国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

射流泵喉管結(jié)構(gòu)優(yōu)化及模型放縮機(jī)理研究

2023-12-28 02:24:52孫琬婷
流體機(jī)械 2023年11期
關(guān)鍵詞:喉管長(zhǎng)徑泵送

孫琬婷,李 民

(昆明理工大學(xué) 機(jī)電工程學(xué)院,昆明 650500)

0 引言

射流泵具有結(jié)構(gòu)簡(jiǎn)單,加工成本低,密封性好等優(yōu)點(diǎn),被廣泛應(yīng)用于農(nóng)業(yè)、水利、冶金、石油勘探等領(lǐng)域[1]。由于不存在運(yùn)動(dòng)部件,射流泵的效率往往不高,其較低的效率成為制約射流泵應(yīng)用的主要缺點(diǎn),因此諸多學(xué)者通過優(yōu)化射流泵的結(jié)構(gòu)參數(shù)設(shè)計(jì)以提升其總效率[2]。對(duì)射流泵結(jié)構(gòu)優(yōu)化的研究常常采用數(shù)值試驗(yàn)和模型試驗(yàn)方法,以往的文獻(xiàn)表明,CFD 技術(shù)已廣泛應(yīng)用于水射流、射流泵、射流空化等領(lǐng)域的研究,并具有良好的精度[3-7]。但由于數(shù)值試驗(yàn)的理論方法尚存在一定的局限性,數(shù)值計(jì)算結(jié)果最終仍要由試驗(yàn)來驗(yàn)證,因?yàn)樵驮囼?yàn)存在測(cè)量困難、經(jīng)費(fèi)開支大的問題,試驗(yàn)研究往往采用放縮性的模型試驗(yàn)[8-9]。國內(nèi)學(xué)者陸宏圻在其專著中對(duì)射流泵基本方程、相似律等進(jìn)行系統(tǒng)性論述,流體機(jī)械的放縮過程應(yīng)遵循幾何相似、運(yùn)動(dòng)相似和動(dòng)力相似[10]。

國內(nèi)外學(xué)者對(duì)射流泵的噴嘴、喉管入口、喉管距、面積比、擴(kuò)散管和吸入室做了大量的理論和試驗(yàn)研究[11-14],但對(duì)射流泵的喉管傾角的研究較少。本文通過數(shù)值計(jì)算與模型試驗(yàn)相結(jié)合的方法探究射流泵喉管傾角和長(zhǎng)度比的耦合關(guān)系及其對(duì)泵送性能的影響,并探究射流泵模型試驗(yàn)放縮過程的相似性機(jī)理,確定放縮模型試驗(yàn)的等效動(dòng)力參數(shù),以確保放縮模型試驗(yàn)的有效性。根據(jù)數(shù)值計(jì)算結(jié)果,分析不同喉管傾角對(duì)泵送效率的影響以及射流泵內(nèi)部壓力變化,并進(jìn)一步探究不同喉管傾角在不同長(zhǎng)度比下的耦合關(guān)系,試圖得到喉管傾角、長(zhǎng)度比與流量比耦合的最優(yōu)設(shè)計(jì)參數(shù)及適用范圍。

1 參數(shù)

1.1 結(jié)構(gòu)參數(shù)

如圖1 所示,典型的流體射流泵可由工作噴嘴、吸入室、喉管和擴(kuò)散管4 個(gè)部分組成,喉管長(zhǎng)度為175 mm、喉管直徑為25 mm。傾角為0°和4°的射流泵被作為基準(zhǔn)射流泵,用以表征喉管傾角參數(shù)改變帶來的性能提升。

圖1 射流泵的幾何結(jié)構(gòu)及泵內(nèi)壓力分布云圖Fig.1 Influence of the geometry and structural changes of the jet pump on the pressure in the pump

1.2 射流泵無因次參數(shù)

射流泵的流量、壓力及主要幾何參數(shù),用下列無因次值表示。

流量比:

壓力比:

面積比:

效率:

式中,Qs為射流泵的吸入流量;Q0為工作流量;Pc為射流泵出口管路壓力;Ps為被吸液體管路入口壓力;P0為工作液體管路入口壓力;A3為喉管截面面積;A1為噴嘴出口面積。

2 數(shù)值計(jì)算方法

2.1 數(shù)值模型的建立

本研究采用壓力基穩(wěn)態(tài)求解器模擬流場(chǎng),基于質(zhì)量方程、能量方程和輸運(yùn)方程的k-epsilon 湍流模型也被采用,定常的湍流控制方程為:

