潘洵,肖乃玉,胡心寬,仲蕓蕓,羅文翰,陳國健*,萬小榮,肖更生
生物基包裝材料的制備及其在果蔬保鮮中應用
潘洵1a,2,3,肖乃玉1a,2,3,胡心寬1a,2,3,仲蕓蕓1a,2,3,羅文翰1a,2,3,陳國健1a,2,3*,萬小榮1b,肖更生1a,2,3
(1.仲愷農(nóng)業(yè)工程學院 a.輕工食品學院 b.農(nóng)業(yè)與生物學院,廣州 510225; 2.廣東省高校中央廚房綠色制造開發(fā)中心,廣州 510225; 3.農(nóng)業(yè)農(nóng)村部嶺南特色食品綠色加工與智能制造重點實驗室,廣州 510225)
近年來,隨著消費水平及消費形態(tài)的發(fā)展,果蔬包裝,尤其是鮮切果蔬包裝的消費量迅速攀升。相較于傳統(tǒng)石油基類包裝材料,生物基包裝材料擁有環(huán)境友好、可持續(xù)等特點,是未來果蔬包裝材料發(fā)展的重要方向。本文擬綜述國內(nèi)外生物基包裝材料的研究進展及其在果蔬保鮮中應用,為后續(xù)相關領域的研究與應用提供理論參考。首先介紹果蔬的保鮮機制及其包裝需求,隨后分類論述不同種類生物基材料的特性及制備方式,最后闡述相關生物基材料在果蔬包裝中的應用。總結了生物基包裝材料在果蔬包裝領域的研究進展,并對其未來發(fā)展趨勢進行展望。
生物基材料;包裝材料;果蔬保鮮
中國是世界上最大的水果消費國,近年來水果消費量一直保持穩(wěn)步增長[1]。隨著消費水平及消費觀念的提升,我國果蔬消費模式正從粗放式、低端化邁向精細化、個性化,這也推動著我國果蔬包裝市場的快速增長。尤其是經(jīng)過預先洗切等流程后包裝銷售的鮮切果蔬,極大提升了消費者食用的便利性,近年來銷售量增長尤為迅速。
然而,主流的果蔬包裝材料仍十分依賴于以化石資源為原料的傳統(tǒng)塑料制品(如塑料薄膜、包裝袋、盒、托盤等)。隨著近年來人們對“能源危機”“白色污染”等問題的日漸關注,使用生物基包裝材料替代化石類包裝材料的呼聲越來越多[2-3]。此外,通過改性、摻雜等手段,生物基材料可獲得某些獨特的保鮮性能,從而有效延長果蔬保質(zhì)期,以減少果蔬在儲運銷售過程中的損耗[4-7]。
本文先對果蔬的保鮮機制及包裝需求展開介紹,進而分類論述了不同種類生物基包裝材料的特性及制備方式,并闡述了相關生物基材料在果蔬包裝中的應用及研究進展。本文最后總結了生物基果蔬包裝材料的研究進展,并展望了其未來趨勢。
市面銷售的果蔬包裝,可分為3類:蔬菜類(白菜、萵筍、茄子、土豆等),水果類(圣女果、荔枝、芒果等),食用菌類(蘑菇、香菇、木耳等)
果蔬摘收后極易腐爛,即使是對其進行最低限度的加工,如切割和去皮,也會導致?lián)p傷點周圍的細胞內(nèi)容物泄漏,從而增加微生物感染的風險。蔬菜采后還會因衰老代謝及微生物的侵染引起軟化褐變、脫幫失水[8],或者在采后運輸、加工、貯藏過程會受到?jīng)_擊、擠壓、劃傷等,致使商品的價值降低[8-9]。關于果蔬包裝加工-儲運-銷售流程見圖1所示。
達到食用標準后進行采收的果蔬一般都到達了成熟期,隨著其組織、器官的老化,進入衰老期,其機體免疫力下降,糖分、維生素C等營養(yǎng)物質(zhì)被大量消耗,組織開始水解。果蔬往往還會發(fā)生酶促褐變,除了造成顏色變化、風味衰減和營養(yǎng)損失,甚至可能產(chǎn)生有害物質(zhì)。一般,可通過低溫、氣調(diào)、添加抗氧化劑等手段延緩其生理生化衰變[10-11]。
果蔬的機械損傷(如刷洗、表面擦傷和割傷等)會加速其水分和維生素C的流失,從而增加對腐爛病原體的易感性。去皮、修整等步驟會不可避免地造成機體的機械損傷,破壞組織細胞的表皮保護層,誘導或加速生理生化變化,導致失水、代謝失調(diào)等現(xiàn)象,讓病原微生物和化學污染物有機可乘[12]。因此,可采用緩沖包裝,如紙箱、托盤、泡沫等,對易損果蔬進行保護,降低機械損傷的發(fā)生[13]。
圖1 果蔬包裝加工-儲運-銷售流程
微生物因素是影響果蔬品質(zhì)的重要外界因素之一,導致食品變質(zhì)或污染的主要微生物有大腸桿菌、酵母、李斯特菌群、霉菌、金黃色葡萄球菌、沙門氏菌等[14]。被微生物侵染后,果蔬細胞組織結構受到破壞,會導致果蔬變質(zhì)發(fā)霉,甚至產(chǎn)生有毒代謝產(chǎn)物,使其商品價值急劇降低甚至喪失。控制措施除了傳統(tǒng)的消毒劑、氣調(diào)技術和儲存條件調(diào)控技術以外,還可使用如高壓處理、輻照、添加植物提取物等果蔬保鮮新技術,以滿足其在市場上的需求[15]。也可采用精油等其他生物活性成分,抑制微生物的生長繁殖,以延長果蔬的保質(zhì)期[16]。
往往鮮切后的果蔬中的酶依然保有活性,會存在有氧呼吸和無氧呼吸。氧氣會影響呼吸作用,從而影響果蔬的腐變速率[10]。果蔬保鮮常采用降低O2濃度,增大CO2濃度的方式來減弱鮮切果蔬呼吸作用引起的發(fā)酵與腐爛,降低微生物的生長繁殖速度和乙烯的生成量,從而延長果蔬貨架期。
