毛雅楠, 張侍玉, 李倩, 朱家峰, 王穎超, 張?zhí)m娥
林西替尼(OSI-906)通過(guò)AMPK/SIRT3信號(hào)通路抑制血管緊張素II誘導(dǎo)的小鼠心肌肥大*
毛雅楠, 張侍玉, 李倩, 朱家峰, 王穎超, 張?zhí)m娥△
(濰坊醫(yī)學(xué)院護(hù)理學(xué)院,山東 濰坊 261053)
基于AMP活化蛋白激酶(AMPK)/沉默信息調(diào)節(jié)因子3(SIRT3)信號(hào)通路,探討林西替尼(OSI-906)對(duì)血管緊張素II(Ang II)誘導(dǎo)的小鼠心肌肥大的作用及其作用機(jī)制。采用隨機(jī)數(shù)字表法將30只C57BL/6J小鼠分為對(duì)照組、模型組(Ang II組)和OSI-906干預(yù)組(Ang II+OSI-906組),每組10只。皮下注射Ang II (2 mg·kg-1·d-1)誘導(dǎo)小鼠心肌肥大,持續(xù)2周;OSI-906干預(yù)組在此基礎(chǔ)上給予OSI-906 (50 mg/kg)灌胃,持續(xù)2周。采用HE染色評(píng)價(jià)小鼠心臟組織病理學(xué)改變;RT-qPCR和Western blot檢測(cè)小鼠心臟組織相關(guān)mRNA和蛋白表達(dá)水平;ELISA法檢測(cè)心臟組織氧化應(yīng)激指標(biāo)丙二醛(MDA)、過(guò)氧化氫酶(CAT)、超氧化物歧化酶(SOD)和谷胱甘肽過(guò)氧化物酶(GSH-Px)水平。與模型組相比,OSI-906治療后小鼠心臟重量指數(shù)顯著降低(<0.05);小鼠心臟組織病理?yè)p傷減輕;小鼠心肌肥大標(biāo)志標(biāo)志物心房鈉尿肽(ANP)、腦鈉尿肽(BNP)及炎癥細(xì)胞因子腫瘤壞死因子α(TNF-α)、白細(xì)胞介素1β(IL-1β)和IL-6的mRNA水平均顯著下調(diào)(<0.05);MDA水平表達(dá)下調(diào)(<0.01),SOD、CAT和GSH-Px的表達(dá)水平升高(<0.05),且磷酸化腺苷酸活化蛋白激酶(p-AMPK)和SIRT3蛋白表達(dá)上調(diào)(<0.05)。在細(xì)胞水平,使用AMPK信號(hào)的阻斷劑Compound C干預(yù)新生小鼠心室肌細(xì)胞后,心肌細(xì)胞的ANP、BNP、β-肌球蛋白重鏈(β-MHC)的mRNA表達(dá)水平顯著上調(diào)。OSI-906可顯著抑制Ang II誘導(dǎo)的小鼠心肌炎癥和氧化應(yīng)激反應(yīng),并可能通過(guò)激活A(yù)MPK/SIRT3信號(hào)通路發(fā)揮抗心肌肥大的作用。
心肌肥大;胰島素樣生長(zhǎng)因子1受體;OSI-906;AMPK/SIRT3信號(hào)通路
心血管疾病居人類死亡病因的首位,目前我國(guó)心血管疾病現(xiàn)患人數(shù)高達(dá)3.3億,且每5例患者死亡中就有2例死于心血管疾?。?]。病理性心肌肥大是高血壓、冠心病和瓣膜病等多種心血管疾病進(jìn)展中的一種代償性改變[2],是導(dǎo)致心血管疾病發(fā)生、發(fā)展的獨(dú)立危險(xiǎn)因素之一[3]。持續(xù)的病理性刺激最終會(huì)導(dǎo)致嚴(yán)重心力衰竭(簡(jiǎn)稱心衰)或心源性猝死[4]。因此,阻斷或者改善病理性心肌肥厚病變對(duì)心衰的早期防治有一定的潛在指導(dǎo)意義。