式中,?為未知函數(shù)u,v,k,ε。

朱勁木[15]將此控制方程的系數(shù)及模型常數(shù)進(jìn)行了總結(jié)。為了方便計(jì)算,采用噴嘴出口半徑r0為特征長(zhǎng)度,噴嘴出口斷面平均流速u0為特征速度,將控制方程無量綱化。再將物理平面上的控制方程轉(zhuǎn)換到計(jì)算平面上,得到下列混合有限分析法形式的控制方程。

連續(xù)性方程:

其中,U =urη-vxη,V =vxξ-urξ,J =xξrη-xηrξ。

動(dòng)量方程:

式中,各方程系數(shù)可見文獻(xiàn)[16]。

射流泵的動(dòng)量項(xiàng)采用二階迎風(fēng)格式進(jìn)行離散,湍動(dòng)能及湍動(dòng)能耗散率均采用一階迎風(fēng)格式進(jìn)行離散,壓力速度耦合采用SIMPLE 算法,所有變量收斂殘差均為1×10-6。將整個(gè)射流泵的邊界劃分為進(jìn)口邊界、出口邊界和固壁邊界。進(jìn)口邊界:將所有液體進(jìn)口設(shè)為速度入口,設(shè)置距噴嘴出口上游120 mm 處為無窮遠(yuǎn)均勻來流,以保證來流穩(wěn)定,來流速度方向與進(jìn)口邊垂直;出口邊界:設(shè)置為壓力出口,為保證流場(chǎng)出口的穩(wěn)定,在擴(kuò)散管后增加了200 mm 的直管段;固壁邊界:采用壁面函數(shù)法。

2.2 網(wǎng)格劃分及無關(guān)性分析

根據(jù)射流泵內(nèi)部流動(dòng)特性分布進(jìn)行網(wǎng)格劃分。射流泵吸入室部分存在較大的湍動(dòng)趨勢(shì),所以選用對(duì)紊亂流動(dòng)更為敏感的非結(jié)構(gòu)化網(wǎng)格劃分區(qū)域;其他流體結(jié)構(gòu)流動(dòng)過程較為平緩,所以選用結(jié)構(gòu)化網(wǎng)格,具體的網(wǎng)格劃分如圖2(a)所示。

圖2 射流泵計(jì)算域網(wǎng)格劃分及合速度分布Fig.2 Domain meshing and closing velocity distribution for the jet pump

為進(jìn)行網(wǎng)格無關(guān)性研究,本研究對(duì)基準(zhǔn)射流泵的計(jì)算域完成了6 種不同密度的網(wǎng)格劃分,并選擇其中心旋轉(zhuǎn)線作為監(jiān)測(cè)線進(jìn)行監(jiān)測(cè),如圖2(a)(b)所示。隨著網(wǎng)格密度的增加,監(jiān)測(cè)線上的速度逐漸穩(wěn)定,如圖2(c)所示,本研究選用220 萬網(wǎng)格完成對(duì)后續(xù)所有幾何結(jié)構(gòu)射流泵的網(wǎng)格劃分。

2.3 可視化模型試驗(yàn)

本研究通過可視化模型試驗(yàn)、泵送效率試驗(yàn)進(jìn)行數(shù)值模型的準(zhǔn)確性驗(yàn)證。結(jié)果表明,數(shù)值模型在泵送效率上的誤差最大僅為2.8%,完全滿足了計(jì)算需求。

可視化模型試驗(yàn)使用的試驗(yàn)器材包括水泵、穩(wěn)壓器、流量計(jì)、壓力表、射流泵、純橡膠小球、配套管路。使用的射流泵為標(biāo)準(zhǔn)射流泵的幾何相似模型,尺寸為原尺寸的1/2,泵體水平放置。本試驗(yàn)是將純橡膠小球由射流泵入口泵入,通過攝像機(jī)記錄小球的運(yùn)行軌跡并與計(jì)算結(jié)果的流線相對(duì)比以實(shí)現(xiàn)驗(yàn)證。純橡膠小球的密度為0.93×103kg/m3,接近與水的密度,可以最大程度上減少小球?qū)α鲌?chǎng)帶來的影響,并接近泵送流線。試驗(yàn)使用的動(dòng)力參數(shù)如下:工作流體流量為6.5 L/min,表壓為130 kPa;泵入流體的流量為4.5 L/min,表壓為-6.4 kPa;兩者的壓力比為0.235;射流泵泵入口距水平面的高度約為65 cm。其中,射流泵泵入口的壓力由式(8)估算。射流泵動(dòng)力參數(shù)均滿足運(yùn)動(dòng)相似和動(dòng)力相似的特性,具體論證可見第3.1 節(jié)。