溫度是影響果蔬貯藏品質(zhì)的重要因素。低溫有利于降低果蔬產(chǎn)品的呼吸速率和乙烯釋放量,能夠使微生物的活動受到抑制,因此低溫是果蔬保鮮常用手段之一[17]。對于部分果蔬(例如柿子、柑橘、梨、蘋果等),降低溫度也能減少水分蒸騰作用,從而延長其貨架期。
生物基材料往往指利用可再生生物質(zhì)(例如:谷物、秸稈、動物表殼或皮毛廢棄物等),使用生物、化學、物理等處理方法制造出的新型材料。如圖2所示,果蔬包裝常用的生物基材料可分為以下幾類。
圖2 果蔬包裝常用的生物基材料
多糖在自然界中來源廣泛,原料廉價且易得,并且具有良好的生物相容性,目前開發(fā)最為廣泛。常用于果蔬保鮮的多糖有淀粉、纖維素、殼聚糖等。
植物源中淀粉是一種大量可用、廉價、可生物降解的天然多糖。純淀粉基膜往往存在機械強度弱、阻隔性差、阻水性差等缺陷[18]。為此,在利用淀粉制備包裝材料過程中,往往需要添加其他組分以改善其性能,如添加明膠等疏水性組分,增強薄膜阻水性[19],或通過加入甘油等塑化劑,改善所得薄膜的脆性[20]。
纖維素一般從木材、麥草、稻草、棉花、蘆葦?shù)仍现兄迫?,其?yōu)點在于易降解、可再生和無毒性。纖維素廣泛用于制備紙基包裝材料。近年來,利用纖維素及其衍生物開發(fā)新型包裝材料的工作層出不窮,但由于纖維素成膜性較差,結晶度較高,對氣體的阻隔性差等特點,在開發(fā)新型纖維素包裝材料的過程中,往往需要進行一定改性或復合。如將改性纖維素與聚己二酸/對苯二甲酸丁二醇酯(Poly (butyleneadipate-co-terephthalate),PBAT)共混后,通過模壓法制成復合薄膜,以解決單一纖維素存在的缺陷[21]。
黃原膠一般是由玉米淀粉經(jīng)過發(fā)酵生產(chǎn)出的一種多糖,因含有羥基和氨基等親水基團,具有良好的成膜性能,且易分散在水中,可用作可食用涂層的聚合物基質(zhì)[22]。黃原膠、氧化鋅納米顆粒、羧甲基纖維素、果膠與海藻酸鈉共同制成可食性涂層,并應用于果蔬保鮮[23]。
殼聚糖一般從蝦皮和蟹殼等蟲類殼中提取,有良好的可降解性和成膜性能,且其本身就具有較好的抑菌性能[24]。單一殼聚糖制成的薄膜力學性能較差,常常與其他天然基質(zhì)結合使用,如使用纖維素納米晶作為增強材料,與殼聚糖共混制成生物基復合涂層,可有效提升薄膜的機械強度、氧阻隔性能、熱穩(wěn)定性、抗菌活性和疏水性[25]。
常見的蛋白質(zhì)來源有植物蛋白(大豆蛋白、花生蛋白、花玉米蛋白等)和動物蛋白(乳清蛋白、明膠、酪蛋白等)。因為蛋白質(zhì)分子帶有較多活性基團,可提升其與其他組分復合時的組分間相互作用及相容性[26],因此蛋白質(zhì)也常與其他生物基材料復合使用。如在?;蠖狗蛛x蛋白中添加木質(zhì)素納米顆粒作為增強組分,以提高包裝材料的阻水性及機械強度[27]。
明膠是一種在動物(豬、牛、羊等)皮骨或軟骨中提取的蛋白質(zhì),含有豐富的羥基、羧基等親水性基團,具有較好的水溶性,易于通過溶液流延法制膜。如以魚明膠、β-環(huán)糊精、TiO2為等材料共溶于水中,通過溶液流延法制備了具有乙烯清除、抑制微生物功能的復合薄膜,并用于西紅柿的保鮮包裝中[28]。
酪蛋白可以從牛乳蛋白中提取,具有較好的成膜性、阻水性、生物降解性、氣體阻隔性,在作為包裝薄膜或涂層時非常有優(yōu)勢[29]。常通過酪蛋白常與其他生物基材料復合,改善材料的氣體阻隔性能[30]。
聚乳酸(Polylactic Acid,PLA)是廣泛使用的可降解塑料之一,可從小麥、水稻、玉米等天然的植物中利用其根莖或者葉片等有機廢棄部分作為原料,通過發(fā)酵聚合獲得[31]。PLA具有良好的硬度和熱塑性,適用于吹塑、熱塑等常規(guī)加工手段大規(guī)模制備,但熱性能差、脆性大、阻隔性不高,往往需要改性或復合,才能在性能上達到傳統(tǒng)石油基聚合物的水平。Mizielińska等[32]以溶液流延法制備了氧化鋅納米粒子摻雜的PLA復合薄膜,納米粒子的加入能有效提升PLA薄膜的力學性能。
聚丁二酸丁二醇酯(Poly(Butylene Succinate),PBS)可以通過葡萄糖、乳糖、纖維素等發(fā)酵制備,有著耐熱、柔軟、可降解、兼容性好、可低溫熱封等優(yōu)點,但透明度較低、撕裂強度不高[33]。為此,經(jīng)常需要與其他聚合物共混改性,PBAT與PBS共混改性是其中常用的手段之一。PBS的加工性能好,常用的成型加工方法幾乎都適用于PBS的加工。
聚羥基脂肪酸酯(Polyhydroxyalkanoates,PHA)存在于細菌細胞等微生物細胞中,也可以從煙草、馬鈴薯、棉花、油菜、玉米、苜蓿等植物中提取,具有較好的力學性能、加工性能、阻隔性、生物降解性、生物相容性[6]。PHA缺點在于結晶度高達80%、熱敏感性差、
力學性能較差、耐溶劑性差、降解期長等,需要復合改性以擴大其應用領域。如與PLA等其他聚合物共混,可改善其力學性能[34];或加入果膠以及廢棄咖啡渣提取物等其他生物基組分,縮短其降解時長[35]。
在果蔬包裝領域,生物基材料的應用形式主要有薄膜、可食用涂層、紙類、智能包裝等,具體進展見表1。
表1 果蔬包裝中生物基材料的包裝形態(tài)選用和功能
