国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

葡萄物流及貯藏保鮮包裝技術(shù)研究現(xiàn)狀與展望

2023-12-20 02:53李寶慶梁欣韋婉琪姚剛李宇丞閻瑞香
包裝工程 2023年23期
關(guān)鍵詞:氣調(diào)保鮮葡萄

李寶慶,梁欣,韋婉琪,姚剛,李宇丞,閻瑞香*

農(nóng)產(chǎn)品保鮮與食品包裝

葡萄物流及貯藏保鮮包裝技術(shù)研究現(xiàn)狀與展望

李寶慶1,梁欣2,韋婉琪1,姚剛2,李宇丞1,閻瑞香1*

(1.天津科技大學(xué) 輕工科學(xué)與工程學(xué)院,天津 300222; 2.深圳順豐泰森控股(集團(tuán))有限公司,廣東 深圳 518000)

通過對葡萄物流運(yùn)輸、貯藏保鮮過程中使用的包裝技術(shù)進(jìn)行分類和系統(tǒng)介紹,分析其研究現(xiàn)狀及存在問題,并展望未來發(fā)展前景,以促進(jìn)葡萄貯運(yùn)保鮮包裝技術(shù)提升。針對貯運(yùn)保鮮中葡萄果實(shí)容易出現(xiàn)的問題,介紹緩沖包裝、氣調(diào)包裝、活性包裝以及智能包裝等包裝技術(shù)的研究及應(yīng)用現(xiàn)狀,分析不同包裝技術(shù)的優(yōu)勢,并討論未來可能的發(fā)展方向。多種包裝技術(shù)配合使用,提升運(yùn)輸包裝緩沖減振效果,精確調(diào)控氣調(diào)包裝內(nèi)部氣氛,控制活性包裝中藥劑釋放與分子遷移,提升智能指示標(biāo)簽的精確性,保證RFID智能包裝系統(tǒng)的穩(wěn)定性等,有利于葡萄貯運(yùn)保鮮中品質(zhì)的保持與貨架壽命的延長。

葡萄;物流;貯藏;保鮮;包裝技術(shù)

作為一種常見漿果類水果,葡萄在我國廣受歡迎,其味道鮮美,果汁酸甜,具有豐富的營養(yǎng)價值,是我國五大水果之一[1]。葡萄一般在6月到9月成熟,此時正值高溫多雨季節(jié),采摘后的新鮮葡萄含糖量高、多汁,容易受到病菌侵染發(fā)生腐爛變質(zhì),并且果肉衰老速度快,在采收后2~3 d就會迅速變軟,發(fā)生果實(shí)脫落等問題。據(jù)統(tǒng)計,葡萄采后從果園到消費(fèi)者手中損失率達(dá)25%~30%,嚴(yán)重影響經(jīng)濟(jì)效益[2-3]。此外,“互聯(lián)網(wǎng)+農(nóng)業(yè)”的興起,采用電商手段進(jìn)行葡萄銷售的模式越來越普遍,但葡萄本身汁多皮薄,果穗松軟,在電商運(yùn)輸過程中,運(yùn)輸環(huán)境密閉且溫度較高,顛簸震蕩明顯,再加上快遞暴力分揀等因素,使得消費(fèi)者收到的鮮食葡萄往往出現(xiàn)脫粒、果皮損傷、果梗褐變甚至發(fā)霉腐爛等情況,不僅降低了消費(fèi)者的網(wǎng)購體驗(yàn),而且限制了葡萄電商銷售模式的發(fā)展[4-7]。

為解決葡萄在物流運(yùn)輸及貯藏過程中出現(xiàn)的脫粒、失水、腐爛等問題,國內(nèi)外科研工作者圍繞包裝材料、包裝結(jié)構(gòu)、包裝技術(shù)等進(jìn)行了大量研究,但目前尚缺乏系統(tǒng)的分析與總結(jié)。因此,有必要對鮮食葡萄包裝相關(guān)研究進(jìn)行梳理分類,總結(jié)優(yōu)勢與要點(diǎn),分析存在的問題,展望發(fā)展前景,以期促進(jìn)葡萄產(chǎn)業(yè)的健康發(fā)展。

1 葡萄包裝技術(shù)分類

在鮮食葡萄的物流運(yùn)輸、貯藏過程中采用合適的包裝技術(shù),有利于在一定程度解決因葡萄自身特質(zhì)、運(yùn)輸方式以及貯藏環(huán)境等因素導(dǎo)致的葡萄品質(zhì)下降問題,提高經(jīng)濟(jì)效益。針對葡萄貯運(yùn)保鮮過程中出現(xiàn)的問題不同,需采用不同的包裝技術(shù)。按其功能可以分為4類,即:緩沖包裝、氣調(diào)包裝、活性包裝、智能包裝。不同的包裝方式,其原理不同,發(fā)揮的功能也各有差異,并且各有優(yōu)劣,見表1。

以上4種包裝方式作用于葡萄物流運(yùn)輸、貯藏保鮮的不同階段,涵蓋了從果園到餐桌的全過程,從保持葡萄外觀色澤與營養(yǎng)品質(zhì)到果品質(zhì)量安全監(jiān)測與問題追溯,大大提高了鮮食葡萄的商品價值與經(jīng)濟(jì)效益。本文對葡萄物流過程、存在問題以及解決方法的總結(jié)如圖1所示,并對相關(guān)內(nèi)容詳細(xì)介紹。

2 包裝技術(shù)研究現(xiàn)狀

葡萄是典型的漿果類水果,在貯運(yùn)保鮮過程中可能發(fā)生的脫粒、損傷、果梗褐變、果實(shí)軟化、發(fā)霉腐爛等情況,需不同包裝技術(shù)對其進(jìn)行保護(hù)。目前相關(guān)研究主要從4個方面展開,包括緩沖包裝、氣調(diào)包裝、活性包裝以及智能包裝等,已有的研究內(nèi)容如表2所示。