式中,Z 為距水面高度;u 為平均流速;下標(biāo)1 為儲(chǔ)水罐上截面;We為輸入的功;下標(biāo)2 為射流泵泵入截面;hf為阻力做功。

本研究開展泵送效率試驗(yàn),通過記錄上述試驗(yàn)過程泵送入口和卷吸入口的壓力,計(jì)算出射流泵的壓力比,與計(jì)算結(jié)果相對(duì)比以驗(yàn)證放縮前后射流泵的運(yùn)動(dòng)相似性,進(jìn)一步論證數(shù)值模擬的準(zhǔn)確性。

3 結(jié)果與討論

3.1 放縮過程的相似性定理

本節(jié)主要探究射流泵放縮過程中,如何根據(jù)幾何相似、運(yùn)動(dòng)相似和動(dòng)力相似確定泵送特性參數(shù),以及如何進(jìn)行流態(tài)相似性的驗(yàn)證。其中幾何相似用以確定設(shè)備尺寸,運(yùn)動(dòng)相似用以驗(yàn)證試驗(yàn)參數(shù)的準(zhǔn)確性,動(dòng)力相似用以確定設(shè)備動(dòng)力參數(shù)。最后將滿足相似性定理的放縮模型試驗(yàn)結(jié)果與數(shù)值模擬結(jié)果相對(duì)比,完成數(shù)值模擬準(zhǔn)確性的驗(yàn)證。

3.1.1 幾何相似性和運(yùn)動(dòng)相似性

可視化模型試驗(yàn)中射流泵的線性尺寸為數(shù)值模擬模型線性尺寸的1/2,相應(yīng)角度相等,為標(biāo)準(zhǔn)的幾何相似模型。本節(jié)對(duì)放縮前后的射流泵的運(yùn)動(dòng)相似性進(jìn)行了討論,以完成對(duì)上文試驗(yàn)參數(shù)的準(zhǔn)確性驗(yàn)證。首先,判斷其運(yùn)動(dòng)軌跡是否相似;然后,驗(yàn)證泵送量與壓力比的耦合關(guān)系。

用密度與水相似的純橡膠小球?qū)ι淞鞅梦肓黧w的運(yùn)動(dòng)軌跡進(jìn)行跟蹤與確定,并將其隨時(shí)間的變化通過堆疊的方式進(jìn)行展示,其運(yùn)動(dòng)軌跡可以與計(jì)算結(jié)果的多條流線相對(duì)應(yīng),如圖3 所示。由流動(dòng)軌跡可以看出流體被吸入后以較慢的速度繞噴嘴環(huán)狀旋轉(zhuǎn),最后至噴嘴出口斷面處與工作液體合流泵送出射流泵,該運(yùn)動(dòng)過程與計(jì)算結(jié)果相似,這證明其流動(dòng)狀態(tài)相似。

圖3 可視化試驗(yàn)與數(shù)值計(jì)算的對(duì)比結(jié)果Fig.3 Comparison results of the visualization experiment and numerical calculation

FRIDMAN[17]根據(jù)實(shí)驗(yàn)資料擬合出了射流泵基本方程,如下式所示:

式中,q 為流量比;a,b 為試驗(yàn)系數(shù),其中a=km+c,k=0.516,面積比m=喉管截面面積/噴嘴出口面積,b=(2.348m+1.547)/(m2+2m),c=0.34;β 為射流泵水頭與噴嘴出口斷面水頭之比。

射流泵工作流體入口壓力已知,泵入流體入口壓力可由式(8)計(jì)算得出,射流泵的壓力比為0.235。將試驗(yàn)壓力比0.235 代入式(9)可得射流泵理論流量比為0.67,接近試驗(yàn)比值的0.69,精度為97.2%,證明了放縮前后射流泵的運(yùn)動(dòng)相似性。

