李翠 侯柄竹
摘要:脫落酸(abscisic acid,ABA)作為一種重要的植物激素,不僅涉及許多植物發(fā)育過程和逆境脅迫,而且在果實成熟,尤其是非呼吸躍變型果實成熟中發(fā)揮關(guān)鍵作用。隨著植物中ABA合成、代謝和作用機制的解析及其受體識別和核心信號轉(zhuǎn)導模型的建立,極大地推動了ABA在果實成熟和品質(zhì)形成中的研究。一般來講,褪綠和著色是果實成熟過程中普遍存在的現(xiàn)象,這一過程涉及了ABA早期信號和多種激素的協(xié)同作用并組成了復雜的網(wǎng)絡(luò)調(diào)控機制??傊?,ABA是調(diào)控果實成熟的核心機制,其中存在著乙烯依賴(呼吸躍變型)和不依賴(非呼吸躍變型)類型。綜述了ABA在植物體內(nèi)的合成、代謝及作用的分子機制,構(gòu)建了ABA調(diào)控果實成熟的分子網(wǎng)絡(luò)模型,為果實的品質(zhì)改善和保鮮奠定理論基礎(chǔ)。
關(guān)鍵詞:果實成熟;脫落酸;(非)呼吸躍變型;乙烯;生長素;信號轉(zhuǎn)導
中圖分類號:S66 文獻標志碼:A 文章編號:1009-9980(2023)05-0988-12
果實成熟是指果實發(fā)育后期完成生長膨大后內(nèi)部發(fā)生的一系列生理生化反應,包括果皮褪綠、葉綠素降解、花色苷及類胡蘿卜素合成、香氣合成及果實變軟等典型特征,這其中涉及一系列復雜的代謝過程,并伴隨著多種次生物質(zhì)的產(chǎn)生。在自然界中,成熟過程不僅有助于食用水果的動物散播種子,而且在人類的營養(yǎng)和健康中發(fā)揮重要作用,還有利于控制果實衰老進程,減輕水果在運輸和保鮮中的腐爛變質(zhì)。
激素是調(diào)節(jié)果實成熟的重要因子,可以顯著影響果實發(fā)育和成熟的進程。根據(jù)果實成熟過程中呼吸強度及乙烯釋放速率的生理特點,果實主要分為兩種類型:呼吸躍變型及非呼吸躍變型[1-2]。在躍變型果實(如番茄和香蕉)中呼吸和乙烯水平均在成熟期達到峰值;而非呼吸躍變型果實(如葡萄和草莓)中沒有出現(xiàn)此類峰值,其成熟受脫落酸(ABA)以不依賴乙烯的方式控制[1-2]。另外,脫落酸還參與了種子成熟和休眠及逆境脅迫響應,在調(diào)控營養(yǎng)生長和生殖生長平衡中發(fā)揮關(guān)鍵作用[3-5]。因此,ABA在非呼吸躍變型和呼吸躍變型果實成熟過程中都發(fā)揮著重要作用[6-7]。綜述了果實發(fā)育中ABA合成、代謝及作用的分子機制,并提出了ABA調(diào)控果實成熟的分子網(wǎng)絡(luò)模型,以期為果實成熟、品質(zhì)形成和采后保鮮奠定基礎(chǔ)。
1 ABA 在果實成熟過程中發(fā)揮重要作用
ABA是果實發(fā)育和成熟過程中重要的內(nèi)源激素之一[8-10]。與乙烯相比,ABA在非呼吸躍變型果實成熟和衰老過程中起著更為重要的作用[11]。外源施加ABA能夠促進果實的成熟進程,主要體現(xiàn)在果實的糖酸比提高、硬度下降、可溶性固形物和糖類的積累、果實色澤的形成等方面。草莓是一種典型的非呼吸躍變型果實,它的成熟和衰老涉及基因表達和代謝變化,是一個基因編程的復雜過程[12-13]。在果實成熟過程中,草莓花托中ABA含量會呈現(xiàn)上升趨勢,這是成熟果實中ABA生物合成的增加和氧化作用的降低共同作用的結(jié)果[13]。檢測不同西瓜品種成熟過程中游離態(tài)及結(jié)合態(tài)ABA的含量發(fā)現(xiàn),西瓜果實的成熟及品質(zhì)進化過程也與ABA含量高度相關(guān)[14]。
果實硬度下降是果實成熟的重要標志。施加外源ABA可加速果實硬度的下降,這可能是ABA增強了細胞壁降解酶、果膠甲酯酶和多聚半乳糖醛酸酶等能夠改變果實細胞壁結(jié)構(gòu)的酶的活性,最終促使果實軟化[15]。外源ABA 可以促進葡萄[16- 18]、草莓[19]、無花果[20]等多種果實的軟化和品質(zhì)提升。
