李幸芳 趙世海
摘 要:以連續(xù)軋染機軋車部分織物張力控制為研究對象,針對其張力耦合等因素導致的張力控制難的問題,建立了軋車部分張力系統(tǒng)的非線性耦合數(shù)學模型,并推導出靜態(tài)解耦模型。采用混沌粒子群優(yōu)化算法與自抗擾控制技術結合的方法,設計了相鄰軋車間的張力控制器,通過自抗擾算法主動估計和補償張力系統(tǒng)動態(tài)耦合部分,實現(xiàn)了系統(tǒng)的靜、動態(tài)解耦;并采用混沌粒子群算法在線自整定自抗擾控制器中的主要參數(shù)。通過仿真實驗與常規(guī)PID控制器對比發(fā)現(xiàn),混沌粒子群自抗擾控制器能使張力系統(tǒng)實現(xiàn)解耦控制及抑制內外部干擾引起的張力波動,保證軋車恒張力穩(wěn)定運行,提高系統(tǒng)的穩(wěn)定性和抗干擾性能。
關鍵詞:張力控制;解耦控制;抗干擾;自抗擾控制;混沌粒子群算法
中圖分類號:TS103.8 文獻標志碼:A 文章編號:1009-265X(2023)06-0207-09
現(xiàn)代連續(xù)軋染機運行速度較高,在機器運行過程中張力波動危害巨大;張力過大產生經伸緯縮現(xiàn)象、張力過小產生褶皺現(xiàn)象會造成織物染色不均,嚴重影響生產質量[1]。同時,連續(xù)軋染機是一種多單元聯(lián)合設備,相鄰輥間張力存在耦合性,速度波動或張力波動都會影響后一步工序的順利進行,織物經過染液槽后在適當?shù)膲毫ο萝垑菏箍椢锞鶆蛉旧?,需保證織物在此過程中張力保持恒定,軋車軋輥的線速度是連續(xù)軋染機的基準速度[2-3]。軋車部分張力系統(tǒng)具有非線性、時變性、強耦合性和強干擾性的特點,設計一款能夠解耦控制并且具有良好抗干擾性能的張力控制器,對連續(xù)軋染機完成均勻軋染非常重要。
目前,印染工業(yè)領域應用中常用比例-積分-微分(Proportion integration differentiation,PID)控制器實現(xiàn)張力控制,常規(guī)PID對于非線性、時變性的張力系統(tǒng)不能取得理想的控制效果[4]。該控制方法往往忽視了不同輥間的張力耦合性,難以滿足連續(xù)軋染機生產加工要求,在實際生產過程中織物張力會受到諸多因素影響,如機組構件的制造和安裝誤差[5-6]以及外部環(huán)境溫度濕度的變化都會對織物張力的穩(wěn)定性造成干擾,張力控制系統(tǒng)難以達到理想控制效果。近年來,一些現(xiàn)代控制方法被廣泛應用在張力控制中。應用魯棒控制方法和模糊自適應PID[7-9]理論上可以解決張力控制難的問題,但這些方法都依賴系統(tǒng)的精確模型,在實際應用中不易實現(xiàn)。李琳等[10]針對滑??刂拼嬖诙墩竦膯栴},采用變速趨近律的方法設計了滑模變結構控制器,解決張力控制系統(tǒng)中速度與張力耦合的問題。Janabi-sharifi[11]在軋鋼張力控制中應用模糊控制,但模糊規(guī)則需依賴經驗和專家知識確定,且模糊控制規(guī)則的數(shù)量隨系統(tǒng)階次的增加而增加。
本文將自抗擾控制(Active disturbance rejection control,ADRC)[12]應用到連續(xù)軋染機軋車張力控制系統(tǒng)中,該算法無需確定被控系統(tǒng)的精確模型,通過將系統(tǒng)內外部干擾主動總和并對擾動實時補償[13],解決軋車張力系統(tǒng)中的張力波動問題。針對該算法參數(shù)難整定的問題,結合混沌粒子群優(yōu)化(Chaos particle swarm optimization,CPSO)算法[14]對自抗擾控制器中的眾多參數(shù)進行在線自整定,根據軋車張力系統(tǒng)的數(shù)學模型設計了二階混沌粒子群自抗擾控制器[15]。將軋車部分張力系統(tǒng)中難以建模部分與干擾部分通過控制器估計補償,仿真實驗表明該控制器能實現(xiàn)張力解耦控制且對張力波動有良好的抑制效果。
1 張力系統(tǒng)建模分析
連續(xù)軋染機軋車部分共有3個軋車,每個軋車由主動輥和被動輥組成,伺服電動機驅動各個主動輥來控制軋車的速度。軋車張力系統(tǒng)示意如圖1所示,其中:Li(i= 3)為輥間織物長度,近似等于各軋車間的距離;v0、F1分別為織物開始速度與張力;F2、F3為各軋車間織物的張力;v3、F4為織物結束速度與張力;v1、v2為輥間織物速度;Mei(i= 3)為軋車電機的轉矩;Ri(i= 3)為各輥筒的半徑;ωi(i= 3)為各輥筒的角速度。
假定布料與輥筒之間的相互運動為純滾動,且織物只產生純彈性變形,依據織物質量守恒定律、各輥間動力學原理,連續(xù)軋染機軋車部分的張力系統(tǒng)數(shù)學模型為:
由式(2)可知,軋車張力系統(tǒng)具有耦合性,且每個車段都可以建立二階非線性微分方程,根據張力系統(tǒng)的階數(shù)選擇二階自抗擾控制器。將式(2)的方程解耦分析,得出狀態(tài)空間模型:
3 仿真分析
為驗證混沌粒子群自抗擾控制器(CPSO-ADRC)在軋車張力系統(tǒng)中的解耦和抗干擾方面的控制性能,在MATLAB/Simulink中設置軋車張力數(shù)學模型和自抗擾控制器模型并編寫混沌粒子群優(yōu)化算法程序驅動仿真模型,經過算法迭代更新得到5個參數(shù)的最優(yōu)解,并與常規(guī)PID控制器的控制效果進行對比分析。軋車部分模型參數(shù)如表1所示,控制器參數(shù)如表2所示。
3.1 解耦性能仿真分析
由胡克定律可得在軋車過程中織物張力源于相鄰導輥間的速度差,根據軋車模型參數(shù)和相鄰導輥的轉速差,本文將織物張力設置為40 N。分析軋車張力數(shù)學模型得出相鄰軋車間張力存在耦合性的結論,即前車段的織物張力發(fā)生擾動變化將影響后車段的織物張力,因此需要對其進行解耦控制。在Simulink模型中將F2在4 s時階躍到45 N持續(xù)2 s后恢復至40 N,模擬張力在實際工作過程中發(fā)生的張力突變,比較不同控制器的控制效果。各車段解耦性能系統(tǒng)的仿真響應曲線如圖3所示。
由圖3可知,當F2張力變化時,在PID控制下F3和F4在4 s和6 s都產生波動,而在混沌粒子群自抗擾控制器控制下F3和F4基本未發(fā)生波動,因此混沌粒子群自抗擾控制器有良好的解耦性能。
3.2 抗干擾性能仿真分析
3.2.1 抗彈性模量變化
在連續(xù)軋染機實際運行工況中軋車前后會經過染液槽和水洗槽,織物的溫度和濕度產生變動,致使織物自身彈性模量變化,而織物彈性模量是計算張力的重要參數(shù),這種織物組織內部參數(shù)的變化會引起織物張力波動,增加了軋染機恒張力控制的難度。在上文設定的張力變化條件的基礎上將織物彈性模量減少15%,比較兩種控制器的控制效果。各車段彈性模量變化的系統(tǒng)仿真響應曲線如圖4所示。
由圖4可知,當織物彈性模量發(fā)生變化時PID控制下張力均出現(xiàn)2.3%的超調且到達穩(wěn)定時間增加,而在混沌粒子群自抗擾控制器控制下彈性模量的變化基本未引起張力變化,表明混沌粒子群自抗擾控制器有較好的抗參數(shù)變化性能。
3.2.2 抗速度擾動
織物張力的大小與軋車的速度差有關,軋車的運行速度是由電機帶動軋輥傳動產生,連續(xù)軋染機運行過程中速度擾動是不可忽略的影響因素,當織物的運行速度發(fā)生波動時將直接影響織物張力大小,對其進行抗速度擾動仿真實驗。軋染張力系統(tǒng)運行5 s時在軋輥ω1上疊加10 r/min、0.5 Hz的正弦信號作為速度擾動,速度波動的系統(tǒng)仿真響應曲線如圖5所示。
由圖5可知,在加入速度擾動時,PID控制下F2、F3和F4均有明顯波動,但混沌粒子群自抗擾控制器控制下張力無明顯波動,表明混沌粒子群自抗擾控制器有較好的抗速度擾動性能。
3.2.3 抗噪聲擾動
在連續(xù)軋染機實際工作過程中常受外部環(huán)境的噪聲、溫度、濕度等因素的影響而引起張力傳感器測量不穩(wěn)定,造成反饋信號波動。將噪聲信號加入張力F2的反饋信號中,模擬生產過程中外部環(huán)境對張力傳感器檢測值的影響,觀察兩種控制器的控制性能,抗干擾性能系統(tǒng)仿真響應曲線如圖6所示。
由圖6可知,當F2受到白噪聲干擾時,PID控制下F3和F4受到明顯擾動,但混沌粒子群自抗擾控制器控制下張力無明顯波動,表明混沌粒子群自抗擾控制器有良好的抵制外界干擾的性能。
4 結 語
本文針對連續(xù)軋染機軋車部分織物張力控制穩(wěn)定性的要求,根據張力系統(tǒng)強干擾、耦合性、時變性等特性,提出了一種混沌粒子群自抗擾張力控制器。通過與常規(guī)PID控制器的仿真對比實驗表明,混沌粒子群自抗擾控制器能更好地實現(xiàn)張力動態(tài)解耦控制,提升織物張力抗干擾能力,提高了軋車張力控制系統(tǒng)的魯棒性和控制精度。
本文提出的混沌粒子群自抗擾張力控制器具有良好的仿真性能,但實際控制策略的效果還需工程實踐的進一步驗證。實際工業(yè)生產過程中存在滑動現(xiàn)象和織物塑性變形,同時工業(yè)控制中還可能出現(xiàn)控制指令延時現(xiàn)象,會影響控制策略的精度;而混沌粒子群自抗擾控制器能夠將可調參數(shù)根據張力系統(tǒng)的實際運行情況作出最優(yōu)解,自適應調整織物張力。后期將進行實驗研究并根據實驗結果修正調整本文提出的張力控制方法。
參考文獻:
[1]杜宇,王琛,楊濤,等.基于PLC的整經機恒張力控制系統(tǒng)設計[J].毛紡科技,2016,44(6):58-61.