3.1.1 氣調(diào)包裝膜
果蔬在采后一段時間內(nèi)仍保有新陳代謝及呼吸活性,通過調(diào)節(jié)包裝微環(huán)境內(nèi)的氣體種類、濃度和濕度等環(huán)境因素,并對氧氣、CO2和乙烯等關鍵氣體調(diào)控,可減緩包裝果蔬代謝速率,抑制包裝內(nèi)微生物生長,從而延長其保質(zhì)期[52]。Wu等[10]采用PLA和本征微孔聚合物(Polymer of Intrinsic Microporosity-1,PIM-1)制備了PIM-1/PLA平衡氣調(diào)包裝膜,通過對材料的透濕和透氣性能進行調(diào)控,在保鮮過程中抑制了芒果的呼吸速率,延緩了其品質(zhì)的變化。此外,在殼聚糖薄膜中加入具有光催化特性的納米TiO2顆粒,高效分解了包裝微環(huán)境中乙烯氣體,也可減緩果蔬成熟過程,以延長保質(zhì)期[53]。
3.1.2 抗菌抗氧化薄膜
如上文所述,因外界微生物、氧氣等導致的生理生化反應,嚴重威脅著果蔬的品質(zhì)穩(wěn)定?;谏锘牧媳菊骰蛲饧拥目咕寡趸匦裕山档蛢\過程中包裝果蔬的腐敗變質(zhì)。如殼聚糖材料具有本征抗菌特性,與具備光催化活性的氧化鋅納米顆粒復合后,進一步提升了其對大腸桿菌和金黃色葡萄菌的抗性[3];類似的,在PBAT/PBS包裝薄膜中添加二氧化鈦納米顆粒,可實現(xiàn)對微生物生長的顯著抑制作用,從而延緩了香蕉果實的成熟[33]。茶多酚是具有抗菌抗氧化特性的天然分子,Chen等[11]將其摻入黃原膠/羥丙基甲基維素復合薄膜中,由于茶多酚優(yōu)秀的抗氧化活性和抗菌性能,可延長鮮切青椒的保質(zhì)期,且降低保存期內(nèi)營養(yǎng)成分的下降速率。利用ε-聚賴氨酸的抗菌活性,Zhao等[26]使用靜電紡絲的方法制備了摻有聚乙烯醇(Polyvinyl Alcohol,PVA)、ε-聚賴氨酸修飾的大豆分離蛋白納米纖維膜,對金黃色葡萄球菌等5種微生物有明顯的抑制作用,延長了藍莓在4 °C下的保質(zhì)期。在細菌納米纖維素和淀粉制成的薄膜中添加3,4,5-三羥基苯甲酸,可提升薄膜的抗氧化、抗菌和紫外線阻隔性能,對革蘭氏陽性金黃色葡萄球菌具有較強抗性,如圖3所示,可應用于鮮切蘋果保鮮[18]。Zhang等[54]將辣椒素添加至海藻酸鈉/普魯蘭多糖復合薄膜中,對大腸桿菌和金黃色葡萄球菌表現(xiàn)出良好的抗菌活性,能夠延長果蔬的保質(zhì)期、抑制細菌的生長。褐藻核葉提取物具有抗菌和抗氧化性,將其添加到明膠與酪蛋白薄膜中,有望用于果蔬保鮮中[55]。金屬有機骨架化合物(Metal organic Frameworks,MOFs)是近年來的研究熱點,在明膠基底中加入Zn-MOF納米結構,使薄膜獲得優(yōu)異的抗氧化活性、紫外線吸收和抗菌性能,顯示出對微生物具有生長預防的作用[56]。
3.1.3 紫外線阻隔
果蔬在分銷和包裝的過程中,可能因暴露在紫外線等光照作用下,導致營養(yǎng)成分下降和顏色變化。因此,提升生物基包裝材料的紫外阻隔性能,也是實現(xiàn)果蔬有效保鮮的路徑。如在PLA/PBS薄膜中,通過添加木薯淀粉可以改善紫外光的阻隔性能,降低薄膜的生產(chǎn)成本,并提高薄膜的降解率[19];利用木質(zhì)素的紫外吸收特性,對結冷膠、2-羥乙基纖維素(Hetastarch,HEC)復合薄膜進行摻雜,獲得近100%的UVB(280~320 nm)防護和90%的UVA(320~400 nm)防護的紫外阻隔薄膜[57]。
圖3 不同薄膜之間保鮮效果對比[18]
3.1.4 抗拉伸高阻隔薄膜
常規(guī)生物基包裝材料的阻隔性能、力學性能并不高,難以有效保護其包裝的果蔬產(chǎn)品,通過添加功能組分,提升其拉伸、阻隔等性能,是目前生物基果蔬包裝材料應用的研究熱點。如通過在PBAT/PBS復合薄膜中加入SiO2、TiO2等納米顆粒,通過納米顆粒與聚合物基體間相互作用,顯著提升薄膜產(chǎn)品的水蒸氣透過率、氧氣透過率、拉伸強度和伸長率[33, 58]。此外,添加較低成本的滑石粉,也可顯著提升PBAT薄膜的彈性模量與水蒸氣阻隔性[59]。
可食用涂層是一種新型的果蔬包裝保鮮形式。涂層材料在控制包裝內(nèi)氣體成分、微生物繁殖、保障食品品質(zhì)、延長食品貨架期中起到關鍵性作用??墒秤冒b涂層的基材有很多,大體可分為4種:多糖基、蛋白質(zhì)基、脂質(zhì)基和復合基。
Tabassum等[4]制作了摻雜植物精油的海藻酸鹽基食用涂層,用于鮮切木瓜的氣調(diào)包裝,能有效改善質(zhì)量損失、減緩pH值變化、延遲食用期限等。如圖4所示,基于芒果皮和種子仁的抗氧化提取物制備的生物基可食性涂層,可降低桃子的呼吸速率,從而延長桃子的保質(zhì)期[17]。Kumar等[60-61]用石榴皮提取物與殼聚糖、普魯蘭多糖復合,制備了復合食用涂層,提取物的抗氧化特性能有效減少了果蔬的質(zhì)量損失及褐變,應用于番茄及甜椒保鮮上,顯著提高了其采后的質(zhì)地、營養(yǎng)物數(shù)量和活性。