近年來(lái),胰島素樣生長(zhǎng)因子1(insulin growth-like factor-1, IGF-1)及IGF-1受體(IGF-1 receptor, IGF-1R)軸在心臟中的調(diào)控作用日益受到關(guān)注[3]。IGF-1R通過(guò)調(diào)節(jié)心肌細(xì)胞的生長(zhǎng)、增殖和代謝參與調(diào)控多種心血管疾病的發(fā)生、發(fā)展[5-6]。既往研究顯示,IGF-1R在心肌缺血/再灌注損傷[7]、心肌梗死[8]、心臟衰老[3]和糖尿病心肌病[6]中發(fā)揮了重要的調(diào)控作用,但I(xiàn)GF-1R是否可作為治療病理性心肌肥厚的靶點(diǎn)及其作用機(jī)制尚不明確,仍待進(jìn)一步探索。林西替尼(linsitinib, OSI-906)是一種IGF-1R抑制劑,具有酪氨酸激酶抑制活性,已廣泛應(yīng)用于腫瘤[9]和糖尿病[10]的治療中,但OSI-906在心血管疾病中的作用及機(jī)制尚未完全闡明。
AMP活化蛋白激酶(AMP-activated protein kinase, AMPK)是一種絲氨酸/蘇氨酸蛋白激酶,介導(dǎo)多種心血管疾病的發(fā)生發(fā)展,包括肥厚性心肌病、缺血性心肌病、糖尿病心肌病和心衰等[3, 11]。近年來(lái),AMPK/沉默信息調(diào)節(jié)因子3(silent information regulator 3, SIRT3)信號(hào)通路介導(dǎo)病理性心肌重構(gòu)的進(jìn)展,受到心血管系統(tǒng)疾病研究人員的高度關(guān)注。研究顯示,AMPK通過(guò)調(diào)節(jié)心肌能量代謝,進(jìn)而影響心肌肥厚[12]。此外,AMPK在病理性心肌肥大中被抑制[2],而增強(qiáng)其活性可抑制心肌肥大的進(jìn)展[13],還可通過(guò)激活SIRT3抑制氧化應(yīng)激引起的心肌肥大,改善心功能[12]。然而,APMK/SIRT3信號(hào)通路和IGF-1R信號(hào)在病理性心肌肥大中是否有關(guān)聯(lián),目前尚不清楚。本研究采用血管緊張素II(angiotensin II, Ang II)建立病理性心肌肥大的小鼠模型,旨在探討OSI-906在病理性心肌肥大小鼠中的作用及機(jī)制。
30只SPF級(jí)C57BL/6J小鼠(雄性,6~8周齡,體重14~16 g)購(gòu)自濟(jì)南鵬悅實(shí)驗(yàn)動(dòng)物有限公司,許可證號(hào)為SCXK(魯)2020-0001,使用許可證號(hào)為SYXK(魯)2019-0016;動(dòng)物飼養(yǎng)于SPF級(jí)環(huán)境中[溫度(20±1)℃,濕度(60±10)%,光照周期為12 h]。動(dòng)物實(shí)驗(yàn)經(jīng)濰坊醫(yī)學(xué)院實(shí)驗(yàn)動(dòng)物倫理委員會(huì)批準(zhǔn),倫理批準(zhǔn)編號(hào)為2020SDL163。
OSI-906(HY-10191S)與Compound C(HY-13418A)均購(gòu)自MedChemExpress;Ang II購(gòu)自上海索萊寶生物科技有限公司;ELISA試劑購(gòu)自南京建成股份有限公司;Trizol購(gòu)自Invitrogen;逆轉(zhuǎn)錄Ace?qPCR RT試劑盒和SYBR Green Realtime PCR Master Mix購(gòu)自Toyobo;所用引物均由上海生工生物工程公司根據(jù)設(shè)計(jì)合成,詳細(xì)序列見(jiàn)表1;磷酸化腺苷酸活化蛋白激酶(phosphorylated AMP-activated protein kinase, p-AMPK)(2535S)、AMPK (5831S)和SIRT3(5490S)均購(gòu)自Cell Signaling Technology;β-actin(TA-09)購(gòu)自北京中杉金橋生物技術(shù)有限公司;辣根過(guò)氧化物酶標(biāo)記的山羊抗兔IgG(sc-2004)購(gòu)自Santa Cruz;0.25%胰蛋白酶消化液(含EDTA,不含酚紅)購(gòu)自武漢賽維爾生物科技有限公司。
表1 RT-qPCR引物序列
F: forward; R: reverse.