DU Yu, WANG Chen, YANG Tao, et al. Design of constant tension controlling system based on PLC in warping machine[J]. Wool Textile Journal, 2016, 44(6): 58-61.
[2]馬宏帥,趙世海.基于模糊自抗擾控制的軋車張力控制系統(tǒng)[J].毛紡科技,2018,46(5):67-72.
MA Hongshuai, ZHAO Shihai. Tension control of padder system based on fuzzy auto disturbance rejection control[J]. Wool Textile Journal, 2018, 46(5): 67-72.
[3]姜磊.卷染機自動控制系統(tǒng)的改造設計[J].紡織學報,
2015,36(3):121-127.
JIANG Lei. Innovative design of jig dyeing machine automatic control system[J]. Journal of Textile Research, 2015, 36(3): 121-127.
[4]溫玉春,劉祺君.基于模糊PID的包裝機熱封切刀溫度控制[J].包裝工程,2017,38(3):109-113.
WEN Yuchun, LIU Qijun. Temperaturecontrol of heat-sealing cutter of packaging machines based on fuzzy PID[J]. Packaging Engineering, 2017, 38(3): 109-113.
[5]曹健.抑制張力波動傳播的自抗擾解耦控制[J].機械科學與技術,2015,34(9):1410-1414.
CAO Jian. Linearactive disturbance rejection decoupling control for suppressing propagation of tension fluctuation[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(9): 1410-1414.
[6]PAGILLA P R, DWIVEDULA R V, ZHU Y L, et al. Periodic tension disturbance attenuation in web process lines using active dancers[J]. Journal of Dynamic Systems, Measurement, and Control, 2003, 125(3): 1-9.
[7]李健,梅雪松,陶濤,等.放卷張力系統(tǒng)H_∞魯棒控制器的設計[J].西安交通大學學報,2012,46(1):86-90,102.
LI Jian, MEI Xuesong, TAO Tao, et al. H_∞ robust control design for unwinding tension system[J]. Journal of Xi'an Jiaotong University, 2012, 46(01): 86-90,102.
[8]湯偉,王古月,王露露.新型懸浮包裝中薄膜張力的模糊自適應PID控制[J].包裝工程,2018,39(3):141-145.
TANG Wei, WANG Guyue, WANG Lulu. Fuzzy Adaptive PID Control of Film Tension in New Suspension Package[J]. Packaging Engineering, 2018, 39(3): 141-145.
[9]MAO G Y, WU M, LIU H K. Based on the application of self-learning fuzzy PID control in tension control system[J]. Advanced Materials Research, 2013, 655/656/657: 1505-1509.
[10]李琳,林炯輝,鄒焱飚.基于滑模變結構的張力控制系統(tǒng)設計[J].機械設計與制造,2016(4):175-177.
LI Lin, LIN Jionghui, ZOU Yanbiao. Design of tension control system based on sliding mode control[J]. Machinery Design & Manufacture, 2016(4): 175-177.
[11]JANABI-SHARIFI F. A neuro-fuzzy system for looper tension control in rolling Mills[J]. Control Engineering Practice, 2005, 13(1): 1-13.
[12]韓京清.自抗擾控制技術[J].前沿科學,2007,1(1):24-31.
HAN Jingqing. Auto disturbances rejection control technique[J]. Frontier Science, 2007, 1(1): 24-31.