ABA對果實著色發(fā)揮重要作用。果實成熟過程中的顏色變化是通過葉綠素降解和次生顏色代謝產(chǎn)物如類胡蘿卜素和花色苷的生物合成實現(xiàn)的,而果皮顏色是果品商品價值的重要品質(zhì)指標[21]。如施用ABA 迅速啟動荔枝果實葉綠素分解,ABA 濃度峰值與隨后合成的花青素水平一致,證明ABA對荔枝果實成熟起重要作用[22]。內(nèi)源ABA通過上調(diào)乙烯的產(chǎn)生和苯丙氨酸解氨酶(phenylalanine ammonia-lyase, PAL)的活性,提升草莓的花色苷和酚類含量,促進草莓果實著色[9]。同樣。外源ABA也可以促進葡萄、荔枝和甜櫻桃等非呼吸躍變型果實成熟過程中花色苷的生物合成及果實著色[23-25]。
糖類的積累也是決定果實品質(zhì)和消費的一個核心要素。葡萄果實成熟啟動(花青素積累開始)與糖積累密切相關(guān),并伴隨著ABA濃度的顯著增加[26]。
例如,外源ABA處理后,植物果實的總淀粉量和直鏈淀粉量均可增加,表明ABA可能調(diào)控淀粉合成基因的表達[14]。同時,ABA還參與呼吸躍變型果實的膨大、軟化和糖分積累等[6,27]。外源ABA 能夠通過增強庫容的方式使葉片中的光合產(chǎn)物向蘋果果實運輸,從而提高果實中可溶性糖的積累[28];而抑制ABA合成關(guān)鍵酶9-順環(huán)氧類胡蘿卜素雙加氧酶(9-cis-epoxycarotenoiddioxygenase,NCED)的表達,會導致果膠在成熟過程中的積累,減緩番茄的軟化過程[28]。
總之,ABA參與果實成熟調(diào)控涉及一系列復雜的生理變化,如色素合成、糖分積累和果實軟化等;大量的研究證實,ABA在調(diào)控非呼吸躍變型和呼吸躍變型果實成熟及品質(zhì)形成中都發(fā)揮著重要作用。
2 果實中ABA的代謝及作用機制
2.1 ABA生物合成及代謝
細胞內(nèi)ABA生物合成和分解代謝涉及了前饋和反饋調(diào)控。反饋和前饋與抑制FveCYP707A4a 表達(cytochrome P450,ABA 降解的關(guān)鍵)和促進FveNCED表達(ABA生物合成的關(guān)鍵)密切相關(guān),并涉及草莓果實成熟的起始[29]。ABA 從生物合成到信號轉(zhuǎn)導的協(xié)同調(diào)控是植物生長發(fā)育和果實成熟的核心機制。
ABA的生物合成始于質(zhì)體,止于細胞質(zhì),其水平通過不同的途徑進行調(diào)節(jié)。近年來,ABA在高等植物中的合成及其調(diào)控機制得到了廣泛的關(guān)注[30]。
在高等植物中,“合成-降解”“結(jié)合-解離”途徑協(xié)同調(diào)控ABA 的水平,NCED 為ABA 生物合成的限制酶[31-33]。在草莓果實發(fā)育整個過程中,ABA水平和FaNCED1 的表達呈相同的變化趨勢,暗示FaNCED1 是決定草莓果實中ABA水平的關(guān)鍵酶。
這一結(jié)論通過瞬時轉(zhuǎn)基因體系調(diào)低FaNCED1 表達量抑制成熟得到證實。同時,通過瞬時轉(zhuǎn)基因體系調(diào)低ABA受體基因FaABAR表達量也抑制成熟,尤其外源ABA 可以恢復FaNCED1-RNAi 果實著色,但不能恢復FaCHLH/ABAR-RNAi 果實著色,證實ABA 在調(diào)控草莓果實成熟中發(fā)揮重要作用[34]。值得關(guān)注的是,在早熟柑橘成熟過程中,ABA具有類似乙烯合成系統(tǒng)Ⅱ的反饋調(diào)節(jié)機制,能夠在轉(zhuǎn)錄水平和翻譯水平誘導自身的生物合成[35-36]。目前這一結(jié)論在呼吸躍變型和非呼吸躍變型果實,如鱷梨[37]、柿子[38]、草莓[39]上都得到證實。8-羥基化是ABA氧化分解代謝的主要途徑,P450 單加氧酶CYP707A是其中的關(guān)鍵酶;糖基轉(zhuǎn)移酶(UDP-glucosyltransferase,GTs)能夠催化ABA 形成ABA-葡萄糖基酯(ABA glucosyl ester,ABA-GE);而β-葡萄糖苷酶(β-glucosidases,BGs)能夠催化ABA-葡萄糖基酯解離為游離的ABA[40]。植物依靠這種“結(jié)合-解離”代謝快速模式,與從頭合成相比,能迅速改變內(nèi)源ABA水平,以便快速適應環(huán)境和果實發(fā)育的變化。