2.1 緩沖包裝

葡萄在物流運(yùn)輸中因車輛顛簸振動、搬運(yùn)過程晃動跌落等因素容易出現(xiàn)果實(shí)脫落、擠壓損傷等情況,從而影響外觀品質(zhì),降低貨架壽命,因此需要利用緩沖包裝對葡萄在運(yùn)輸中進(jìn)行保護(hù)。常見的包裝材料有泡沫箱、泡沫網(wǎng)套、充氣袋、柱形袋、瓦楞紙箱等。不同的緩沖包裝形式對葡萄的保護(hù)效果不同,以夏黑葡萄為例,在網(wǎng)套、雙層充氣袋、柱形袋3種不同緩沖包裝形式下的模擬運(yùn)輸試驗(yàn)顯示,與另外2種包裝下的葡萄相比,使用雙層充氣袋包裝的夏黑葡萄外觀及品質(zhì)更佳,其質(zhì)量損失率、脫粒率最低,硬度、可溶性固形物、總酸、色差值等最高,雙層充氣袋更有利于維持葡萄感官品質(zhì),保留營養(yǎng)物質(zhì)[4-5]。目前,充氣袋作為緩沖包裝已經(jīng)在實(shí)際生產(chǎn)中投入使用,并且緩沖減振效果較好,對鮮食葡萄的袋中袋充氣包裝進(jìn)行進(jìn)一步優(yōu)化,試驗(yàn)測得最佳充氣氣壓為4 kPa,該條件下能夠最大程度避免損傷,平均損傷率僅為1.5%,平均脫粒率為0.2%[6-7]。

表1 葡萄包裝技術(shù)分類

圖1 葡萄物流過程、存在問題及解決方法

表2 葡萄貯運(yùn)保鮮包裝研究內(nèi)容

Tab.2 Research content of grape storage, transportation and fresh-keeping packaging

此外,其他類型的緩沖減振包裝也有研究報道,例如,采用葫蘆充氣膜加方塊膜的形式作為葡萄運(yùn)輸中的緩沖包裝,與網(wǎng)套加紙墊的包裝方式相比能夠明顯降低巨峰葡萄質(zhì)量損失率和表面損傷系數(shù),為葡萄提供有效的緩沖作用[1-3]。

2.2 氣調(diào)包裝

氣調(diào)包裝通過調(diào)節(jié)包裝內(nèi)部氣體比例,控制被包裝果蔬所處的氣體環(huán)境,減緩其呼吸作用,抑制病菌生長,有利于延長內(nèi)裝產(chǎn)品貨架壽命[8]。其中自發(fā)氣調(diào)包裝在果蔬保鮮中應(yīng)用較多,該包裝方法采用適宜的保鮮袋,可減少果蔬水分散失,并且依靠被包裝產(chǎn)品的呼吸作用,一定程度上能夠調(diào)節(jié)包裝內(nèi)部氣氛。根據(jù)內(nèi)裝果蔬品種不同,需要采用不同材質(zhì)和厚度的保鮮袋,使袋內(nèi)形成保鮮所需的氣體環(huán)境,保持產(chǎn)品新鮮度[9-10]。

生產(chǎn)中常用的葡萄氣調(diào)包裝多為聚乙烯膜(0.015 mm PE膜、PE微孔膜)。研究表明,透氧量為6 000 cm3/(m2·d)的微孔膜保鮮效果最佳,該材料通過膜上微孔調(diào)節(jié)包裝內(nèi)部氧氣(O2)含量,使得O2體積分?jǐn)?shù)保持在12%~14%,一定程度上避免了葡萄在運(yùn)輸和貯藏中無氧呼吸的發(fā)生,延緩果梗褐變,保持葡萄外觀色澤和品質(zhì),延長其貨架壽命[11]。

除微孔膜外,以聚乳酸(PLA)為基材,分別利用具有O2吸附性的聚三氟丙基甲基硅氧烷(PTFPMS)和二氧化碳(CO2)滲透性的聚乙二醇(PEG)對PLA進(jìn)行改性,合成2種三嵌段共聚物,并以50∶50的質(zhì)量比將其共混。得到的共混薄膜應(yīng)用于巨峰葡萄保鮮,一定時間后,包裝內(nèi)部氣體成分穩(wěn)定在O2的體積分?jǐn)?shù)為5%和CO2的體積分?jǐn)?shù)為8.1%,在此氣體含量下能夠有效保持巨峰葡萄花色苷含量,維持外觀色澤與新鮮度[12]。

針對不同品種、不同數(shù)量的葡萄,篩選不同厚度、不同種類的薄膜十分重要,直接關(guān)系到保鮮效果。此時,基于葡萄呼吸模型來對生產(chǎn)所需的氣調(diào)包裝用薄膜的厚度進(jìn)行預(yù)測可以大大節(jié)省薄膜篩選過程的時間與成本,提高氣調(diào)包裝生產(chǎn)的經(jīng)濟(jì)效益,同時可以更好地對氣調(diào)包裝的保鮮效果進(jìn)行調(diào)整[13-14]。將氣調(diào)包裝與活性包裝結(jié)合使用,可以達(dá)到更好的保鮮效果。

2.3 活性包裝

活性包裝在果蔬保鮮中應(yīng)用較多,并且取得了良好的效果。利用活性包裝保存葡萄,有利于延緩果實(shí)衰老,抑制或者殺滅貯藏過程中滋生繁殖的灰霉菌等病菌,保持果實(shí)新鮮度、完整度和營養(yǎng)價值。

2.3.1 SO2殺菌包裝

新鮮葡萄在貯藏過程中容易滋生灰霉菌等,導(dǎo)致果實(shí)發(fā)霉變質(zhì),因此葡萄的長期貯藏保鮮需要使用防腐保鮮劑[12]。國內(nèi)外最廣泛使用的防腐保鮮劑為二氧化硫(SO2),能夠有效殺死灰霉菌,保持果梗鮮綠度,降低腐爛率、落粒率等[15-18]。但該方法仍然存在局限性,較為突出的是在保鮮過程中SO2濃度的控制問題。濃度不足時保鮮護(hù)綠效果不佳,濃度過高又會對葡萄造成漂白傷害,影響感官品質(zhì)[19-20]。對SO2濃度的控制方法有利用脈沖式防腐設(shè)備對葡萄進(jìn)行熏染,以及SO2氣體精準(zhǔn)熏蒸保鮮控制系統(tǒng)等[21-22]。