3.1小鼠模型建立及實(shí)驗(yàn)分組根據(jù)既往研究報(bào)道[14],Ang II (2 mg·kg-1·d-1)皮下注射2周可誘導(dǎo)小鼠心肌肥大。將30只雄性C57BL/6J小鼠隨機(jī)分為3組,每組10只,通過(guò)Ang II誘導(dǎo)2周構(gòu)建小鼠心肌肥大模型。既往研究顯示[15],OSI-906 (50 mg/kg)給小鼠灌胃時(shí)可有效抑制IGF-1R信號(hào)的表達(dá),因此本研究在Ang II的基礎(chǔ)上給予OSI-906 (50 mg/kg)灌胃。本研究的實(shí)驗(yàn)分組具體如下:模型組(Ang II組)皮下注射Ang II (2 mg·kg-1·d-1);對(duì)照(control, Con)組皮下注射等體積生理鹽水(0.9% NaCl);OSI-906干預(yù)組(Ang II+OSI-906組)在皮下注射2 mg·kg-1·d-1Ang II的基礎(chǔ)上給予OSI-906 (50 mg/kg)灌胃。
3.2心臟重量指數(shù)檢測(cè)小鼠處理前禁食禁水8 h后測(cè)量體重(body weight, BW)。3%異氟烷麻醉小鼠快速取出心臟,預(yù)冷的生理鹽水灌注以去除血液。將組織在紗布上干燥,分別測(cè)量心臟重量(heart weight, HW)、脛骨長(zhǎng)度(tibial length, TL)和肺重(lung weight, LW),計(jì)算HW/BW、HW/TL及LW/TL,通過(guò)心臟重量指數(shù)的變化評(píng)估心肌肥大程度。小鼠心臟組織液氮凍存后轉(zhuǎn)入-80 ℃冰箱或4%多聚甲醛中固定備用。
3.3心臟蘇木精-伊紅(hematoxylin-eosin, HE)染色心肌組織放于4%多聚甲醛中固定過(guò)夜,隨后乙醇梯度脫水及石蠟包埋。沿冠狀面切成厚度4 μm的切片,烘干、脫蠟后行HE染色,中性樹(shù)膠封片,常溫晾干,顯微鏡下觀察小鼠心臟組織病理學(xué)變化并拍照。
3.4乳鼠心肌細(xì)胞的分離與分組紫外線消毒后的超凈臺(tái)內(nèi)剪開(kāi)出生48 h內(nèi)小鼠的乳鼠胸骨,迅速取出心臟,將心室剪碎后在胰蛋白酶消化液中消化14~16 h,再在膠原消化液中消化成單細(xì)胞懸液,離心棄上清,用含10%血清的培養(yǎng)液在CO2孵箱中(95% O2、5% CO2、37 ℃)培養(yǎng),使成纖維細(xì)胞與心肌細(xì)胞分離,將心肌細(xì)胞接種于6孔板,換成含15%血清的培養(yǎng)液培養(yǎng),18 h后換液,選取搏動(dòng)良好的心肌細(xì)胞進(jìn)行實(shí)驗(yàn)。既往研究顯示[16],Compound C的濃度為10 μmol/L時(shí)不影響細(xì)胞的活力,以這個(gè)為依據(jù),確定本研究中使用Compound C的濃度為10 μmol/L。參考Zhao等[17]的研究,確定OSI-906濃度為3 μmol/L。實(shí)驗(yàn)分為Con組、Ang II(1 μmol/L)組、Ang II+OSI-906(3 μmol/L)組和Ang II+OSI-906+Compound C (10 μmol/L)等4組。
3.5RT-qPCR檢測(cè)Trizol試劑提取小鼠心室組織和乳鼠心肌細(xì)胞的總RNA,測(cè)定總RNA濃度,按照逆轉(zhuǎn)錄試劑盒說(shuō)明書(shū)實(shí)驗(yàn)步驟將RNA逆轉(zhuǎn)錄為cDNA。采用SYBR Green Realtime PCR Master Mix和基因引物進(jìn)行實(shí)時(shí)熒光定量PCR。使用LightCycle 480 Instrument II PCR儀(Roche)進(jìn)行PCR擴(kuò)增。反應(yīng)條件:95 ℃ 30 s;95 ℃ 5 s,55 ℃ 10 s,72 ℃ 15 s,40個(gè)循環(huán)后72 ℃延長(zhǎng)10 min。以β-actin作為內(nèi)參照,采用2-ΔΔCt法計(jì)算蛋白表達(dá)相對(duì)定量結(jié)果。
3.6ELISA檢測(cè)取適量組織塊用預(yù)冷的pH 7.4的磷酸鹽緩沖液沖洗組織表面殘留的血液及雜質(zhì);組織塊稱重,剪碎,每1 g組織加入50 μL PBS,冰上超聲粉碎制成組織勻漿,高速離心機(jī)4 ℃、3 000 ×,離心20 min。收獲上清檢測(cè)小鼠心臟組織丙二醛(malondialdehyde, MDA)、過(guò)氧化氫酶(catalase, CAT)、超氧化物歧化酶(superoxide dismutase, SOD)和谷胱甘肽過(guò)氧化物酶(glutathione peroxidase, GSH-Px)的含量,評(píng)估小鼠心臟氧化應(yīng)激損傷程度。實(shí)驗(yàn)操作步驟按照ELISA試劑盒說(shuō)明書(shū)進(jìn)行。
3.7Western blot檢測(cè)RIPA裂解液提取心室肌組織蛋白,BCA法測(cè)定蛋白濃度。加入5×上樣緩沖液混合后,95 ℃、5 min使蛋白變性。使用10%分離膠進(jìn)行SDS-PAGE,用恒定電流(150 mA)濕轉(zhuǎn)法將相關(guān)蛋白轉(zhuǎn)移至PVDF膜上,5%脫脂牛奶封閉1 h,孵育Ⅰ抗p-AMPK、AMPK、SIRT3(1∶1 000)和β-actin(1∶1 500) 4 ℃過(guò)夜;TBST洗膜3次,每次10 min,放置于室溫?fù)u床上孵育Ⅱ抗(1∶8 000) 1 h,TBST再次洗滌后滴加化學(xué)發(fā)光試劑顯影。使用Alpha化學(xué)發(fā)光凝膠成像系統(tǒng)FluorChem FC3掃描圖像,使用ImageJ軟件測(cè)量蛋白條帶灰度值并定量。
采用SPSS 19.0和GraphPad Prism 9.0進(jìn)行統(tǒng)計(jì)分析和圖表繪制。計(jì)量數(shù)據(jù)均采用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,多組間比較采用單因素方差分析(one-way ANOVA),組間兩兩比較采用最小顯著性差異法(LSD法)。以<0.05為差異有統(tǒng)計(jì)學(xué)意義。
與正常對(duì)照組比較,模型組小鼠的心臟重量指數(shù)BW、HW、HW/BW、HW/TL和HW/TL顯著升高(<0.05);與模型組相比,Ang II+OSI-906組小鼠BW、HW、HW/BW和HW/TL顯著降低(<0.05),見(jiàn)表2。
表2 OSI-906對(duì)Ang II誘導(dǎo)的小鼠心臟質(zhì)量指數(shù)的影響
*<0.05,**<0.01Con group;#<0.05,##<0.01Ang II group.