3.1.2 動(dòng)力相似性

動(dòng)力相似是表征不同流動(dòng)體系具有相同的流動(dòng)狀態(tài)的重要標(biāo)準(zhǔn)。兩個(gè)不同流動(dòng)體系的無量綱評(píng)價(jià)結(jié)果具有相似性,這說明上述兩力學(xué)系統(tǒng)滿足微分方程且具有相似的邊界條件和定解條件。以往常用雷諾數(shù)來衡量動(dòng)力相似,但水射流泵實(shí)際的泵送過程是有壓流體做功幫助被吸流體克服重力勢(shì)能的過程,由于弗勞德數(shù)為慣性力與外力的比,該參數(shù)比雷諾數(shù)更側(cè)重于外力對(duì)流體產(chǎn)生的影響,因此選用工作流體入口處的弗勞德數(shù)以確定系統(tǒng)的動(dòng)力學(xué)參數(shù)。在射流泵工作流體入口處,工作流體受到外力可以近似看成其受到的壓力,此時(shí)弗勞德數(shù)的具體計(jì)算公式如式(10)所示。若射流泵的放縮前后,其弗勞德數(shù)相似,則該計(jì)算公式可簡(jiǎn)化為式(11)。在數(shù)值計(jì)算尺度下,工作流體的泵入流速為1.77 m/s,泵入壓力為130 kPa,將該數(shù)代入式(11)中,可以得到試驗(yàn)尺度下,滿足弗勞德數(shù)相似的射流泵工作流體泵入流速和壓力間的耦合關(guān)系,如式(12)所示。

Fr1=Fr2,則有:

式中,F(xiàn)r 為弗勞德數(shù);u 為工作流體的平均流速;ρ為工作流體的密度;P 為射流泵入口處工作流體的壓力;d 為喉管直徑;L 為入口直徑;ε為試驗(yàn)與計(jì)算模型的放縮比;下標(biāo)1 為試驗(yàn)尺度;下標(biāo)2 為數(shù)值計(jì)算尺度。

本研究使用的試驗(yàn)設(shè)備可以在泵入壓力為20.8 kPa 的條件下提供流速為0.5 m/s 的工作流體;該工作參數(shù)滿足弗勞德數(shù)相似的技術(shù)要求,并同時(shí)滿足運(yùn)動(dòng)相似的要求。

3.1.3 放縮過程流態(tài)變化的討論

本研究使用雷諾數(shù)、Craya-Curtet 數(shù)Ct、以及渦量等勢(shì)面Q 準(zhǔn)則對(duì)放縮前后流態(tài)相似性進(jìn)行了討論。雷諾數(shù)是典型的衡量流場(chǎng)中慣性力和黏性力比值的無量綱物理量,雷諾數(shù)的計(jì)算如式(13)所示。在數(shù)值模擬下,射流泵最大流速出現(xiàn)的噴嘴出口處,最大流速接近19.5 m/s,最大雷諾數(shù)為780;在試驗(yàn)下,最大流速接近5 m/s,最大雷諾數(shù)為100。說明放縮前后的流態(tài)大致相同,且均處于層流狀態(tài)。

式中,ρ為流體密度;v 為流場(chǎng)的特征速度;L 為流場(chǎng)的特征長(zhǎng)度;μ為動(dòng)力黏性系數(shù);Rec為轉(zhuǎn)捩雷諾數(shù)。

HILL[18]使用Craya-Curtet 數(shù)Ct 來判斷射流泵的流態(tài),如下式所示:

由該式可知,流體在面積核定的圓管內(nèi)以穩(wěn)定狀態(tài)進(jìn)行流動(dòng)時(shí),Ct 數(shù)顯然為定值;若管道截面積恒定,管道內(nèi)速度波動(dòng)規(guī)律穩(wěn)定,則可以將Ct(u,A)的函數(shù)轉(zhuǎn)換為Ct(u)的函數(shù)。對(duì)于穩(wěn)定的泵送過程而言,管內(nèi)流體的速度是處于不斷發(fā)展的過程,如果將泵內(nèi)任意截面的平均速度視作入口流速的R 倍,則對(duì)于任意截面Ai而言,其速度關(guān)系式如式(15)所示,此時(shí)可以將Ct(u,A)的函數(shù)轉(zhuǎn)換為Ct(R)的函數(shù):

為便于表征射流泵內(nèi)的相對(duì)位置,本研究引入比例距離,該值是指射流泵中心軸上的一點(diǎn)距中心軸左端點(diǎn)的距離與射流泵總長(zhǎng)度的比,如下式所示:

圖4 示出了放縮前后泵內(nèi)速度變化及流場(chǎng)渦量。

圖4 放縮前后泵內(nèi)速度變化及流場(chǎng)渦量Fig. 4 Velocity change and flow field vorticity in the pump before and after scaling

從圖4 可見,放縮前、后射流泵內(nèi)流體速度波動(dòng)具有相似性,且泵內(nèi)的速度波動(dòng)主要集中于喉管段內(nèi)。研究射流泵內(nèi)流體的速度波動(dòng)可以通過研究喉管段流體的速度波動(dòng)近似代替,而速度的波動(dòng)則可以用比例系數(shù)的波動(dòng)相代替。由于速度波動(dòng)的方向相對(duì)較為復(fù)雜,且速度波動(dòng)方向可以劃分為徑向波動(dòng)和軸向穿透,本研究將系數(shù)R 劃分為徑向系數(shù)和軸向距離。如圖4(a)所示,比例距離相同,放縮前后射流泵內(nèi)流體的軸向速度波動(dòng)范圍及其速度值相似;在喉管部分確定一個(gè)監(jiān)測(cè)線以檢測(cè)徑向合速度的變化趨勢(shì),如圖4(b)所示,放縮前后的射流泵流體的徑向合速度波動(dòng)趨勢(shì)相似,這證明軸向速度的波動(dòng)不會(huì)對(duì)系數(shù)R造成較大的影響。

滿足以上兩點(diǎn)要求,則系數(shù)R 不變,進(jìn)而Ct 數(shù)也不會(huì)發(fā)生改變,從而證明放縮前后的內(nèi)部流動(dòng)狀態(tài)較為穩(wěn)定。圖4(c)示出放縮前后,射流泵內(nèi)部流場(chǎng)的Q 準(zhǔn)則下的渦量??梢钥闯龇趴s前后,泵內(nèi)流體的渦量分布趨勢(shì)并無明顯變化,渦量主要集中在吸入室內(nèi)呈散狀分布,其余少量分布于喉管段內(nèi)??偟膩碚f,無論是從流態(tài)分布還是渦量分布的角度,放縮前后射流泵均具有較好的相似性。

綜上所述,在進(jìn)行射流泵放縮過程時(shí),滿足幾何相似即可保證特征方程不變,滿足弗勞德數(shù)相似即可保證流態(tài)不變,運(yùn)動(dòng)相似的滿足與否可以用于上文的驗(yàn)證過程。

3.2 喉管傾角的影響

在傳統(tǒng)射流泵設(shè)計(jì)過程中,為了便于生產(chǎn)加工一般不設(shè)計(jì)喉管角度,統(tǒng)一設(shè)計(jì)為平直的0°。隨著機(jī)械加工技術(shù)的提高以及節(jié)能減排的現(xiàn)實(shí)任務(wù)要求,增加射流泵傾角帶來性能上的提升不可忽略。

本研究選用喉管直徑為25 mm,喉管長(zhǎng)度為125 mm,喉管傾角分別為0°、2°和4°的射流泵來探究?jī)A角改變對(duì)泵送效率的影響,以及探究喉管角度與流量比之間的耦合關(guān)系。

3 種幾何尺寸的射流泵,其泵送效率隨流量比之間的耦合關(guān)系如圖5 所示。喉管的最佳傾角與射流泵泵送流量呈正相關(guān),即具有更大傾角的射流泵泵送效率隨流量比變化而產(chǎn)生的拐點(diǎn)會(huì)更晚出現(xiàn);但當(dāng)喉管傾角過大時(shí),其最高泵送效率呈現(xiàn)凸函數(shù)的趨勢(shì),即先增大后減小。具體來說:在流量比小于0.8 時(shí),射流泵的泵送效率隨著喉管角度的增大而遞減,喉管角度為0°時(shí)整體的效率最高,泵送效率值為26.08%,如圖5(a)段所示;但在流量比大于0.8 的情況下,平直喉管結(jié)構(gòu)射流泵的泵送效率開始逐步遞減,而2°和4°喉管傾角結(jié)構(gòu)的射流泵泵送效率仍在逐步攀升;當(dāng)流量比大于0.9 小于1.1 時(shí),2°傾角的泵送效率實(shí)現(xiàn)反超,整體效率最高,并達(dá)到三者全域最高值26.15%;當(dāng)流量比大于1.1 之后,傾角為4°的泵送效率最高,最高值為25.53%;自流量比大于0.955起,0°傾角的泵送效率為三者最低,如圖5(b)段所示。由此表明:(1)喉管傾角的改變可以提高泵送效率;(2)在小流量比工況下平直喉管結(jié)構(gòu)最優(yōu),但在大流量比工況下,有傾角的喉管結(jié)構(gòu)能帶來13%的泵送效率提升。