SO2葡萄保鮮片在市場上已有較多應(yīng)用,常見的保鮮片制作方法是熱熔制粒壓片法,藥效持續(xù)時間一般在6~7個月[23-25]。而將SO2保鮮片封裝在帶有打孔的塑料層壓板中,則可以在起到防潮作用的同時控制SO2擴(kuò)散到包裝環(huán)境中的速率,降低初始的SO2濃度峰值,將保險片壽命延長3倍,該方法可以使得“紅地球”葡萄貨架期達(dá)到4個月甚至更長時間[26-28]。

2.3.2 1-MCP活性包裝

1-甲基環(huán)丙烯(1-Methylcyclopropene,1-MCP)是一種乙烯受體抑制劑,常溫下呈氣態(tài),可以通過與乙烯受體結(jié)合,抑制乙烯生理活動,因此1-MCP可以作為果蔬保鮮劑,延長果蔬貯藏時間[29-30]。將1-MCP氣體熏蒸與自發(fā)氣調(diào)包裝相結(jié)合,低溫下對葡萄保鮮效果良好。例如在夏黑葡萄保鮮應(yīng)用中,結(jié)合0.18 mm厚度的聚乙烯制作的自發(fā)氣調(diào)包裝袋,在低溫下(4±0.5)℃保鮮效果良好,能夠減少腐爛率,維持較好的維生素C、可滴定酸和多酚含量等品質(zhì)指標(biāo)。需要注意的是,1-MCP熏蒸時對濃度的控制應(yīng)適宜,過高或過低都無法達(dá)到良好的貯藏保鮮效果,該示例下,1.0 μL/L濃度的1-MCP進(jìn)行熏蒸時效果最佳[31]。

實(shí)際操作中,依然應(yīng)當(dāng)結(jié)合不同品種葡萄的品質(zhì)特性以及氣調(diào)包裝的選用、貯藏環(huán)境條件等控制不同的1-MCP濃度,從而保證包裝成本,提高葡萄保鮮質(zhì)量。

2.3.3 抗菌薄膜活性包裝

為減少鮮食葡萄在采后貯藏中質(zhì)量下降和發(fā)霉腐爛的問題,還可以采用抗菌薄膜來對其進(jìn)行保鮮貯藏。例如以PET為基材添加2-乙酰氧基苯甲酸陰離子(水楊酸鹽)的層狀雙氫氧化物作為抗菌分子,溶劑涂布后制得抗菌薄膜用于葡萄保鮮,具有優(yōu)異的抗菌活性。該抗菌薄膜中水楊酸鹽的遷移量符合遷移限度,因此用于葡萄貯藏保鮮也較為安全[32]。將抗菌材料與氣調(diào)包裝相結(jié)合,如包裝內(nèi)充入體積分?jǐn)?shù)為20%的O2和體積分?jǐn)?shù)為10%的CO2,在運(yùn)輸與冷藏期間可延長葡萄的貨架期[32-34]。

此外,利用天然生物高聚物殼聚糖制作抗菌涂層,能夠控制新鮮果蔬腐爛,增強(qiáng)采摘后的果蔬對包括灰霉在內(nèi)的許多真菌的抵抗力[35-36]。經(jīng)過質(zhì)量分?jǐn)?shù)分別為0.5%或1.0%的殼聚糖處理,能夠有效改善鮮食葡萄的質(zhì)量損失、損傷等情況,延緩漿果中總酚含量的下降。經(jīng)過該處理后的葡萄裝入高密度聚乙烯袋中,并充入10 kPa CO2和20 kPa O2,能夠明顯抑制灰霉菌等的繁殖,控制葡萄水分流失[37-39]。

2.3.4 其他活性包裝

臭氧(O3)被美國食品藥品監(jiān)督管理局(US Food and Drug Administration,US FDA)宣布為一般公認(rèn)安全(Generally Recognized as Safe,GRAS)的物質(zhì)后,在食品工業(yè)中被廣泛應(yīng)用。研究表明持續(xù)低濃度的O3可以抑制鮮食葡萄存儲過程中灰霉菌的繁殖,延長葡萄的儲存時間。因此,在葡萄保鮮包裝中O3可以作為抗菌劑。將體積分?jǐn)?shù)為20 μL/L的O3與空氣混合后,對葡萄進(jìn)行30 min熏蒸預(yù)處理,并將處理后的葡萄裝入由聚酰胺/聚乙烯(PA/PE)制成的包裝袋中,充入體積分?jǐn)?shù)為2%的O2和體積分?jǐn)?shù)為5%的CO2,在該氣調(diào)包裝下進(jìn)行密封儲存。該處理對霉?fàn)€的抑制作用明顯,能夠更好地保持葡萄的外觀色澤、感官品質(zhì)和營養(yǎng)成分[40-44]。

二氧化氯(ClO2)由于具有廣泛的殺菌譜,也常作為葡萄保鮮劑,具有良好的保鮮效果。該方法能夠有效殺滅葡萄表面的灰霉菌、青霉、交鏈孢霉等。使用過程中ClO2最低質(zhì)量濃度應(yīng)為12 mg/m3,否則保鮮效果不理想[45-47]。

2.4 智能包裝

2.4.1 智能指示標(biāo)簽

葡萄在收獲后成熟過程中,產(chǎn)生各種揮發(fā)性化合物,比較典型的有乙烯、有機(jī)酸等。但在葡萄成熟過程中,乙烯產(chǎn)量只略有增加,沒有典型的呼吸峰值出現(xiàn)[33]。相比之下,有機(jī)酸(馬來酸和酒石酸)的產(chǎn)量較多,更易被監(jiān)測到??梢岳迷撎匦赃M(jìn)行智能標(biāo)簽的制作,監(jiān)測葡萄果實(shí)新鮮度[48-53]。例如,一種基于氯酚紅(Chlorophenol Red,CPR)的葡萄新鮮度智能指示標(biāo)簽,與包裝頂空的揮發(fā)性有機(jī)酸反應(yīng)后,標(biāo)簽顏色變化指示葡萄新鮮程度。隨著葡萄逐漸成熟,包裝頂空揮發(fā)性有機(jī)酸增加,CPR與揮發(fā)性有機(jī)酸反應(yīng)后,指示標(biāo)簽由白色變成米色,最后變成黃色。如圖2所示[54]。