過去大量的研究證實,ABA是調(diào)節(jié)非呼吸躍變型果實成熟的關(guān)鍵激素。在越橘(Vaccinium myrtillus)果實的成熟過程中,ABA 生物合成關(guān)鍵酶NCED 發(fā)揮重要作用[41]。黃瓜ABA 從頭合成基因(CsNCEDs)、分解代謝基因(CsCYP707A1)和解離基因(CsBGs)均在果肉中高表達,協(xié)同調(diào)節(jié)ABA含量及果實成熟進程[42]。從綠熟期開始,ABA在草莓果實中快速合成,其含量受到合成基因FaNCED2和FaNCED1 及代謝基因FaCYP707A1 的調(diào)控[33-34, 39, 43]。草莓中FaBG3 的表達與ABA含量的變化基本一致,均在成熟階段出現(xiàn)高峰,經(jīng)過FaBG3-RNAi 處理的草莓果實中FaBG3 的表達量顯著降低,ABA含量低于對照,說明其在轉(zhuǎn)錄水平上參與了果實的成熟過程[44]。另外,通過對草莓中葡萄糖苷酶1(BG1)的酶活性表明分析,其能催化ABA糖基酯(ABA-GE)水解,釋放具有生物活性的游離ABA。進一步研究發(fā)現(xiàn),草莓果實著色的開始伴隨著FaBG1 表達的急劇升高,而FaBG1 的下調(diào)導致內(nèi)源性ABA 的顯著下降,從而抑制果實成熟[45]。總之,NCED、UGT71、CYP707A 和BG 在草莓成熟過程中發(fā)揮了重要的作用[34,46-47],揭示了ABA是調(diào)控果實成熟的關(guān)鍵激素。
2.2 ABA調(diào)控非呼吸躍變型果實成熟分子機制
近十年來,模式植物擬南芥ABA核心信號轉(zhuǎn)導分子機制的闡明[48]極大地促進了非呼吸躍變型果實成熟的機制研究,拓展了ABA的生物學功能。擬南芥中ABA 受體蛋白為PYR1/PYLs/RCAR(pyrabactinresistance/pyr1- like/regulatory components ofABA receptor),大量研究揭示了“ABA-PYR1/PYLs/RCAR- PP2C(type 2C protein phosphatase)- SnRK2(sucrose non-fermenting 1-related protein kinase 2)”
核心信號轉(zhuǎn)導機制[49-50]。受體PYR與ABA結(jié)合能促進形成“ABA-PYR-PP2C”信號復合體,抑制PP2Cs活性并依次激活蛋白激酶SnRK2、轉(zhuǎn)錄因子ABF(ABRE binding factors)及一系列下游應答基因,最終激活ABA的多種生理反應[51]。因此,在ABA信號轉(zhuǎn)導過程中,ABA受體介導的信號感知過程發(fā)揮了核心作用,蛋白可逆磷酸化發(fā)揮著關(guān)鍵作用[52]。
植物中蛋白可逆磷酸化涉及了蛋白激酶和蛋白磷酸酶:激酶包括CDPKs(Ca2+-dependent protein kinases,鈣依賴的蛋白激酶)、SnRKs(SNF1-related kinases,SNF1 相關(guān)蛋白激酶)、MAPKs(mitogen-activatedprotein kinases,絲裂原活化蛋白激酶)、RPKs(receptor-type kinases,受體蛋白激酶);磷酸酶主要為PP2Cs(protein phosphatase 2C,PP2Cs 蛋白磷酸酶)[4]。SnRK2 和ABI1(ABA insensitive1)涉及的蛋白可逆磷酸化是ABA信號轉(zhuǎn)導的核心機制[49],在草莓果實成熟調(diào)控中存在保守性[53]。