圖5 射流泵喉管結(jié)構(gòu)傾角對(duì)泵送效率的影響Fig.5 Effect of the inclination angle of the jet pump throat structure on the pumping efficiency

在卷吸流量較小的情況下,增加射流泵喉管處的傾角相當(dāng)于增大了喉管外圍的直徑,這樣會(huì)造成流體動(dòng)量的折損,表現(xiàn)為噴嘴處靜壓的提升進(jìn)而難以高效的完成泵送任務(wù)。但隨著流量比的增大,得益于拉烏爾效應(yīng),射流速度將增大,喉管段壓強(qiáng)降低,促進(jìn)液體的卷吸,從而提升效率。圖6 示出流量比為1.0 時(shí),喉管角度為0°和2°的2 種射流泵的中軸截面處的壓力云圖。0°和2°的射流泵喉管中段與壓力入口處的平均壓力差分別為15 和13 kPa,此時(shí),高傾角射流泵可以在更小的壓差下泵送同等流量的液體,具有更好的泵送性能。

圖6 射流泵喉管結(jié)構(gòu)傾角對(duì)內(nèi)部壓差的影響Fig.6 Influence of inclination angle of jet pump throat structure on internal pressure difference

3.3 大流量比工況下長(zhǎng)度比和傾角的關(guān)系

在化工生產(chǎn)過程中會(huì)因工藝要求而提出較大流量比的要求。例如,在造紙生產(chǎn)過程中,濃紙漿和水必須以一定比例混合,才能造出一定濃度的紙漿;在重油氣化造氣生產(chǎn)過程中,進(jìn)氣化爐的氧氣和重油應(yīng)保持一定的比例,否則可能會(huì)發(fā)生爆炸事故。因此在特殊流量比下,尤其是在大流量比條件下,對(duì)射流泵進(jìn)行結(jié)構(gòu)優(yōu)化不可忽略。

在大流量比[0.9,1.2]下,有傾角結(jié)構(gòu)的射流泵顯然具有更優(yōu)異的性能,這與傳統(tǒng)流量比[0.4,0.9]工況下,平直喉管射流泵具有最優(yōu)效率不同。國內(nèi)外諸多學(xué)者已經(jīng)對(duì)平直喉管結(jié)構(gòu)射流泵進(jìn)行了較為全面的研究,而對(duì)大流量比工況友好的有傾角射流泵的研究甚少,本研究在前文的基礎(chǔ)上選用喉管直徑d=25 mm,喉管長(zhǎng)度分別為4d,5d,6d,7d,8d,即長(zhǎng)徑比分別為4,5,6,7,8,喉管傾角分別為0°,1°和2°的射流泵,進(jìn)一步探究在大流量比工況下,喉管傾角與喉管長(zhǎng)度比的耦合關(guān)系對(duì)泵送性能的影響,進(jìn)一步探究喉管傾角優(yōu)化的意義。

由喉管傾角和喉管長(zhǎng)度比參數(shù)不同取值組合而成的15 個(gè)射流泵在大流量比[0.9,1.1]下的耦合關(guān)系,及其泵送性能如圖7 所示。在0°傾角結(jié)構(gòu)下,長(zhǎng)徑比為5~7 的整體效率較高且方差較小,泵送效率對(duì)長(zhǎng)徑比的依賴性較弱,長(zhǎng)徑比為7 時(shí)擁有最高效率,如圖7(a)所示。在1°傾角結(jié)構(gòu)下,泵送效率與喉管長(zhǎng)徑比呈負(fù)相關(guān),長(zhǎng)徑比越大,整體泵送效率越低,長(zhǎng)徑比為4 時(shí)擁有最高效率,如圖7(b)所示。在傾角為2°結(jié)構(gòu)下,泵送效率與長(zhǎng)徑比關(guān)系產(chǎn)生波動(dòng),隨著長(zhǎng)徑比的增大,整體泵送效率出現(xiàn)波動(dòng)趨勢(shì),長(zhǎng)徑比為5 時(shí)擁有最高效率,如圖7(c)所示。在各個(gè)角度的射流泵結(jié)構(gòu)下,長(zhǎng)徑比為4 的射流泵效率易出現(xiàn)“斷崖式”下降,長(zhǎng)徑比為5~8 時(shí)結(jié)構(gòu)的泵送效率較為平緩。