圖2 基于CPR的葡萄新鮮度指示標(biāo)簽

由于葡萄保鮮包裝廣泛使用SO2保鮮劑,因此針對包裝內(nèi)部SO2含量進(jìn)行檢測,同樣能夠?qū)ζ咸奄|(zhì)量進(jìn)行實(shí)時預(yù)測。例如,從天然矮牽牛花中提取的矮牽牛染料能夠與SO2反應(yīng),染料中牽牛花色素與SO2溶于水產(chǎn)生的亞硫酸氫根反應(yīng),染料顏色由鮮紅色逐漸褪變?yōu)闊o色,比色響應(yīng)高度敏感,色差可達(dá)74.8,容易被肉眼觀測。若包裝內(nèi)部仍存在SO2,則標(biāo)簽發(fā)生褪色,葡萄較長時間保持新鮮;而包裝內(nèi)部不存在SO2時,標(biāo)簽保持紅色,葡萄會在短時間發(fā)生變質(zhì)。因此,該指示標(biāo)簽可用于檢測SO2含量,進(jìn)而預(yù)測葡萄的新鮮度[55]。

圖3 牽?;ɑ鵖O2檢測標(biāo)簽示意圖

注:A過程為牽?;ɑ鵖O2檢測標(biāo)簽制備工藝及其對SO2氣體的比色響應(yīng); B過程為SO2氣體不存在(i)與微量存在(ii)時,葡萄新鮮度和指示標(biāo)簽顏色變化。

2.4.2 RFID智能包裝

無線射頻(Radio Frequency Identification,RFID)技術(shù)能夠?qū)崿F(xiàn)非接觸性數(shù)據(jù)自動識別和交換,且操作簡單,無須人工,目前在產(chǎn)品包裝上已有應(yīng)用[55-59]。例如一種葡萄生產(chǎn)-銷售全過程追溯系統(tǒng),通過對葡萄生產(chǎn)廠家、產(chǎn)地、產(chǎn)品種類、采摘日期、包裝日期等信息,對電子產(chǎn)品編碼、全球貿(mào)易項目代碼、業(yè)務(wù)批次編碼和追溯碼等進(jìn)行設(shè)計,以二維碼形式在產(chǎn)品外包裝上進(jìn)行印刷。通過手機(jī)客戶端掃描二維碼,鏈接到溯源系統(tǒng)中可以查詢生產(chǎn)信息、倉儲管理、運(yùn)輸管理、銷售管理、質(zhì)量安全等內(nèi)容,有利于消費(fèi)者、生產(chǎn)廠家、銷售企業(yè)以及監(jiān)管部門等對產(chǎn)品進(jìn)行實(shí)時追溯,對偶發(fā)性事故進(jìn)行溯源調(diào)查,提高葡萄質(zhì)量安全性,節(jié)約時間、降低成本[55-60]。消費(fèi)者同樣可以利用手機(jī),電腦等設(shè)備,掃描識別葡萄外包裝二維碼,追蹤檢測質(zhì)量安全性能,而優(yōu)質(zhì)葡萄的農(nóng)產(chǎn)品有機(jī)認(rèn)證等信息也存放于條碼中心數(shù)據(jù)庫中。通過條碼查詢可以獲得農(nóng)產(chǎn)品化驗(yàn)報告和參數(shù),利于消費(fèi)者進(jìn)行購買選擇[61]。

3 前景展望

圍繞鮮食葡萄進(jìn)行的包裝技術(shù)研究日漸成熟,包括充氣袋緩沖包裝、SO2保鮮劑、無線射頻智能包裝在內(nèi)的多種技術(shù)已投入實(shí)際生產(chǎn)中,且效果良好。

未來葡萄貯運(yùn)保鮮包裝技術(shù)需圍繞現(xiàn)存問題進(jìn)行改進(jìn):對緩沖包裝進(jìn)一步優(yōu)化,提高減振緩沖效果,減少難降解塑料的使用;氣調(diào)包裝與活性包裝有機(jī)結(jié)合,針對葡萄的不同品種、不同特性,細(xì)化包裝材料和保鮮劑的選擇與使用,并避免包裝材料和所用試劑的分子遷移影響葡萄品質(zhì);智能包裝則需要進(jìn)一步提升對市場的適應(yīng)性,保證智能標(biāo)簽的準(zhǔn)確性、葡萄生產(chǎn)信息系統(tǒng)的穩(wěn)定性等。

葡萄貯藏與運(yùn)輸全過程所使用的4類包裝技術(shù),在未來發(fā)展中仍需通過開發(fā)新材料、新結(jié)構(gòu)、新方法來提升包裝效果,解決葡萄脫粒、損傷、果梗褐變、果實(shí)霉?fàn)€等問題,進(jìn)一步延長葡萄貨架壽命,提升經(jīng)濟(jì)效益。

4 結(jié)語

葡萄物流運(yùn)輸和貯藏保鮮過程中采用的4類包裝技術(shù):緩沖包裝、氣調(diào)包裝、活性包裝、智能包裝,在解決葡萄的脫粒、損傷、果梗褐變、霉?fàn)€等問題上能夠起到較為理想的效果,并且部分包裝方法已經(jīng)投入市場。這些方法作用于葡萄運(yùn)輸、倉儲、銷售的全過程,大大提升了葡萄的商品價值。目前,不斷地涌現(xiàn)出性能更好、成本更低、更加實(shí)用的新技術(shù),在經(jīng)過市場檢驗(yàn)后,能夠更加適應(yīng)葡萄的倉儲營運(yùn),保證了產(chǎn)品品質(zhì),并給消費(fèi)者帶來更好的消費(fèi)體驗(yàn)。

[1] 肖越, 武佩, 王順喜, 等. 葡萄貯運(yùn)過程中跌落與振動損傷的試驗(yàn)分析[J]. 包裝工程, 2019, 40(5): 9-18.