Rossi-márquez等[62]研究制作了一種基于蛋白質(zhì)和碳水化合物的多層可食用涂層,其能保持鮮切毛葉番荔枝的總酚醛含量、pH值和糖度值的同時減少了水分損失。Xing等[63]研究發(fā)現(xiàn),將金屬NPs摻入食用涂層和薄膜中,然后將其涂在水果和蔬菜上,由于陽離子聚合物或游離金屬離子與微生物細胞膜之間的靜電相互作用、NPs的光催化反應、游離金屬離子作用等,能有效滅殺致腐微生物,從而延長水果和蔬菜的保質(zhì)期并提高儲存質(zhì)量。
相較于上述新型生物基包裝材料,紙包裝材料的應用歷史更為悠久,近年來也有不少學者進一步挖掘其在果蔬保鮮中的潛力。常規(guī)紙包裝材料的耐水性較差,在包裝含水量較高的果蔬時,容易因吸水導致力學性能急劇下降。因此,開發(fā)出高度疏水的表面對維持紙包裝材料結構和防止食材變質(zhì)是至關重要的。常規(guī)解決手段是在紙包裝的內(nèi)表面施加生物基材料作為防水層。如將納米纖維素(Nanocellulose,NC)[64]、二氧化硅[65-66]、改性木質(zhì)纖維素[67]、礦物填料[68]等與生物基材料復配獲得疏水涂層,對紙質(zhì)材料進行涂布后,水接觸角能達到150°以上,使紙包裝材料獲得優(yōu)異的疏水性。此外,通過涂層分子內(nèi)部的分子間相互作用(如氫鍵作用、交聯(lián)作用等),改善涂層的緊密性與韌性,也可進一步提高涂層對水的阻隔性,從而提升涂布后紙包裝材料的耐水性[66]。
果蔬新鮮度指示材料,能對儲運銷售過程中果蔬的新鮮度實行可視化監(jiān)控,對果蔬質(zhì)量變化進行指示預警。天然植物中提取的花青素、姜黃素等分子能對果蔬代謝產(chǎn)生的氣體進行響應,從而改變其顏色,實現(xiàn)果蔬新鮮度指示。因生物基材料與上述天然色素分子具有較好的相容性,且無毒安全,常被用于制作新鮮度指示材料的基材。如以藍莓花青素提取物、果膠、海藻酸鈉、黃原膠復合制成一種對pH敏感的生物基薄膜材料,可用于監(jiān)測藍莓的新鮮度,進行合理銷售安排,以減少藍莓的浪費[69];將紫薯花青素提取物添加到淀粉/明膠薄膜中,制備的金針菇新鮮度指示標簽,能隨著金針菇的儲存變質(zhì),產(chǎn)生綠-紫灰-黃的一系列顏色變化,實現(xiàn)對金針菇新鮮度的指示[70]。
圖4 在20 ℃下存儲8 d時各類氣體的變化[17]
溫度是影響果蔬儲運過程質(zhì)量的關鍵因素之一,而機械損傷也嚴重威脅著果蔬的質(zhì)量安全。發(fā)泡材料具有較好的隔熱保溫與緩沖作用,在果蔬包裝中應用廣泛。然而常規(guī)發(fā)泡材料,如聚苯乙烯、聚丙烯、聚氨酯等均是非生物基的,生物基隔熱緩沖材料目前研究空間還很大。如以魔芋葡甘聚糖與淀粉制作的氣凝膠,因其多孔結構,使其獲得了優(yōu)異的保溫、緩沖性能[13];聚丙烯酰胺/聚乙烯醇納米顆粒水凝膠,通過實現(xiàn)輻射和蒸發(fā)冷卻的結合效果,保護果實品質(zhì)免受太陽輻射和高溫傷害[71];具有吸濕、隔熱、快干以及緩沖功能的3D發(fā)泡材料,能提供穩(wěn)定的水吸附能力和包裝保護性,用于水果保鮮包裝具有顯著效果[72]。
隨著對能源危機和環(huán)境污染的關注度的逐步提高,在包裝行業(yè)中,以生物基包裝材料逐步替代傳統(tǒng)石油基包裝材料,是更符合“雙碳”目標的發(fā)展方向。針對果蔬保質(zhì)期間的質(zhì)量變化機制與保鮮需求,近年來,基于多糖類、蛋白質(zhì)類等生物基材料,以及一系列保鮮包裝材料被開發(fā)并應用。通過摻雜、復合改性等手段,使這些傳統(tǒng)生物基材料獲得了氣調(diào)、抗菌抗氧化、高阻隔、高疏水、新鮮度指示等一系列獨特且優(yōu)異的性能,在多種果蔬產(chǎn)品保鮮中獲得了顯著效果,為該領域的發(fā)展提供了重要的參考與指導意義。
美中不足的是,現(xiàn)階段生物基材料具有成本較高、制備過程較復雜、大規(guī)模加工成型手段不足等缺點,這制約著其大規(guī)模生產(chǎn)。此外,生物基材料在力學性能、阻隔性能、耐水性能、耐熱性能等方面,與傳統(tǒng)包裝材料仍有較大差距,限制了其應用場合。因此,在生物基材料未來發(fā)展上,仍有大量研究工作需要展開。不斷改善生物基包裝材料的性能(尤其是力學性能及阻隔性能),通過與多種生物質(zhì)材料復合、材料改性等手段,顯著提升其性能,使其能接近乃至超過現(xiàn)有的傳統(tǒng)包裝材料,以獲得更廣泛的應用;進一步改進生物質(zhì)材料的大規(guī)模制備工藝,進一步提升其產(chǎn)量并降低制備成本;完善生物質(zhì)材料回收、后處理工藝,真正實現(xiàn)生物質(zhì)包裝材料全生命周期綠色化;根據(jù)生物質(zhì)包裝材料性能特質(zhì),開發(fā)新型包裝形式及包裝結構,最大限度揚長避短,發(fā)揮生物質(zhì)材料的應用潛力。
[1] 周應恒, 李娜. “大食物觀” 與我國食物安全保障新思路[J]. 中國農(nóng)業(yè)大學學報(社會科學版), 2023, 40(4): 147-158.