圖7 大流量比工況下長(zhǎng)徑比和傾角的耦合關(guān)系Fig.7 The coupling relationship between length ratio and inclination angle under large flow ratio conditions

本研究將不同角度的最高泵送效率所對(duì)應(yīng)的長(zhǎng)徑比曲線進(jìn)行對(duì)比,結(jié)果表明,傾角為1°、長(zhǎng)徑比為4 的結(jié)構(gòu)在流量比[0.95,1.05]的范圍內(nèi)泵送效率比0°傾角所對(duì)應(yīng)的最優(yōu)長(zhǎng)徑比7 帶來的泵送效率更高;傾角為2°、長(zhǎng)徑比為5 的射流泵結(jié)構(gòu)的整體泵送效率最高,此時(shí),相對(duì)于傾角為0°的射流泵在長(zhǎng)徑比為4~8 全域的最優(yōu)泵送效率,泵送效率提升了3%,喉管段長(zhǎng)度降低了28.6%。這說明喉管傾角的改變不僅使射流泵更適用于大流量比工況,還能以更短的喉管長(zhǎng)度獲得相同甚至更大的泵送效率,一定程度上減少了喉管段的材料成本。

4 結(jié)論

(1)基于放縮過程的相似性定理,對(duì)運(yùn)動(dòng)相似、動(dòng)力相似和流態(tài)相似三個(gè)維度進(jìn)行了放縮試驗(yàn)的各項(xiàng)參數(shù)驗(yàn)證,發(fā)現(xiàn)其壓力比的偏移程度僅為2.8%,證明了數(shù)值模擬的準(zhǔn)確性。

(2)不同喉管傾角結(jié)構(gòu)下各自最優(yōu)的泵送效率區(qū)間不同,高傾角射流泵在大流量比工況下能帶來13%的泵送性能提升,可以在更小的壓差下泵送同等流量的液體。泵送效率最大值點(diǎn)出現(xiàn)在2°結(jié)構(gòu)下,喉管傾角的改變對(duì)射流泵性能提升不可忽略。

(3)喉管傾角的改變不僅使射流泵更適用于大流量比工況,還能以更短的喉管長(zhǎng)度獲得相同甚至更大的泵送效率,節(jié)省了喉管段28.6%的耗材。

猜你喜歡
喉管長(zhǎng)徑泵送
粵樂喉管傳承譜系與樂器改良研究
樂器(2022年10期)2022-10-25 08:07:12
基于全三維動(dòng)網(wǎng)格技術(shù)的變長(zhǎng)徑比間隙環(huán)流的研究
廣東喉管和嗩吶獨(dú)奏創(chuàng)新性發(fā)展研究
——以首場(chǎng)廣東喉管·嗩吶獨(dú)奏音樂會(huì)為例
嶺南音樂(2022年1期)2022-03-13 04:53:46
玄武巖纖維長(zhǎng)徑比對(duì)混凝土力學(xué)性能的影響
基于隨形冷卻的大長(zhǎng)徑比筆套注塑優(yōu)化
海城市材料價(jià)格補(bǔ)充信息
海城市材料價(jià)格補(bǔ)充信息
海城市材料價(jià)格補(bǔ)充信息
銦摻雜調(diào)控氧化鋅納米棒長(zhǎng)徑比
包衣機(jī)泵送糖漿速度的改進(jìn)
永川市| 都安| 沛县| 奉贤区| 馆陶县| 新河县| 赤水市| 陈巴尔虎旗| 泽普县| 县级市| 南丰县| 宜宾县| 宁城县| 安岳县| 西和县| 门源| 景谷| 盘锦市| 沅陵县| 田林县| 扶沟县| 黔西县| 左贡县| 双桥区| 云和县| 高雄县| 玛曲县| 德昌县| 申扎县| 平原县| 贡山| 滕州市| 吉木乃县| 江永县| 佛学| 保靖县| 长子县| 阜南县| 和龙市| 阜阳市| 饶河县|