HE染色結(jié)果顯示:與對(duì)照組相比,模型組小鼠心肌細(xì)胞橫截面積顯著增大(<0.05),而同時(shí)給予OSI-906治療的小鼠心肌細(xì)胞橫截面積顯著減?。?0.01),單位面積心肌細(xì)胞數(shù)目增多,見(jiàn)圖1。
Figure 1. OSI-906 alleviated Ang II-induced cardiac hypertrophy in mice. A: the images of the whole hearts and the representative images of HE staining of cardiac cross-section (scale bar=50 μm); B: statistical analysis of the cell area of HE staining. Mean±SD. n=3. *P<0.05 vs control group;##P<0.01 vs Ang II group.
采用RT-qPCR法檢測(cè)小鼠心肌肥大標(biāo)志物,結(jié)果顯示,模型組小鼠心臟組織中ANP和BNP水平顯著升高(<0.05),OSI-906干預(yù)可顯著降低心肌肥大標(biāo)志物ANP和BNP的mRNA表達(dá)水平(<0.05),見(jiàn)圖2。
Figure 2. OSI-906 alleviated Ang II-induced increases in mRNA expression of cardiac hypertrophy markers ANP (n=8~10) and BNP (n=6~9). Mean±SD. *P<0.05,**P<0.01 vs Con group;#P<0.05 vs Ang II group.
通過(guò)RT-qPCR法檢測(cè)小鼠心臟組織炎癥因子TNF-α、IL-1β和IL-6的mRNA水平,結(jié)果顯示,與對(duì)照組相比,模型組小鼠心臟組織的TNF-α、IL-1β及IL-6表達(dá)水平均顯著升高(<0.01),而OSI-906治療組的TNF-α、IL-1β及IL-6的mRNA表達(dá)水平恢復(fù)至對(duì)照水平(<0.01),見(jiàn)圖3。
Figure 3. OSI-906 reduced the mRNA level of Ang II-induced cardiac inflammatory factors TNF-α (n=5~8), IL-1β (n=7~8) and IL-6 (n=7~8) in hearts of mice. Mean±SD. **P<0.01 vs Con group;##P<0.01 vs Ang II group.
小鼠心臟氧化應(yīng)激指標(biāo)結(jié)果顯示:與對(duì)照組比較,Ang II誘導(dǎo)的小鼠心臟組織MDA水平顯著升高(<0.01);與模型組比較,MDA水平在OSI-906治療后顯著降低(<0.01)。同時(shí),與對(duì)照組比較,Ang II誘導(dǎo)的小鼠心臟抗氧化蛋白SOD、CAT和GSH-Px表達(dá)顯著下降(<0.01);與模型組比較,OSI-906干預(yù)組小鼠心臟組織中SOD、CAT和GSH-Px的含量顯著升高(<0.05),見(jiàn)圖4。
Figure 4. OSI-906 alleviated Ang II-induced oxidative stress in mice. A: the protein expression of MDA of cardiac tissues (n=6~7); B: the protein expression of SOD of cardiac tissues (n=6~8); C: the protein expression of CAT of cardiac tissues (n=4~6); D: the protein expression of GSH-Px of cardiac tissues (n=5). Mean±SD. **P<0.01 vs Con group;#P<0.05,##P<0.01 vs Ang II group.
Western blot結(jié)果顯示:相較于對(duì)照組,模型組小鼠心臟組織中p-AMPK蛋白表達(dá)水平顯著降低,SIRT3蛋白表達(dá)水平下調(diào)(<0.01);相較于模型組,Ang II+OSI-906組小鼠心臟組織中p-AMPK和SIRT3蛋白表達(dá)水平顯著升高(<0.05),見(jiàn)圖5。
Figure 5. OSI-906 alleviated Ang II-induced cardiac hypertrophy by regulating AMPK/SIRT3 protein expression. Mean±SD. n=4. **P<0.01 vs Con group;#P<0.05,##P<0.01 vs Ang II group.