ZHOU Ying-heng, LI Na. All-Encompassing Approach to Food and New Thinking of Food Security[J]. Journal of China Agricultural University Social Sciences, 2023, 40(4): 147-158.
[2] YANG R, LIU B, YU F, et al. Superhydrophobic Cellulose Paper with Sustained Antib-acterial Activity Prepared by In-situ Growth of Carvacrol-loaded Zinc-based Metal Orga-nic Framework Nanorods for Food Packaging Application[J]. Int J Biol Macromol, 2023, 234: 123712.
[3] KUMAR S, MUDAI A, ROY B, et al. Biodegradable Hybrid Nanocomposite of Chitosan/Gelatin and Green Synthesized Zinc Oxide Nanoparticles for Food Packaging[J]. Foods, 2020, 9(9): 1143.
[4] TABASSUM N, KHAN M A. Modified Atmosphere Packaging of Fresh-Cut Papaya Using Alginate Based Edible Coating: Quality Evaluation and Shelf Life Study[J]. Scientia Horticulturae, 2020, 259: 108853.
[5] KIM H, LEE C, YOON K, et al. Synergistic Effect of UV-C LED Irradiation and PLA/PBAT-Based Antimicrobial Packaging Film on Fresh-Cut Vegetables[J]. Food Control, 2022,138: 109027.
[6] VOSTREJS P, ADAMCOVA D, VAVERKOVA M D, et al. Active Biodegradable Packaging Films Modified with Grape Seeds Lignin[J]. RSC Adv, 2020, 10(49): 29202-29213.
[7] TRIPATHI A D, MISHRA P K, DARANI K K, et al. Hydrothermal Treatment of Lignocellulose Waste for the Production of Polyhydroxyalkanoates Copolymer with Potential Application in Food Packaging[J]. Trends in Food Science & Technology, 2022, 123: 233-250.
[8] AL-TAYYAR N A, YOUSSEF A M, AL-HINDI R R. Edible Coatings and Antimicrobial Nanoemulsions for Enhancing Shelf Life and Reducing Foodborne Pathogens of Fruits and Vegetables: A Review[J]. Sustainable Materials and Technologies, 2020, 26: 215.
[9] AGRIOPOULOU S, STAMATELOPOULOU E, SACHADYN-KRóL M, et al. Lactic Acid Bacteria as Antibacterial Agents to Extend the Shelf Life of Fresh and Minimally Processed Fruits and Vegetables: Quality and Safety Aspects[J]. Microorganisms, 2020, 8(6): 952.
[10] WU Y, XIAO K, ZHU L, et al. Preparation and Application of Equilibrium Modified at-Mosphere Packaging Membranes with Polylactic Acid and Polymers of Intrinsic Microporeosity[J]. Food Packaging and Shelf Life, 2023, 37: 101063.
[11] CHEN Jian-fu, ZHENG Mei-xia, TAN K B, et al. Development of Xanthan Gum/Hydroxypropyl Methyl Cellulose Composite Films Incorporating Tea Polyphenol and Its Application on Fresh-Cut Green Bell Peppers Preservation[J]. International Journal of Biological Macromolecules, 2022, 211: 198-206.
[12] 張學杰, 劉宜生, 孫潤峰. 切割果蔬的質(zhì)量控制及改善貨架期的途徑[J]. 中國農(nóng)業(yè)科學, 1999, 32(3): 72-77.
ZHANG Xue-jie, LIU Yi-sheng, SUN Run-feng. Quality Control and Measures Taken for Improving Shelf Life of Minimally Processed Fruits and Vegetables[J]. Scientia Agricultura Sinica, 1999, 32(3): 72-77.
[13] WU K, WU H, WANG R, et al. The Use of Cellulose Fiber from Office Waste Paper to Improve The thermal insulation-related Property of Konjac Glucomannan/Starch Aerogel[J]. Industrial Crops and Products, 2022, 177: 114424.
[14] LORENZO J M, MUNEKATA P E, DOMINGUEZ R, et al. Chapter 3-Main Groups of Microorganisms of Relevance for Food Safety and Stability: General Aspects and Overall Description[M].New York: Innovative Technologies for Food Preservation. Academic Press, 2018: 53-107.
[15] MIR S A, SHAH M A, MIR M M, et al. Microbiological Contamination of Ready-to-Eat Vegetable Salads in Developing Countries and Potential Solutions in the Supply Chain to Control Microbial Pathogens[J]. Food Control, 2018, 85: 235-244.
[16] TIWARI S, DUBEY N K. Nanoencapsulated Essential Oils as Novel Green Preservatives Against Fungal and Mycotoxin Contamination of Food Commodities[J]. Current Opinion in Food Science, 2022, 45: 100831.
[17] TORRES-LEóN C, VICENTE A A, FLORES-LóPEZ M L, et al. Edible Films and Coatings Based on Mango (var. Ataulfo) by-Products to Improve Gas Transfer Rate of Peach[J]. LWT, 2018, 97: 624-631.
[18] ALMEIDA T, KARAMYSHEVA A, VALENTE B F A, et al. Biobased Ternary Films of Thermopl-astic Starch, Bacterial Nanocellulose and Gallic Acid for Active Food Packaging[J]. Food Hydrocolloids, 2023, 144: 108934.