[13]高志強.自抗擾控制思想探究[J].控制理論與應用,2013,30(12):1498-1510.
GAO Zhiqiang. On the foundation of active disturbance rejection control[J]. Control Theory &Applications, 2013, 30(12): 1498-1510.
[14]王爾申,賈超穎,曲萍萍,等.基于混沌粒子群優(yōu)化的北斗/GPS組合導航選星算法[J].北京航空航天大學學報,2019,45(2):259-265.
WANG Ershen, JIA Chaoying, QU Pingping, et al. BDS/GPS integrated navigation satellite selection algorithm based on chaos particle swarm optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 259-265.
[15]張智軒,李濤,伍鵬飛,等.改進混沌粒子群算法的四旋翼PID姿態(tài)控制[J].電光與控制,2022,29(3):16-20.
ZHANG Zhixuan, LI Tao, WU Pengfei, et al. Quad-rotor PID parameter tuning based on improved
chaotic particle swarm optimization[J]. Electronics Optics & Control, 2022, 29(3): 16-20.
[16]KURU L, OZTURK A, KURU E, et al. Determination of voltage stability boundary values in electrical power systems by using the Chaotic Particle Swarm Optimization algorithm[J]. International Journal of Electrical Power and Energy Systems, 2015, 64: 873-879.
[17]劉玲,鐘偉民,錢鋒.改進的混沌粒子群優(yōu)化算法[J].華東理工大學學報(自然科學版),2010,36(2):267-272.
LIU Ling, ZHONG Weimin, QIAN Feng. Animproved Chaos-Particle Swarm Optimization algorithm[J]. Journal of East China University of Science and Technology(Natural Science Edition) , 2010, 36(2): 267-272.
Tension control of rolling and dyeing machines based on chaotic particle swarmand auto disturbance rejection control
LI Xingfang, ZHAO Shihai
Abstract: The continuous pad dyeing machine is a typical multi-unit joint equipment. According to its pad dyeing process, the continuous pad dyeing machine is divided into unwinding, pad dyeing, drying and winding units. The continuous pad dyeing machine needs to be controlled by constant tension during operation to ensure uniform dyeing of the fabric. If the fabric is subjected to excessive tension, it will produce warp and weft contraction and even fracture, which will affect the quality of pad dyeing. If the fabric tension is too small, it will produce wrinkles or fabric deviation, which seriously affects the economic benefits of enterprises. The pad dyeing unit is the most critical unit of the continuous pad dyeing machine, and its tension control effect will directly affect the printing and dyeing quality of the fabric. Therefore, it is crucial to ensure the constant tension of the fabric during the operation of the continuous pad dyeing machine. In this paper, the tension control system of the pad dyeing unit of the continuous pad dyeing machine was taken as the research object. In view of the difficulty of tension control such as tension coupling, the nonlinear coupling mathematical model of the tension system of the rolling mill was established, the static decoupling model was obtained, and the control algorithm was designed and verified by simulation experiments.
Firstly, according to the operation mechanism of pad dyeing unit and its structure diagram, the parameters such as moment of inertia inthe pad dyeing process were analyzed, and the dynamic model of the pad dyeing unit was established according to the law of mass conservation and Hooke's law. By observing the tension mathematical model of the pad dyeing unit, it is concluded that there are tension coupling and tension speed coupling between adjacent two rollers, and the system has nonlinear, time-varying, multi-interference and strong coupling characteristics. It is difficult to achieve the ideal control effect for the conventional PID controller of this kind of system. In this paper, the tension controller of adjacent rolling workshop was designed by using the combination of chaotic particle swarm optimization (CPSO) and active disturbance rejection control (ADRC). The dynamic coupling part of the tension system was estimated and compensated by the active disturbance rejection algorithm to realize the complete decoupling of the system, and the chaotic particle swarm optimization algorithm was used to adjust the main parameters of the active disturbance rejection controller online. The tension system of pad dyeing unit was simulated by MATLAB/Simulink, and the control effect of chaotic particle swarm auto disturbance rejection controller and conventional PID controller was observed. The experimental results show that the chaotic particle swarm active disturbance rejection controller is insensitive to the change of internal parameters and has good anti-interference. The control accuracy and stability are better than those of the conventional PID controller, and it can effectively suppress the tension fluctuation caused by coupling and interference. It is of great significance to improve the overall operation performance of the continuous pad dyeing machine.
Keywords: tension control; decoupling control; anti-interference; active disturbance rejection control; chaos particle swarm optimization algorithm
收稿日期:20230523 網絡出版日期:20230804
基金項目:天津市科技支撐重點計劃項目(15ZCDGX00840)
作者簡介:李幸芳(1998—),女,遼寧本溪人,碩士研究生,主要從事機電一體化方面的研究。
通信作者:趙世海,E-mail:tjshzhao@163.com