細(xì)胞培養(yǎng)實(shí)驗(yàn)結(jié)果顯示:相較于模型組,OSI-906處理的小鼠心肌細(xì)胞ANP、BNP和β-MHC的mRNA表達(dá)水平下調(diào)(<0.05);在OSI-906基礎(chǔ)上給予小鼠乳鼠心肌細(xì)胞Compound C干預(yù)處理,結(jié)果顯示ANP、BNP和β-MHC的mRNA表達(dá)水平顯著上升(<0.05),見(jiàn)圖6。
Figure 6. OSI-906 mediated Ang II-induced myocardial hypertrophy through AMPK pathway. The relative mRNA expression of ANP, BNP and β-MHC in hearts was detected by RT-qPCR. Mean±SD. n=3~4. *P<0.05,**P<0.01 vs Con group;#P<0.05 vs Ang II group;△△P<0.01 vs Ang II+OSI-906 group.
病理性心肌肥大是心律失常、心衰和心源性猝死等多種心血管疾病的共同病理生理過(guò)程之一[18],伴有炎癥反應(yīng)、氧化應(yīng)激和心肌纖維化等特征性表現(xiàn)。已證實(shí),IGF-1/IGF-1R在心臟中廣泛表達(dá),并對(duì)心肌細(xì)胞的生長(zhǎng)、代謝和老化等發(fā)揮重要的調(diào)控作用[19-20]。尤其,IGF1-R通過(guò)其固有的酪氨酸激酶活性和廣泛的下游通路網(wǎng)絡(luò)調(diào)節(jié)心肌細(xì)胞生長(zhǎng)和代謝[20-21],參與心血管穩(wěn)態(tài)的維持。有證據(jù)顯示,IGF-1R在心衰患者中表達(dá)增加[19],而抑制IGF-1R可以降低心肌缺血再灌注損傷[7],也能減輕Ang II誘導(dǎo)的心肌肥大[3]。心肌細(xì)胞中IGF-1R的缺失可以減弱衰老相關(guān)的心室肥厚、間質(zhì)纖維化和炎癥,還能促進(jìn)心肌細(xì)胞自噬[22]。有研究表明IGF-1R激酶抑制劑OSI-906能夠緩解苯腎上腺素誘導(dǎo)的心肌細(xì)胞肥大的急性影響[23],表明OSI-906具有保護(hù)心臟的作用,但作用機(jī)制目前尚未完全闡明。本研究在Ang II誘導(dǎo)的心肌肥大小鼠模型中,使用OSI-906抑制心臟IGF-1R信號(hào),結(jié)果顯示,OSI-906可有效抑制病理性心肌肥大、心肌炎癥和氧化應(yīng)激反應(yīng),同時(shí)下調(diào)AMPK/SIRT3信號(hào)通路相關(guān)蛋白的表達(dá)水平,提示IGF-1R信號(hào)與病理性心肌肥大的發(fā)生、發(fā)展關(guān)系密切。
Miranda等[24]研究顯示,OSI-906通過(guò)抑制IGF-1/IGF-1R軸而緩解缺氧誘導(dǎo)的小鼠肺血管重構(gòu)以及心室肥厚等。本研究采用Ang II誘導(dǎo)建立了病理性心肌肥大的小鼠模型,實(shí)驗(yàn)結(jié)果顯示:Ang II誘導(dǎo)的小鼠心臟重量指數(shù)(HW、HW/BW和HW/TL)顯著升高,且引起小鼠心肌細(xì)胞橫截面積增大,以及心肌肥大基因和顯著上調(diào),此與既往研究一致[3]。上述Ang II誘發(fā)的心肌肥大改變均在OSI-906治療后被顯著抑制,表明抑制IGF-1R信號(hào)可在一定程度上抑制成年小鼠的病理性心肌肥大。另有證據(jù)表明,心肌炎癥在Ang II誘導(dǎo)的心肌病中起著重要作用[3],大量炎性細(xì)胞因子在心肌細(xì)胞周圍聚集,使心臟處于炎性微環(huán)境中,進(jìn)一步加重病理性心肌肥大,而改善心肌炎癥水平對(duì)心臟保護(hù)至關(guān)重要。本研究結(jié)果顯示,Ang II誘導(dǎo)使小鼠心臟炎癥因子TNF-α、IL-1β及IL-6表達(dá)顯著上調(diào),而OSI-906可以降低Ang II誘發(fā)的心肌炎癥因子表達(dá)。此外,本研究結(jié)果還顯示Ang II誘導(dǎo)的小鼠心臟膜脂過(guò)氧化產(chǎn)物MDA水平顯著升高,SOD、CAT和GSH-Px活性降低,表明氧化應(yīng)激參與病理性心肌肥大的發(fā)生發(fā)展,與既往研究報(bào)道一致[12];然而,OSI-906治療后的小鼠心臟氧化應(yīng)激水平被顯著抑制,表現(xiàn)為小鼠心臟MDA水平顯著降低,抗氧化應(yīng)激指標(biāo)SOD、CAT和GSH-Px的蛋白表達(dá)增加,表明OSI-906可發(fā)揮對(duì)抗Ang II誘導(dǎo)的心肌氧化應(yīng)激損傷作用介導(dǎo)的病理性心肌肥大的進(jìn)展。