[19] GHOSHAL G, CHOPRA H. Impact of Apricot Oil Incorporation in Tamarind Starch/Gelatin Based Edible Coating on Shelf Life of Grape Fruit[J]. Journal of Food Measurement & C-haracterization, 2022, 16(2): 1274-1290.
[20] FRANCIS D V, THALIYAKATTIL S, CHERIAN L, et al. Metallic Nanoparticle Integrated Ternary Polymer Blend of PVA/Starch/Glycerol: A Promising Antimicrobial Food Packaging Material[J]. Polymers, 2022, 14(7): 1379.
[21] 呂瑤. 改性纖維素/PBAT復合薄膜的制備及性能研究[D]. 貴陽: 貴州師范大學, 2023.
LYU Yao. Preparation and Properties of Modified Ccellulose /PBAT Composite Films[D]. Guiyang: Guizhou Normal University, 2023.
[22] JOSHY K S, JOSE J, LI T, et al. Application of Novel Zinc Oxide Reinforced Xanthan Gum Hybrid System for Edible Coatings[J]. International Journal of Biological Macromolecules, 2020, 151: 806-813.
[23] FAN Y, YANG J, DUAN A, et al. Pectin/Sodium Alginate/Xanthan Gum Edible Composite Films as The fresh-cut Package[J]. Int J Biol Macromol, 2021, 181: 1003-1009.
[24] ZAM W. Effect of Alginate and Chitosan Edible Coating Enriched with Olive LeavesExtract on the Shelf Life of Sweet Cherries (Prunus avium L.)[J]. Journal of Food Quality, 2019, 2019: 8192964.
[25] DU Y, SHI B, LUAN X, et al. Chitosan/Cellulose Nanocrystal Biocomposite Coating For Fruit Postharvest Preservation[J]. Industrial Crops And Products, 2023, 205: 117543.
[26] ZHAO X, HAN Z, ZHANG S, Et Al. Preparation of Pva/Tremella Polysaccharide and Soy- Protein Isolate Complex/ε-Polylysine Active Membrane and Its Application in Blueberry Preservation[J]. Food Packaging and Shelf Life, 2023, 40: 101163.
[27] ZOU Z, ISMAIL B B, ZHANG X, Et Al. Improving Barrier and Antibacterial Properties of Chitosan Composite Films by Incorporating Lignin Nanoparticles and Acylated Soy Protein Isolate Nanogel[J]. Food Hydrocolloids, 2023, 134: 108091.
[28] DU H, MIN T, SUN X, Et Al. Multifunctional Film Based on Gelatin With Titanium D-ioxide and Thymol@β-Cyclodextrins for Fresh-Keeping Packaging[J]. Food Bioscience, 2022, 50: 102168.
[29] SOOD A, SAINI C S. Red Pomelo Peel Pectin Based Edible Composite Films: Effect of Pectin Incorporation on Mechanical, Structural, Morphological and Thermal Properties of Composite Films[J]. Food Hydrocolloids, 2022, 123: 107135.
[30] SOOD A, SAINI C S. Utilization of Peel of White Pomelo For The Development of Pectin Based Biodegradable Composite Films Blended With Casein And Egg Albumen[J]. Food Chemistry Advances, 2022, 1: 100054.
[31] SUCINDA E F, ABDUL MAJID M S, RIDZUAN M J M, et al. Development and Cha-racterisation of Packaging Film from Napier Cellulose Nanowhisker Reinforced Polylactic Ac-id (PLA) Bionanocomposites[J]. International Journal of Biological Macromolecules, 2021, 187: 43-53.
[32] MIZIELI?SKA M, KOWALSKA U, JAROSZ M, Et Al. The Effect of Uv Aging on Antimicrobial and Mechanical Properties of Pla Films With Incorporated Zinc Oxide Nanoparticles[J]. International Journal of Environmental Research and Public Health, 2018, 15(4): 794.
[33] VARGHESE S A, PHOTHISARATTANA D, SRISA A, Et Al. Novel Eco-Friendly Anti-microbial Uv-Blocking Pbat/Pbs/Tio2Nanocomposite Films for Improved Shelf-Life of Bananas[J]. Food Bioscience, 2023, 55: 102993.
[34] 沈春華, 李立, 杜云飛. PLA/PHA活性抗菌薄膜對藍莓低溫保鮮效果的影響[J]. 食品與機械, 2018, 34(7): 121-126.
SHEN Chun-hua, LI Li, DU Yun-fei. Effect of PLA/PHA Active Films on Preservation of Blueberries during Cold Storage[J]. Food & Machinery, 2018, 34(7): 121-126.
[35] MIRPOOR S F, CORRADO I, DI GIROLAMO R, et al. Manufacture of Active Multilayer Films Made of Functionalized Pectin Coated by Polyhydroxyalkanoates: A Fully Renewable Approach to Active Food Packaging[J]. Polymer (Guilford), 2023, 281: 126136.
[36] NGUYEN T T, THI DAO U T, THI BUI Q P, et al. Enhanced Antimicrobial Activities and Physiochemical Properties of Edible Film based on Chitosan Incorporated with Sonneratia Caseolaris (L.) Engl. Leaf Extract[J]. Progress in Organic Coatings, 2020, 140: 105487.
[37] SHIVANGI S, DORAIRAJ D, NEGI P S, et al. Development and Characterisation of a Pectin-Based Edible Film That Contains Mulberry Leaf Extract and Its Bio-Active Components[J]. Food Hydrocolloids, 2021, 121: 107046.
[38] AKHTER R, MASOODI F A, WANI T A, et al. Functional Characterization of Biopolymer Based Composite Film: Incorporation of Natural Essential Oils and Antimicrobial Agents[J]. Int J Biol Macromol, 2019, 137: 1245-1255.
[39] CHEN J, ZHANG J, LIU D, et al. Preparation, Characterization, and Application of Edible Antibacterial Three-Layer Films Based on Gelatin-Chitosan-Corn Starch-Incorporated Nisin[J]. Food Packaging And Shelf Life, 2022, 34:100980.