XIAO Yue, WU Pei, WANG Shun-xi, et al. Experimental Analysis of Grape Falling and Vibration Damage during Storage and Transportation[J]. Packaging Engineering, 2019, 40(5): 9-18.

[2] 徐垚, 張哲, 董麗瑋, 等. 貯藏過程中葡萄保鮮方法研究進(jìn)展[J]. 冷藏技術(shù), 2017, 40(4): 56-59.

XU Yao, ZHANG Zhe, DONG Li-wei, et al. Research Progress of Preservation of Grapes in Store[J]. Cold Storage Technic, 2017, 40(4): 56-59.

[3] 程楊, 唐謙, 刁源, 等. 智能包裝模式對電商配送“夏黑”葡萄貯運(yùn)保鮮效果的影響[J]. 西南大學(xué)學(xué)報(自然科學(xué)版), 2020, 42(10): 88-95.

CHENG Yang, TANG Qian, DIAO Yuan, et al. Effect of Intelligent Packaging Mode on Storage and Storage of "Xiahei" Grape[J]. Journal of Southwest University (Natural Science), 2020, 42(10): 88-95.

[4] 王劍功, 褚偉雄, 吳劍. 葡萄電商運(yùn)輸工藝關(guān)鍵技術(shù)研究[J]. 食品科技, 2020(1): 62-68.

WANG Jian-gong, CHU Wei-xiong, WU Jian. Research on Key Technologies of Grape E-Commerce Transportation Technology[J]. Food Science and Technology, 2020(1): 62-68.

[5] 張玉. 生鮮電商物流效率評價體系研究[D]. 北京: 首都經(jīng)濟(jì)貿(mào)易大學(xué), 2017: 14-16.

ZHANG Yu. Research on the Evaluation System Of Fresh E-commerce Logistics Efficiency[D]. Capital University of Economics and Business, 2017: 14-16.

[6] 劉平, 高德政, 王春穎, 等. 鮮食葡萄袋中袋包裝裝置設(shè)計與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報, 2023, 54(1): 376-384.

LIU Ping, GAO De-zheng, WANG Chun-ying, et al. Design and Experiment of Bag-in-Bag Packaging Device for Fresh Grapes[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(1): 376-384.

[7] HEJAZI Z, NAWAKHT N A, HEDAYAT Y M, et al. Styrofoam Packaging as Alternative of the Afghan Traditional "Gangina" Container to Extend Quality of 'Taifi' Grapes in Room Temperature Storage[J]. Journal of Packaging Technology and Research, 2023, 7: 35-41.

[8] 趙曼如, 胡文忠, 于皎雪, 等. 氣調(diào)包裝在鮮切果蔬保鮮方面的應(yīng)用進(jìn)展[C]// 中國食品科學(xué)技術(shù)學(xué)會. 中國食品科學(xué)技術(shù)學(xué)會第十六屆年會暨第十屆中美食品業(yè)高層論壇論文摘要集, 2019: 2.

ZHAO Man-ru, HU Wen-zhong, YU Jiao-xue, et al. The Application Progress of Modified Atmosphere Packaging In the Preservation of Fresh-cut Fruits and Vegetables[C]// Abstracts of the 16th Annual Conference of the Chinese Society of Food Science and Technology and the 10th Sino-US Food Industry High-level Forum, 2019: 2.

[9] 張雪丹, 楊娟俠, 木志杰, 等. 溫度對自發(fā)氣調(diào)包裝貯藏“美早”櫻桃品質(zhì)的影響[J]. 山東農(nóng)業(yè)科學(xué), 2018, 50(11): 143-147.

ZHANG Xue-dan, YANG Juan-xia, MU Zhi-jie, et al. Effect of Temperature on Quality of Meizao Cherry Fruit Stored with MAP[J]. Shandong Agricultural Sciences, 2018, 50(11): 143-147.

[10] 梁潔玉, 朱丹實(shí), 馮敘橋, 等. 果蔬氣調(diào)貯藏保鮮技術(shù)研究現(xiàn)狀與展望[J]. 食品安全質(zhì)量檢測學(xué)報, 2013, 4(6): 1617-1625.

LIANG Jie-yu, ZHU Dan-shi, FENG Xu-qiao, et al. Status and Prospects on Modified Atmosphere Storage Technology of Fruits and Vegetables[J]. Journal of Food Safety & Quality, 2013, 4(6): 1617-1625.

[11] 張昭, 田全明, 魏佳, 等. 氣調(diào)微孔膜包裝技術(shù)在鮮食葡萄貯運(yùn)中的應(yīng)用[J]. 包裝工程, 2021, 42(17): 76-87.

ZHANG Zhao, TIAN Quan-ming, WEI Jia, et al. Application of Modified Air Microporous Film Packaging Technology in Storage and Transportation of Fresh Table Grapes[J]. Packaging Engineering, 2021, 42(17): 76-87.

[12] 王洋樣. 聚乳酸呼吸包裝膜對巨峰葡萄花色苷的保護(hù)及葡萄保鮮效果的研究[D]. 內(nèi)蒙古: 內(nèi)蒙古農(nóng)業(yè)大學(xué), 2022: 20-56.

WANG Yang-yang. Study on the Protection of Anthocyanin in Kyoho Grapes by Poly(L-lactic acid) Breathable Packaging Film and Its Preservation Effect on Grape Freshness[D]. Inner Mongolia: Inner Mongolia Agricultural University, 2022: 20-56.

[13] CHEN S J, WANG H O, FU Q Q, et al. Prediction of Plastic Film Thickness Based on gas Permeability and Validation with 'Kyoho' Table Grapes for Optimal Modified Atmosphere Packaging[J]. Packaging Technology and Science, 2018, 31(7): 491-497.

[14] 關(guān)文強(qiáng), 張華云, 劉興華, 等. 葡萄貯藏保鮮技術(shù)研究進(jìn)展[J]. 果樹學(xué)報, 2002, 19(5): 326-329.