AMPK是一種三聚體復(fù)合物,細(xì)胞內(nèi)AMP水平增加時(shí),AMPK結(jié)構(gòu)改變,產(chǎn)生激活效應(yīng),進(jìn)而啟動(dòng)其下游分子事件[25],抑制心肌纖維化、抗炎、調(diào)節(jié)能量代謝來(lái)改善心肌重構(gòu)和功能障礙[13]。并且,AMPK在細(xì)胞內(nèi)代謝中起關(guān)鍵作用,是一個(gè)極具潛力的治療靶點(diǎn),當(dāng)打開(kāi)/關(guān)閉AMPK時(shí)還會(huì)導(dǎo)致SIRT3的表達(dá)變化[26-27]。同時(shí),AMPK磷酸化后,可啟動(dòng)SIRT3的去乙?;?,激活A(yù)MPK/SIRT3信號(hào)通路,通過(guò)減少心肌纖維化、抑制心臟氧化應(yīng)激[28]等多種途徑保護(hù)心功能和緩解心肌肥大[11]。我們最近的研究顯示[29],IGF-1R能夠通過(guò)促進(jìn)AMPK磷酸化來(lái)抑制心肌損傷中的炎癥反應(yīng)和細(xì)胞凋亡,進(jìn)而對(duì)心肌組織起到保護(hù)作用;然而,IGF-1R信號(hào)與AMPK/SIRT3信號(hào)通路之間的關(guān)系尚不明確。本研究結(jié)果顯示,模型組p-AMPK和SIRT3的蛋白表達(dá)降低,表明AMPK/SIRT3參與了Ang II誘導(dǎo)的病理性心肌肥大;OSI-906治療可以增強(qiáng)AMPK的磷酸化,并增加SIRT3的表達(dá),提示OSI-906可以啟動(dòng)AMPK/SIRT3信號(hào)通路,以阻滯心肌炎癥和發(fā)揮抗氧化功能,減緩小鼠心肌肥大的病理進(jìn)展;然而,抑制AMPK通路,結(jié)果顯示逆轉(zhuǎn)OSI-906對(duì)病理性心肌肥大小鼠的治療效果。
綜上所述,本研究結(jié)果顯示OSI-906能夠緩解Ang II誘導(dǎo)的小鼠心肌肥大,減輕心肌炎癥和氧化應(yīng)激反應(yīng),且抑制心肌細(xì)胞AMPK通路后導(dǎo)致心肌肥大標(biāo)志物的表達(dá)顯著升高,表明抑制IGF-1R信號(hào)可能通過(guò)激活A(yù)MPK/SIRT3信號(hào)通路以發(fā)揮心臟保護(hù)作用。因此,本研究初步探究了OSI-906對(duì)小鼠病理性心肌肥大的作用及機(jī)制,為病理性心肌肥大的防治提供了新的思路。但是,IGF-1R下游通路眾多,且OSI-906既是IGF-1R抑制劑,也是胰島素受體抑制劑,后續(xù)實(shí)驗(yàn)將進(jìn)一步研究OSI-906的治療作用以及是否通過(guò)其他通路發(fā)揮效應(yīng)。
[1]中國(guó)心血管健康與疾病報(bào)告編寫組. 中國(guó)心血管健康與疾病報(bào)告2021概要[J]. 中國(guó)循環(huán)雜志, 2022, 37(6):553-578.
The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on cardiovascular health and disease in China 2021: an updated summary[J]. Chin Circ J, 2022, 37(6):553-578.
[2] Liao H, Gao W, Ma J, et al. GPR39 promotes cardiac hypertrophy by regulating the AMPK-mTOR pathway and protein synthesis[J]. Cell Biol Int, 2021, 45(6):1211-1219.
[3] Yan W, Dong ZC, Wang JJ, et al. Deficiency of the immunoproteasome LMP10 subunit attenuates angiotensin II-induced cardiac hypertrophic remodeling via autophagic degradation of gp130 and IGF1R[J]. Front Physiol, 2020, 11:625.
[4] Zhu C, Wang M, Yu X, et al. lncRNA NBR2 attenuates angiotensin II-induced myocardial hypertrophy through repressing ER stress via activating LKB1/AMPK/Sirt1 pathway[J]. Bioengineered, 2022, 13(5):13667-13679.
[5] Zeng B, Liao X, Liu L, et al. Thyroid hormone mediates cardioprotection against postinfarction remodeling and dysfunction through the IGF-1/PI3K/AKT signaling pathway[J]. Life Sci, 2021, 267:118977.
[6] Li G, Xing W, Zhang M, et al. Antifibrotic cardioprotection of berberine via downregulating myocardial IGF-1 receptor-regulated MMP-2/MMP-9 expression in diabetic rats[J]. Am J Physiol Heart Circ Physiol, 2018,315(4):H802-H813.