[40] LEI Y, WU H, JIAO C, et al. Investigation of The Structural And Physical Properties, Antioxidant and Antimicrobial Activity of Pectin-Konjac Glucomannan Composite Edible Films Incorporated with Tea Polyphenol[J]. Food Hydrocolloids, 2019,94:128-135.
[41] LALNUNTHARI C, DEVI L M, BADWAIK L S. Extraction of Protein and Pectin From Pumpkin Industry by-Products and Their Utilization for Developing Edible Film[J]. J Food Sci Technol, 2020, 57(5): 1807-1816.
[42] RUX G, LABUDE C, HERPPICH W B, et al. Investigation on The Potential of Applying Bio-Based Edible Coatings for Horticultural Products Exemplified with Cucumbers[J]. Curr Res Food Sci, 2023, 6: 100407.
[43] GHOSH T, MONDAL K, GIRI B S, et al. Silk Nanodisc based Edible Chitosan Nanoc-omposite Coating for Fresh Produces: A Candidate with Superior Thermal, Hydrophobic,Optical, Mechanical and Food Properties[J]. Food Chem, 2021, 360: 130048.
[44] BUENDíA MORENO L, SOTO JOVER S, ROS CHUMILLAS M, et al. Innovative Cardboard Active Packaging with a Coating Including Encapsulated Essential Oils to Extend Cherry Tomato Shelf Life[J]. LWT, 2019, 116: 108584.
[45] 關玥彤, 常善豐, 鄂玉萍. 葡甘聚糖涂布紙箱對芒果保鮮效果的研究[J]. 包裝世界, 2016(1): 33-36.
GUAN Yue-tong, CHANG Shan-feng, E Yu-ping. Study on Fresh-Keeping Effect of Glucomannan Coated Carton on Mango[J]. Packaging World, 2016(1): 33-36.
[46] LI Sheng-hai, ZHANG Suo-bo, WANG Xian-hong. Fabrication of Superhydrophobic Cellulose-Based Materials through a Solution-Immersion Process[J]. Langmuir, 2008, 24(10): 5585-5590.
[47] CHEN H, WANG B, LI J, et al. High-Strength and Super-Hydrophobic Multilayered Paper based on Nano-Silica Coating and Micro-Fibrillated Cellulose[J]. Carbohydr Pol-ym, 2022, 288: 119371.
[48] YU F, SHI H, WANG K, et al. Preparation of Robust and Fully Bio-Based Modified P-aper Via Mussel-inspired Layer-by-Layer Assembly of Chitosan and Carboxymethyl Cel-lulose for Food Packaging[J]. Int J Biol Macromol, 2022, 222: 1238-1249.
[49] BUENDíA MORENO L, SOTO JOVER S, ROS CHUMILLAS M, et al. An Innovative Active Cardboard Box for Bulk Packaging of Fresh Bell Pepper[J]. Postharvest Biology and Technology, 2020, 164: 111171.
[50] 沈祖廣, 俞朝暉, 郭蕊, 等. 基于納米微球技術的香蕉/獼猴桃保鮮紙箱[J]. 包裝工程, 2018, 39(3): 7-11.
SHEN Zu-Guang, YU Chao-hui, GUO Rui, et al. Banana/Kiwi Fresh-Keeping Carton Based on Nano-Microsphere Technology[J]. Packaging Engineering, 2018, 39(3): 7-11.
[51] ZHOU Wei, WU Zheng-guo, XIE Feng-wei, et al. 3D Printed Nanocellulose-Based Label for Fruit Freshness Keeping and Visual Monitoring[J]. Carbohydrate Polymers, 2021, 273: 118545.
[52] 李小麗, 趙縈. 氣調(diào)包裝技術在鮮切果蔬中的應用及研究進展[J]. 現(xiàn)代食品, 2020(18): 145-147.
LI Xiao-li, ZHAO Ying. Application and Research Progress of Modified Atmosphere Packaging Technology in Fresh-Cut Fruits and Vegetables[J]. Modern Food, 2020(18): 145-147.
[53] SIRIPATRAWAN U, KAEWKLIN P. Fabrication and Characterization of Chitosan-Titani-um Dioxide Nanocomposite Film as Ethylene Scavenging and Antimicrobial Active Foo-d Packaging[J]. Food Hydrocolloids, 2018, 84: 125-134.
[54] ZHANG Shen, WEI Feng, HAN Xiao-jun. An Edible Film of Sodium Alginate/Pullulan Incorporated with Capsaicin[J]. New Journal of Chemistry, 2018, 42(21): 17756-17761.
[55] KADAM S U, PANKAJ S K, TIWARI B K, et al. Development of Biopolymer-Based Gelatin and Casein Films Incorporating Brown Seaweed Ascophyllum Nodosum Extract[J]. Food Packaging and Shelf Life, 2015, 6: 68-74.
[56] RIAHI Z, HONG S J, RHIM J, et al. High-performance Multifunctional Gelatin-based Films Engineered with Metal-Organic Frameworks for Active Food Packaging Applications[J]. Food Hydrocolloids, 2023, 144: 108984.
[57] RUKMANIKRISHNAN B, RAMALINGAM S, RAJASEKHARAN S K, et al. Binary and Ternary Sustainable Composites of Gellan Gum, Hydroxyethyl Cellulose and Lignin for Food Packaging Applications: Biocompatibility, Antioxidant Activity, Uv and Water Barrier Properties[J]. International Journal of Biological Macromolecules, 2020, 153: 55-62.
[58] PULIKKALPARAMBIL H, PHOTHISARATTANA D, PROMHUAD K, et al. Effect of Silicon Dioxide Nanoparticle on Microstructure, Mechanical and Barrier Properties of B-iodegradable Pbat/Pbs Food Packaging[J]. Food Bioscience, 2023, 55: 103023.
