deposit, Hebei Province[J]. Journal of Jilin University (Earth Science Edition), 2020, 50 (5): 15821598.
[59]" Chaussidon M, Albarède F, Sheppard S M F. Sulphur Isotope Variations in the Mantle from Ion Microprobe Analyses of Microsulphide Inclusions[J]. Earth and Planetary Science Letters, 1989, 92(2): 144156.
[60]" Ohmoto H, Rye R O. Isotopes of Sulfur and Carbon[C]//Barnes H L. Geochemistry of Hydrothermal Ore Deposits. New York: Wiley, 1979:509567.
[61]" Rollinson H R. Using Geochemical Data: Evaluation, Presentation, Interpretation[M]. London: Longman Publishing Group, 1993: 1384.
[62]" Seal R R. Sulfur Isotope Geochemistry of Sulfide Minerals[J]. Reviews in Mineralogy and Geochemistry, 2006, 61(1): 633677.
[63]" 汪志剛. 吉林東部中生代內(nèi)生金屬礦床成礦作用研究[D].長春: 吉林大學(xué), 2012: 1219.
Wang Zhigang. Study on Metallogenesis of Mesozoic Endogenetic Metal Deposits in the Eastern Part of Jilin Province[D]. Changchun: Jilin University, 2012: 1219.
[64]" 張宏飛,高山. 地球化學(xué)[M]. 北京:地質(zhì)出版社, 2012: 1410.
Zhang Hongfei, Gao Shan. Geochemistry[M]. Beijing: Geological Publishing House, 2012:1410.
[65]" 沈渭洲. 穩(wěn)定同位素地質(zhì)[M]. 北京: 原子能出版社, 1987: 1425.
Shen Weizhou. Stable Isotope Geology[M]. Beijing: Atomic Energy Press, 1987: 1425.
[66]" 吳開興, 胡瑞忠, 畢獻(xiàn)武, 等. 礦石鉛同位素示蹤成礦物質(zhì)來源綜述[J]. 地質(zhì)地球化學(xué), 2002, 30(3): 7381.
Wu Kaixing, Hu Ruizhong, Bi Xianwu, et al. Ore Lead Isotopes as a Tracer for Ore-Forming Mineral Sources: A Review[J]. Geology and Geochemistry, 2002, 30 (3): 7381.
[67]" 張乾, 潘家永, 邵樹勛. 中國某些金屬礦床礦石鉛來源的鉛同位素詮釋[J].地球化學(xué), 2000, 29(3): 231238.
Zhang Qian, Pan Jiayong, Shao Shuxun. An Interpretation of Ore Lead Sources from Lead Isotopic Compositions of Some Ore Deposits in China[J]. Geochimica, 2000, 29(3): 231238.
[68]" Darling J R, Storey C D, Hawkesworth C J, et al. Insitu Pb Isotope Analysis of FeNiCu Sulphides by Laser Ablation Multi-Collector ICPMS: New Insights into Ore Formation in the Sudbury Impact Melt Sheet[J]. Geochimica et Cosmochimica Acta, 2012, 99: 117.
[69]" 辛未,孟元庫,許志河,等.哀牢山成礦帶長安金礦床成因:地質(zhì)特征、流體包裹體測溫和HOSPb同位素制約[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2022,52(5):16101625.
Xin Wei, Meng Yuanku, Xu Zhihe, et al. Genesis of Chang’an Gold Deposit in Ailaoshan Metallogenic Belt: Constraints from Geological Characteristics, Fluid Inclusion Temperature and HOSPb Isotope[J]. Journal of Jilin University (Earth Science Edition), 2022, 52 (5): 16101625.
[70]" 王碩,孫豐月,王冠,等.黑龍江省四平山金礦床成礦作用及礦床成因:來自礦床地質(zhì)、地球化學(xué)、鋯石UPb年代學(xué)及HOS同位素的制約[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2022,52(5):16261648.
Wang Shuo, Sun Fengyue, Wang Guan, et al. Mineralization and Genesis of Sipingshan Gold Deposit, Heilongjiang, China: Evidence from Ore Deposit Geology, Geochemistry, Zircon UPb Ages, and HOS Isotopes[J]. Journal of Jilin University (Earth Science Edition), 2022, 52 (5): 16261648.
[71]" 何軍成,劉軍,李小偉,等.黑龍江省團(tuán)結(jié)溝淺成低溫?zé)嵋航鸬V床成因:鋯石UPb定年、元素地球化學(xué)和HfSPbHe同位素證據(jù)[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2023,53(5):14371466.
He Juncheng, Liu Jun, Li Xiaowei, et al. Genesis of Tuanjiegou Epithermal Gold Deposit in Heilongjiang Province: Evidence from Zircon UPb Dating, Elemental Geochemistry and HfSPbHe Isotopes[J]. Journal of Jilin University (Earth Science Edition), 2023, 53 (5): 14371466.
[72]" 吳荔,匡文龍,張志輝,等.江西德興銀山銅鉛鋅多金屬礦床穩(wěn)定同位素地球化學(xué)研究[J].黃金,2024,45(2):6874.
Wu Li, Kuang Wenlong, Zhang Zhihui, et al. Stable Isotope Geochemistry Study of Yinshan Copper-Lead-Zinc Polymetallic Deposit in Dexing, Jiangxi[J]. Gold, 2024, 45 (2): 6874.
[73]" 梁輝,韓作振,王立功,等.膠東遼上金礦床的流體包裹體、氫氧碳硫鉛同位素特征及礦床成因[J].地質(zhì)通報(bào),2022,41(6):10531067.
Liang Hui, Han Zuozhen, Wang Ligong, et al. The Fluid Inclusions, HOCSPb Isotope Characteristics and Genesis of the Liaoshang Gold Deposit in Jiaodong Peninsula[J]. Geological Bulletin of China, 2022, 41 (6): 10531067.
[74]" Zartman R E, Doe B R. Plumbotectonics: The Model[J]. Tectonophysics, 1981, 75(1/2): 135162.
[75]" Stacey J S, Hedlund D C. Lead-Isotopic Compositions of Diverse Igneous Rocks and Ore Deposits from Southwestern New Mexico and Their Implications for Early Proterozoic Crustal Evolution in the Western United States[J]. Geological Society of America Bulletin, 1983, 94(1): 4357.
[76]" 朱炳泉,李獻(xiàn)華,戴橦謨,等. 地球科學(xué)中同位素體系理論與應(yīng)用:兼論中國大陸殼幔演化[M]. 北京:科學(xué)出版社, 1998: 1330.
Zhu Bingquan, Li Xianhua, Dai Tongmo, et al. The Theory and Application of Isotope System in Geoscience: Concurrently on the Evolution of Crust and Mantle in Chinese Mainland[M]. Beijing: Science Press, 1998: 1330.