GUAN Wen-qiang, ZHANG Hua-yun, LIU Xing-hua, et al. Advances in Research on the Storage of Table Grapes[J]. Journal of Fruit Science, 2002, 19(5): 326-329.

[15] SABIR F K, UNAL S, SABIR A. Postharvest Aloe vera Gel Coatings Delay the Physiological Senescence of 'Alphonse Lavallée' and 'Red Globe' Grapes During Cold Storage as an Alternative to SO2[J]. Erwerbs-Obstbau, 2022, 11(1): 1-10.

[16] CHEN Yan-pei, LI Zhen-biao, ETTOUMI F E, et al. The Detoxification of Cellular Sulfite in Table Grape under SO2Exposure: Quantitative Evidence of Sulfur Absorption and Assimilation Patterns[J]. Journal of Hazardous Materials, 2022, 439: 129685.

[17] 田靜, 薛美昭, 儀慧蘭. SO2保鮮劑對玫瑰香葡萄灰霉菌的抑制作用[J]. 食品工業(yè)科技, 2018, 39(10): 298-302.

TIAN Jing, XUE Mei-zhao, YI Hui-lan. Inhibitory Activity of Sulfur Dioxide Preservative on Botrytis Cinerea of Muscat Hamburg Table Grapes[J]. Science and Technology of Food Industry, 2018, 39(10): 298-302.

[18] 王世軍. 二氧化硫類防腐殺菌劑在葡萄保鮮中的應(yīng)用[J]. 保鮮與加工, 2015, 15(2): 1-6.

WANG Shi-jun. Application of Sulfur Dioxide Antiseptic and Bactericide in Grape Preservation[J]. Storage and Process, 2015, 15(2): 1-6.

[19] YUAN Y, WEI J, XING S, et al. Sulfur Dioxide (SO2) Accumulation in Postharvest Grape: The Role of Pedicels of Four Different Varieties[J]. Postharvest Biology and Technology, 2022, 190: 111953.

[20] 王鳳超. 二氧化硫處理對鮮食葡萄貯藏病害及生理的影響[D]. 烏魯木齊: 新疆農(nóng)業(yè)大學(xué), 2013: 20-58.

WANG Feng-chao. Effects of Sulfur Dioxide Treatment on Storage Diseases and Physiology of Table Grapes[D]. Urumqi: Xinjiang Agricultural University, 2013: 20-58.

[21] 賈曉昱, 楊維巧, 潘艷芳, 等. 紅提葡萄SO2脈沖式防腐保鮮技術(shù)[J]. 包裝工程, 2019, 40(9): 22-27.

JIA Xiao-yu, YANG Wei-qiao, PAN Yan-fang, et al. SO2Pulse Preservative and Fresh-Keeping Technology for Red Grape[J]. Packaging Engineering, 2019, 40(9): 22-27.

[22] 魏佳, 張政, 趙芳芳, 等. 鮮食葡萄SO2氣體精準(zhǔn)熏蒸保鮮控制系統(tǒng)設(shè)計[J]. 農(nóng)業(yè)工程學(xué)報, 2019, 35(1): 260-268.

WEI Jia, ZHANG Zheng, ZHAO Fang-fang, et al. Design of Sulfur Dioxide Automatic Control Fumigation System for Table Grape Preservation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(1): 260-268.

[23] 申繼增, 吐爾地, 靳濤. 葡萄保鮮片:中國, 1091354C[P]. 2002-09-25.

SHEN Ji-Zeng, TU Er-di, JIN Tao. Long Acting Antistaling Tablet for Grapes: China, 1091354C[P]. 2002-09-25.

[24] 呂昌文. 葡萄保鮮劑和生產(chǎn)方法: 中國, 1099833C[P]. 2003-01-29.

LYU Chang-wen. Fresh-Keeping Agent for Grape and Its Production Method: China, 1099833C[P]. 2003-01-29..

[25] SUN C, CAO J, WANG Y, et al. Ultrasound-Mediated Molecular Self-Assemble of Thymol with 2-Hydroxypropyl- β-Cyclodextrin for Fruit Preservation[J]. Food Chemistry, 2021, 363: 130327.

[26] 焦旋, 高振峰, 馮志宏, 等. 二氧化硫精準(zhǔn)釋放葡萄保鮮片的研制與應(yīng)用[J]. 食品工業(yè)科技, 2021, 42(6): 297-303.

JIAO Xuan, GAO Zhen-feng, FENG Zhi-hong, et al. Development and Evaluation of Grape Preservative Tablets with Precise Sulfur Dioxide Release[J]. Science and Technology of Food Industry, 2021, 42(6): 297-303.

[27] YOHANAN Z, AMNON L, TATIANA K, et al. Extended Storage of 'Red Globe' Grapes in Modified SO2Generating Pads[J]. Postharvest Biology and Technology, 2008, 50: 12-17.

[28] LUO J, GU Y, YUAN Y, et al. Lignin-Induced Sacrificial Conjoined-Network Enabled Strong and Tough Chitosan Membrane for Food Preservation[J]. Carbohydrate Polymers, 2023, 33: 120876.

[29] 王亞蒙, 趙霞, 唐彬, 等. 1-MCP熏蒸對甘薯莖尖的保鮮效果[J]. 食品與機(jī)械, 2019, 35(6): 139-144.

WANG Ya-meng, ZHAO Xia, TANG Bin, et al. Effect of 1-MCP on the Quality of Sweet Potato Leaves[J]. Food & Machinery, 2019, 35(6): 139-144.

[30] 徐方旭. 1-MCP結(jié)構(gòu)相似物調(diào)節(jié)香蕉和草莓采后成熟和衰老的分子生理機(jī)制[D]. 沈陽: 沈陽農(nóng)業(yè)大學(xué), 2014: 20-65.

XU Fang-xu. Molecular and Physiological Mechanism of Structural Analogues of 1-MCP to Regulate Postharvest Ripening and Senescence of Banana and Strawberry Fruits[J]. Shenyang Agricultural University, 2014: 20-65.