[7] Zeng B, Liu L, Liao X, et al. Cardiomyocyte protective effects of thyroid hormone during hypoxia/reoxygenation injury through activating of IGF-1-mediated PI3K/Akt signalling[J]. J Cell Mol Med, 2021, 25(7):3205-3215.
[8] Liu X, Zhou N, Sui X, et al. Hrd1 induces cardiomyocyte apoptosis via regulating the degradation of IGF-1R by sema3a[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(12):3615-3622.
[9] Von Mehren M, George S, Heinrich MC, et al. Linsitinib (OSI-906) for the treatment of adult and oediatric wild-type gastrointestinal stromal tumors, a SARC Phase II study[J]. Clin Cancer Res, 2020, 26(8):1837-1845.
[10] Shirakawa J, Okuyama T, Yoshida E, et al. Effects of the antitumor drug OSI-906, a dual inhibitor of IGF-1 receptor and insulin receptor, on the glycemic control, β-cell functions, and β-cell proliferation in male mice[J]. Endocrinology, 2014, 155(6):2102-2111.
[11] Xu M, Xue RQ, Lu Y, et al. Choline ameliorates cardiac hypertrophy by regulating metabolic remodelling and UPRmt through SIRT3-AMPK pathway[J]. Cardiovasc Res, 2019, 115(3):530-545.
[12] Chen Y, Chen C, Dong B, et al. AMPK attenuates ventricular remodeling and dysfunction following aortic banding in mice via the Sirt3/oxidative stress pathway[J]. Eur J Pharmacol, 2017, 814:335-342.
[13]李晨霏,樊迪,楊政,等. AMPK在心肌纖維化相關(guān)疾病中的作用及機(jī)制研究進(jìn)展[J]. 解放軍醫(yī)學(xué)雜志, 2021, 46(12):1239-1244.
Li CF, Fan D, Yang Z, et al. Research progress on the role and mechanism of AMPK in myocardial fibrosis-related diseases[J]. Med J Chin PLA, 2021, 46(12):1239-1244.
[14] Ding YQ, Zhang YH, Lu J, et al. MicroRNA-214 contributes to Ang II-induced cardiac hypertrophy by targeting SIRT3 to provoke mitochondrial malfunction[J]. Acta Pharmacol Sin, 2021, 42(9):1422-1436.
[15] Dixit D, Prager BC, Gimple RC, et al. The RNA m6A reader YTHDF2 maintains oncogene expression and is a targetable dependency in glioblastoma stem cells[J]. Cancer Discov, 2021, 11(2):480-499.
[16] Kobashigawa LC, Xu YC, Padbury JF, et al. Metformin protects cardiomyocyte from doxorubicin induced cytotoxicity through an AMP-activated protein kinase dependent signaling pathway: anstudy[J]. PLoS One, 2014, 9(8):e104888.
[17] Zhao H, Desai V, Wang J, et al. Epithelial-mesenchymal transition predicts sensitivity to the dual IGF-1R/IR inhibitor OSI-906 in hepatocellular carcinoma cell lines[J]. Mol Cancer Ther, 2012, 11(2):503-513.
[18] 陳建杏,王盼霞,胡粵懷,等. Nampt對(duì)ERK1/2的調(diào)控在病理性心肌肥大中的作用研究[J]. 中國(guó)藥理學(xué)通報(bào), 2021, 37(4):490-497.
Chen JX, Wang PX, Hu YH, et al. The role of Nampt in regulating ERK1/2 in pathological myocardial hypertrophy[J]. Chin Pharmacol Bull, 2021, 37(4):490-497.
[19] Abdellatif M, Trummer-Herbst V, Heberle AM, et al. Fine-tuning cardiac insulin-like growth factor 1 receptor signaling to promote health and longevity[J]. Circulation, 2022, 145(25):1853-1866.
[20] Lee WS, Kim J. Insulin-like growth factor-1 signaling in cardiac aging[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(5 Pt B):1931-1938.
[21] Zhu W, Lei J, Bai X, et al. MicroRNA-503 regulates hypoxia-induced cardiomyocytes apoptosis through PI3K/Akt pathway by targeting IGF-1R[J]. Biochem Biophys Res Commun, 2018, 506(4):1026-1031.
[22] Pires KM, Torres NS, Buffolo M, et al. Suppression of cardiac autophagy by hyperinsulinemia in insulin receptor-deficient hearts is mediated by insulin-like growth factor receptor signaling[J]. Antioxid Redox Signal, 2019, 31(6):444-457.
[23] Meijles DN, Fuller SJ, Cull JJ, et al. The insulin receptor family and protein kinase B (Akt) are activated in the heart by alkaline pH and α1-adrenergic receptors[J]. Biochem J, 2021, 478(11):2059-2079.
[24] Miranda S, Ramaswamy R, Chen J, et al. Smooth muscle insulin-like growth factor-1 mediates hypoxia-induced pulmonary hypertension in neonatal mice[J]. Am J Respir Cell Mol Biol, 2016, 55(6):779-791.