[59] ITABANA B E, PAL A K, MOHANTY A K, et al. Biodegradable Blown Film Compos-ite from Poly (Butylene Adipate-Co-Terephthalate) and Talc: Effect of Uniaxial Stretchingon Mechanical and Barrier Properties[J]. Food Packaging and Shelf Life, 2023, 39: 101147.
[60] KUMAR N, NEERAJ, PRATIBHA, et al. Improved Shelf Life and Quality of Tomato-(Solanum Lycopersicum L.) by Using Chitosan-Pullulan Composite Edible CoatingEnriched with Pomegranate Peel Extract[J]. ACS Food Science & Technology, 2021, 1(4): 500-510.
[61] KUMAR N, PRATIBHA, NEERAJ, et al. Effect of Active Chitosan-pullulan Composite Edible Coating Enrich with Pomegranate Peel Extract on The Storage quality of Green Bell Pepper[J]. LWT, 2021,138:110435.
[62] ROSSI-MáRQUEZ G, DáVALOS-SAUCEDO C A, MAYEK-PéREZ N, et al. Multilayered Edible Coatings to Enhance Some Quality Attributes of Ready-to-Eat Cherimoya (Annona- Cherimola)[J]. Coatings, 2023, 13(1): 41.
[63] XING Y, LI W, WANG Q, et al. Antimicrobial Nanoparticles Incorporated in Edible Coatings and Films for the Preservation of Fruits and Vegetables[J]. Molecules, 2019, 24(9): 1695
[64] PIROZZI A, FERRARI G, DONSì F. The Use of Nanocellulose in Edible Coatings for the Preservation of Perishable Fruits and Vegetables[J]. Coatings (Basel), 2021, 11(8): 990.
[65] LIU J, LI P, CHEN L, et al. Superhydrophilic and Underwater Superoleophobic Modifi-ed Chitosancoated Mesh for Oil/Water Separation[J]. Surface and Coatings Technology, 2016, 307: 171-176.
[66] ZHU R, FU X, JIN S, et al. Water and Oil-Resistant Paper Materials Based on Sodium Alginate/Hydroxypropyl Methylcellulose/Polyvinyl Butyral/Nano-Silica with Biodegradab-le And High Barrier Properties[J]. International Journal of Biological Macromolecules, 2023, 225: 162-171.
[67] ZHONG Y, GU L, WANG S, et al. Green and Superhydrophobic Coatings Based on Tailor-Modified Lignocellulose Nanofibrils for Self-Cleaning Surfaces[J]. Industrial & Engineering Chemistry Research, 2019, 58(44): 20323-20330.
[68] MIRVAKILI M N, HATZIKIRIAKOS S G, ENGLEZOS P. Superhydrophobic Lignocell-Ulosic Wood Fiber/ Mineral Networks[J]. ACS Appl Mater Interfaces, 2013, 5(18): 9057-9066.
[69] LI Yang, HU Ze-xi, HUO Ruo-bing, et al. Preparation of an Indicator Film Based on Pectin, Sodium Alginate, and Xanthan Gum Containing Blueberry Anthocyanin Extract and Its Application in Blueberry Freshness Monitoring[J]. Heliyon, 2023, 9(3): 14421.
[70] ZONG Z, LIU M, CHEN H, et al. Preparation and Characterization Of a Novel Intelligent-Starch/Gelatin Binary Film Containing Purple Sweet Potato Anthocyanins for Flamm-ulina Velutipes Mushroom Freshness Monitoring[J]. Food Chem, 2023, 405: 134839.
[71] XU Liang, SUN Da-wen, TIAN You, et al. Combined Effects of Radiative and Evaporative Cooling on Fruit Preservation under Solar Radiation: Sunburn Resistance and Temperature Stabilization[J]. ACS Applied Materials & Interfaces, 2022, 14(40): 45788-45799.
[72] LIN Yu-xuan, SHAO Ke, LI Shuai, et al. Hygroscopic and Photothermal All-Polymer Foams for Efficient Atmospheric Water Harvesting, Passive Humidity Management, and Protective Packaging[J]. ACS Applied Materials & Interfaces, 2023, 15(7): 10084-10097.
Preparation of Bio-based Packaging Materials and Their Application in Fruit and Vegetable Preservation
PAN Xun1a,2,3,XIAO Nai-yu1a,2,3, HU Xin-kuan1a,2,3,ZHONG Yun-yun1a,2,3,LUO Wen-han1a,2,3,CHEN Guo-jian1a,2,3*,WAN Xiao-rong1b,XIAO Geng-sheng1a,2,3
(1. a. College of Agriculture and Biology, b. College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; 2. Guangdong Provincial Green Manufacturing Development Center of Central Kitchens in Universities, Guangzhou 510225, China; 3. Key Laboratory for Green Process and Intelligent Manufacturing of Lingnan Special Food, Ministry of Agriculture and Rural Affairs, Guangzhou 510225, China)
In recent years, the consumption of packaged fruits and vegetables, especially packaged fresh-cut fruits and vegetables, has risen rapidly. Compared with traditional petroleum-based packaging materials, bio-based packaging materials have the characteristics of environmental friendliness and sustainability, making them promising in the future. The work aims to summarize the research progress of bio-based packaging materials in China and abroad and their application in fruit and vegetable preservation, so as to provide theoretical reference for research and application in relevant fields. Firstly, the preservation mechanism of fruit and vegetable, and their packaging requirements were analyzed. Then, the characteristics and preparation methods of different kinds of bio-based materials were classified and discussed, and finally the application of such bio-based materials in fruit and vegetable packaging was studied. The progress of bio-based packaging materials in the field of fruit and vegetable packaging is summarized, and its future development trend is prospected.
bio-based materials; packaging materials; fruit and vegetable preservation
TB484
A
1001-3563(2023)23-0084-10
10.19554/j.cnki.1001-3563.2023.23.010
2023-10-16
廣東省基礎與應用基礎研究基金聯(lián)合基金項目(2022A1515110363);廣東省教育廳青年創(chuàng)新人才項目(2021KQNCX030);廣東丹青印務有限公司橫向項目(D122222G909)
責任編輯:曾鈺嬋