[31] 孫思勝, 張曉娟, 馬傳貴, 等. 1-MCP結(jié)合自發(fā)氣調(diào)包裝對夏黑葡萄保鮮效果[J]. 食品研究與開發(fā), 2020, 41(22): 93-99.

SUN Si-sheng, ZHANG Xiao-juan, MA Chuan-gui, et al. Effects of 1-MCP Coupling with Modified Atmosphere Package Treatment on Storage of Summer Black Grape[J]. Food Research and Development, 2020, 41(22): 93-99.

[32] GIULIANA G, VALERIA B, LUIGI V, et al. Active Packaging for Table Grapes: Evaluation of Antimicrobial Performances of Packaging for Shelf Life of the Grapes under Thermal Stress[J]. Food Packaging and Shelf Life, 2020, 25: 100545.

[33] FATIMA S, MIR M I, KHAN M R, et al. The Optimization of Gelatin Extraction from Chicken Feet and the Development of Gelatin Based Active Packaging for the Shelf-Life Extension of Fresh Grapes[J]. Sustainability, 2022, 14(13): 7881.

[34] DOPAZO V, LUZ C, QUILES J M, et al. Potential Application of Lactic Acid Bacteria in the Biopreservation of Red Grape from Mycotoxigenic Fungi[J]. Journal of the Science of Food and Agriculture, 2022, 102(3): 898-907.

[35] NIU X, DUAN X, LYU S, et al. Antifungal Activity of Ginsenoside CK Against Botrytis Cinerea by Targeting Sterol 14α-Demethylase Cytochrome P450 (CYP51) and the Application on Cherry Tomato Preservation[J]. Postharvest Biology and Technology, 2023, 199: 112294.

[36] XIA K, ZHANG C, ZHANG X, et al. Control of Grey Mould by Sodium Diacetate Treatments and Its Effects on Postharvest Quality of 'Red Globe' Grapes[J]. Physiological and Molecular Plant Pathology, 2023: 102014.

[37] ZHENG Y, JIA X, ZHAO Z, et al. Innovative Natural Antimicrobial Natamycin Incorporated Titanium Dioxide (Nano-TiO2)/Poly (Butylene Adipate-co-Terephthalate) (PBAT)/Poly (Lactic Acid)(PLA) Biodegradable Active Film (NTP@ PLA) and Application in Grape Preservation[J]. Food Chemistry, 2023, 400: 134100.

[38] JIANG L L, WANG J B, WANG W H, et al. Effects of Three Essential Oil Fumigation Treatments on the Postharvest Control ofand Their Efficacy as Preservatives of Cherry Tomatoes[J]. Plant Dis, 2023, 107(6): 1874-1882.

[39] LIGUORI G, SORTINO G, GULLO G, et al. Effects of Modified Atmosphere Packaging and Chitosan Treatment on Quality and Sensorial Parameters of Minimally Processed cv. 'Italia'table Grapes[J]. Agronomy, 2021, 11(2): 328.

[40] ADMANE N, GENOVESE F, ALTIERI G, et al. Effect of Ozone or Carbon Dioxide Pre-Treatment during Long-Term Storage of Organic Table Grapes with Modified Atmosphere Packaging[J]. LWT-- Food Science and Technology, 2018, 98: 170-178.

[41] HUANG X, HONG M, WANG L, et al. Bioadhesive and Antibacterial Edible Coating of EGCG-Grafted Pectin for Improving the Quality of Grapes During Storage[J]. Food Hydrocolloids, 2023, 136: 108255.

[42] MOHAMMED A E, ABDALHALIM L R, ATALLA K M, et al. Chitosan and Sodium Alginate Nanoparticles Synthesis and Its Application in Food Preservation[J]. Rendiconti Lincei. Scienze Fisiche e Naturali, 2023, 34: 415-425.

[43] HUANG L, SUN D W, PU H, et al. Nanocellulose-Based Polymeric Nanozyme as Bioinspired Spray Coating for Fruit Preservation[J]. Food Hydrocolloids, 2023, 135: 108138.

[44] LIU W, KANG S, ZHANG Q, et al. Self-Assembly Fabrication of Chitosan-Tannic Acid/MXene Composite Film with Excellent Antibacterial and Antioxidant Properties for Fruit Preservation[J]. Food Chemistry, 2023, 1: 135405.

[45] NIU X, LIU L, WANG H, et al. Discovery of Novel Photosensitized Nanoparticles as a Preservative for the Storage of Strawberries and Their Activity Against Botrytis Cinerea[J]. LWT, 2021, 145: 111359.

[46] SUN X, ZHOU B, LUO Y, et al. Effect of Controlled-Release Chlorine Dioxide on the Quality and Safety of Cherry/Grape Tomatoes[J]. Food Control, 2017, 82: 26-30.

[47] LIU J, WANG T, HU C, et al. Hydrophobic Chitosan/Salicylic Acid Blends Film with Excellent Tensile Properties for Degradable Food Packaging Plastic Materials[J]. Journal of Applied Polymer Science, 2022, 139(43): 53042.

[48] SONG Z, PANG Q, LU S, et al. Transcriptomic and Metabolmic Approaches to Counter the Effect of Botrytis Cinerea in Grape Berry with the Application of Nitric Oxide[J]. Scientia Horticulturae, 2022, 296: 110901.

[49] WU P, XIN F, XU H, et al. Chitosan Inhibits Postharvest Berry Abscission of 'Kyoho' Table Grapes by Affecting the Structure of Abscission Zone, Cell Wall Degrading Enzymes and SO2Permeation[J]. Postharvest Biology and Technology, 2021, 176: 111507.

[50] CHETIA J, ADHIKARY P, DEVI L M, et al. Extraction of Essential Oil from Assam Lemon Peels and Its Incorporation in Chitosan Based Coating for Maintaining Grape Quality[J]. Sustainable Chemistry and Pharmacy, 2023, 32: 101034.

[51] XIE Y, ZHU J, LIU H, et al. In Vitro Antifungal Activity of Essential Oils Against Botrytis Cinerea of Postharvest Grapes[J]. IOP Conference Series: Earth and Environmental Science, 2022, 1035(1): 012008.