[25] 史小茹,孫娜,梁飛,等. 二甲雙胍通過(guò)激活A(yù)MP依賴的蛋白激酶改善壓力引起的心肌肥厚的研究[J]. 中國(guó)臨床藥理學(xué)雜志, 2021, 37(19):2601-2604.
Shi XR, Sun N, Liang F, et al. Metformin improves stress induced myocardial hypertrophy by activating AMP-dependent protein kinases[J]. Chin J Clin Pharmacol, 2021, 37 (19):2601-2604.
[26] Yu L, Gong B, Duan W, et al. Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: role of AMPK-PGC-1α-SIRT3 signaling[J]. Sci Rep, 2017, 7:41337.
[27] Guo Z, Tuo H, Tang N, et al. Neuraminidase 1 deficiency attenuates cardiac dysfunction, oxidative stress, fibrosis, inflammatory via AMPK-SIRT3 pathway in diabetic cardiomyopathy mice[J]. Int J Biol Sci, 2022, 18(2):826-840.
[28] 呂芳,李衛(wèi)萍,田朝霞,等. 木犀草素通過(guò)調(diào)控AMPK/SIRT3通路改善慢性心力衰竭大鼠心臟功能及心肌纖維化的研究[J]. 免疫學(xué)雜志, 2022, 38(5):407-415.
LV F, Li WP,Tian CX, et al. Luteolin improves heart function and alleviates myocardial fibrosis of rats with chronic heart failure by regulating the AMPK/SIRT3 pathway[J]. Immunol J, 2022, 38(5):407-415.
[29] 朱家峰,李倩,方柳,等.敲除通過(guò)AMPK減輕Ang II誘導(dǎo)的小鼠心肌炎癥及細(xì)胞凋亡[J].中國(guó)病理生理雜志, 2022, 38(10):1765-1772.
Zhu JF, Li Q, Fang L, et al.knockout attenuates Ang II-induced myocardial inflammationand apoptosis through AMPK in mice[J]. Chin J Pathophysiol, 2022, 38(10):1765-1772.
Linsitinib (OSI-906) inhibits Ang II-induced cardiac hypertrophy though AMPK/SIRT3 signaling pathway in mice
MAO Yanan, ZHANG Shiyu, LI Qian, ZHU Jiafeng, WANG Yingchao, ZHANG Lane△
(,,261053,)
To explore the beneficial effects and underlying mechanisms of linsitinib (OSI-906) on angiotensin II (Ang II)-induced cardiac hypertrophy in mice.Thirty C57BL/6J mice were randomly divided into 3 groups (10 mice each group): control group, model (Ang II) group, and Ang II+OSI-906 group. Myocardial hypertrophy mouse model was constructed by treating with Ang II (2 mg·kg-1·d-1) with the subcutaneous injection for 2 weeks, and the Ang II+OSI-906 group was given OSI-906 (50 mg/kg) by gastric irrigation on this basis. Using hematoxylin-eosin (HE) staining, the pathological changes of heart tissue of mice were evaluated. Using RT-qPCR, the related mRNA levels of heart tissues of mice were detected. The protein expressions of the AMPK/SIRT3 signaling pathway were detected using Western blot assay. The indicators of oxidative stress, including malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were detected by ELISA kits.Compared with model group, the cardiac mass indexes (HW/BW and HW/TL) were significantly decreased in Ang II-treated mice with OSI-906-treatment (<0.05). Moreover, OSI-906-treatment showed the similar alterations on the pathological changes of heart tissues. The mRNA levels of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and the inflammatory cytokines of tumor necrosis factor-(TNF-α), interleukin 1β (IL-1β) and interleukin 6 (IL-6) were all significantly down-regulated in the heart tissues of mice in Ang II+OSI-906 group (<0.05). Furthermore, the level of MDA was significantly decreased (<0.01), but the levels of SOD, CAT and GSH-Px were increased (<0.05). The phosphorylation of AMP-activated protein kinase (p-AMPK) and silent information regulator 3 (SIRT3) were up-regulated (<0.05). Consistently, the mRNA expressions of ANP, BNP and β-myosin heavy chain (β-MHC) were significantly increased in primary neonatal mice cardiomyocytes treated with Compound C, a blocker of AMPK signaling.OSI-906 significantly inhibited Ang II-induced myocardial inflammation and oxidative stress in mice, and may play a cardioprotective role through the AMPK/SIRT3 signaling pathway.
myocardial hypertrophy; insulin-like growth factor 1 receptor; OSI-906; AMPK/SIRT3 signaling pathway
R363.2; R542
A
10.3969/j.issn.1000-4718.2023.09.006
1000-4718(2023)09-1578-08
2023-01-04
2023-09-04
國(guó)家自然科學(xué)青年基金項(xiàng)目(No. 81700221);山東省自然科學(xué)基金項(xiàng)目(No. ZR2021LZY033)
Tel: 0536-8462414; E-mail: nzh149@126.com
(責(zé)任編輯:宋延君,余小慧)