[52] CHOUDHARY S, SHARMA K, MISHRA P K, et al. Development and Characterization of Biodegradable Agarose/Gum Neem/Nanohydroxyapatite/Polyoxyethylene Sorbitan Monooleate Based Edible Bio-Film for Applications Towards a circular economy[J]. Environmental Technology & Innovation, 2023, 29: 103023.

[53] RUAN X, LI P, WANG C, et al. Synergistic Antibacterial Activity of Chitosan Modified by Double Antibacterial Agents as Coating Material for Fruits Preservation[J]. International Journal of Biological Macromolecules, 2022, 222: 3100-3107.

[54] KUSWANDI B, MURDYANINGSIH E A. Simple on Package Indicator Label for Monitoring of Grape Ripening Process Using Colorimetric pH Sensor[J]. Journal of Food Measurement and Characterization, 2017(11): 2180-2194.

[55] YUAN Liu-bo, GAO Meng, XIANG Hu-bing, et al. A Biomass-Based Colorimetric Sulfur Dioxide Gas Sensor for Smart Packaging[J]. ACS Nano, 2023, 17(7): 6849-6856.

[56] FRAIWAN M, FAOURI E, KHASAWNEH N. Multiclass Classification of Grape Diseases Using Deep Artificial Intelligence[J]. Agriculture, 2022, 12(10): 1542.

[57] WANG Y, WEI C, SUN H, et al. Design of Intelligent Detection Platform for Wine Grape Pests and Diseases in Ningxia[J]. Plants, 2022, 12(1): 106.

[58] 彭哲. 面向物聯(lián)網(wǎng)的RFID與條形碼混合應(yīng)用的蔬菜生產(chǎn)管理與追溯系統(tǒng)[D]. 廣州: 華南理工大學(xué), 2012: 25-55.

PENG Zhe. Vegetables Production Management and Tracing System Using RFID and Barcode technology for the Internet of Things[D]. Guangzhou: South China University of Technology, 2012: 25-55.

[59] 邊吉榮, 宋麗亞, 藺金元. 基于RFID的危險品運(yùn)輸安全管理系統(tǒng)設(shè)計[J]. 寧夏工程技術(shù), 2010, 9(3): 242-245.

BIAN Ji-rong, SONG Li-ya, LIN Jin-yuan. Design of Transportation Safety Management System for Dangerous Goods Based on RFID[J]. Ningxia Engingeering Technology, 2010, 9(3): 242-245.

[60] 陳宏君. 基于RFID的衡陽市珠暉葡萄質(zhì)量安全溯源系統(tǒng)研究[D]. 長沙: 中南林業(yè)科技大學(xué), 2019: 20-59.

CHEN Hong-jun. Research on Quality and Safety Traceability System of Zhuhui Grape in Hengyang City Based on RFID[D].Changsha: Central South University of Forestry & Technology, 2019: 20-59.

[61] 李萬富. 物聯(lián)網(wǎng)技術(shù)在葡萄生產(chǎn)管理中的應(yīng)用研究[D]. 武漢: 華中師范大學(xué), 2018: 31-42.

LI Wan-fu. Research on the Application of Internet of Things Technology in Grape Production Management[D]. Wuhan: Central China Normal University, 2018: 31-42.

Research Status and Prospect of Grape Logistics, Storage and Preservation Packaging Technology

LI Bao-qing1, LIANG Xin2, WEI Wan-qi1, YAO Gang2, LI Yu-cheng1, YAN Rui-xiang1*

(1. College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, China; 2. Shenzhen SF Taisen Holding (Group) Co., Ltd., Guangdong Shenzhen 518000, China)

The work aims to classify and systematically introduce packaging technologies used in logistics transportation, storage and preservation of grapes, analyze their research application and packaging effect, and promote the improvement of storage, transportation and preservation packaging technology of grapes. In view of the problems prone to occur in storage, transportation and preservation of grapes, this paper introduced the research and application status of packaging technologies such as buffer packaging, modified atmosphere packaging, active packaging and intelligent packaging, analyzed the advantages of different packaging technologies, and discussed possible development directions in the future. By improving the cushioning and vibration reduction effect of transportation packaging, accurately regulating the internal atmosphere of modified atmosphere packaging, controlling the release of pharmaceuticals and molecular migration in active packaging, improving the accuracy of intelligent indication tags, and ensuring the stability of the RFID intelligent packaging system, the combination of various packaging technologies can effectively maintain the quality of grapes in storage and transportation and prolong their shelf life.

grapes; logistics; storage; preservation; packaging technology

S609+.3

A

1001-3563(2023)23-0094-09

10.19554/j.cnki.1001-3563.2023.23.011

2023-04-29

順豐橫向合作項目(90202205240357);大學(xué)生創(chuàng)新創(chuàng)業(yè)項目(202310057021)

責(zé)任編輯:曾鈺嬋

猜你喜歡
氣調(diào)保鮮葡萄
《保鮮與加工》編委會
葡萄熟了
當(dāng)葡萄成熟時
果蔬氣調(diào)貯藏技術(shù)及設(shè)備
愛情保鮮術(shù)
如何保鮮一顆松茸?
新型簡易氣調(diào)箱可延長果蔬保質(zhì)期
O2聯(lián)合CO2氣調(diào)對西蘭花活性氧代謝及保鮮效果的影響
氣調(diào)貯藏對四季豆生理生化特性的影響
插花如何保鮮
平果县| 台东县| 北海市| 江北区| 鲁甸县| 茶陵县| 军事| 揭阳市| 遵化市| 竹溪县| 图木舒克市| 白河县| 临颍县| 留坝县| 鹤岗市| 临泉县| 许昌市| 札达县| 宣汉县| 泸溪县| 深圳市| 麻城市| 晋州市| 石楼县| 买车| 垫江县| 广饶县| 邯郸市| 岑溪市| 和林格尔县| 肇庆市| 广西| 河东区| 铜梁县| 扎鲁特旗| 改则县| 德惠市| 安陆市| 惠东县| 驻马店市| 桂东县|