例如,蛋白激酶FaSnRK2.6 能夠與蛋白磷酸酶FaABI1 發(fā)生相互作用,在草莓果實成熟中發(fā)揮負調(diào)控作用[54]?!癙P2CSnRK2核心信號組分”是調(diào)控草莓果實成熟的關(guān)鍵環(huán)節(jié)[55]。在缺乏ABA 的情況下,PP2C 家族成員如ABI1、ABI2 和HAB1(hypersensitive to ABA1)負調(diào)控SnRK2 激酶家族的成員如SnRK2.6、SnRK2.2 和SnRK2.3 的激活。而當ABA受體與ABA結(jié)合后,其疏水表面暴露,PP2Cs 的活性受到ABA 受體的抑制。被PP2Cs 抑制的SnRK2.6、SnRK2.2 和SnRK2.3可以重新激活下游ABA響應元件SLAC1(slow anionchannel-associated 1),打開S 型陰離子通道[56]。
另外,草莓果實中FaMRLK47,作為一種FERONIAlike受體激酶,在草莓果實成熟過程中發(fā)揮著至關(guān)重要的作用[56]。總之,F(xiàn)aPYR1 與果實成熟啟動及品質(zhì)形成密切相關(guān)[57-58],“PYR1-PP2C-SnRK2”是調(diào)節(jié)果實成熟的核心信號轉(zhuǎn)導機制[59-60]。
在草莓FaPYR/PYLs 和FaPP2C家族成員中,只有FaPYL2/4/9/11 和FaABI1/FaPP2C16 相互作用,F(xiàn)aPYL2 與FaABI1 的相互作用可能在草莓果實成熟過程中發(fā)揮作用[51]。值得注意的是,SnRK2.6 蛋白在擬南芥保衛(wèi)細胞中充當CHLH/ABAR(Mg-chelataseH subunit/ABA receptor)和PYR/PYL/RCAR 之間的耦合因子[61]。因此,草莓果實成熟過程中ABAR 與PYR/PYL/RCAR 的關(guān)系有待進一步研究。CHLH/ABAR 具有多種生物學功能,涉及了葉綠素合成、質(zhì)核逆向信號及ABA 信號轉(zhuǎn)導[61]。例如,在擬南芥中,CHLH/ABAR 通過ABA-ABARWRKY40-ABI5/ABI4 以不同的途徑調(diào)節(jié)氣孔運動、種子萌發(fā)和幼苗生長[62]。為了進一步探索FaABAR在草莓果實成熟中的作用機制,通過酵母雙雜交技術(shù)鑒定到了一個與FaABAR 互作的富含亮氨酸重復序列(LRR)受體類激酶,即成熟調(diào)控蛋白激酶FaRIPK1(red- initial protein kinase 1)[63]。FaRIPK1作為FaABAR 的共受體,協(xié)同調(diào)控草莓果實的成熟,即FaRIPK1 參與草莓果實成熟的啟動并調(diào)控了果實的成熟,證實了FaABAR/CHLH 是果實成熟的正向調(diào)節(jié)因子。FaMYB10(R2R3 MYB)是一個重要的轉(zhuǎn)錄因子,它介導ABAR 感知下游的信號轉(zhuǎn)導,從而刺激草莓果實成熟期間花青素的生物合成,F(xiàn)aMYB10 和FaGAMYB 參與了成熟多種生理過程調(diào)控,如著色、軟化和香氣,其中涉及重要轉(zhuǎn)錄因子FaABI4 和FaABI5 [39,64-68]。
另外,在其他非呼吸躍變型果實上ABA核心信號轉(zhuǎn)導機制的研究也取得重要進展。在對柑橘研究中,CsPYL4 和CsPYL5 在成熟過程中表達模式與ABA 積累相反,而CsPP2CA 和CsSnRK2 的表達在成熟過程中持續(xù)下降[69]。在黃瓜果實發(fā)育中,Cs-PYL2 及CsPP2C2 表達量較高并在花后27 d 達到峰值,變化趨勢與ABA 水平一致,表明CsPYL2 及CsPP2C2 可能在黃瓜成熟過程中發(fā)揮重要作用,揭示了ABA參與黃瓜果實的成熟調(diào)控[70]。在甜櫻桃中,ABA處理顯著促進果實中花青素的積累,發(fā)現(xiàn)PacPP2C1 與6 個PacSnRK2s 相互作用[25]。受ABA誘導的荔枝LcASR 蛋白定位于細胞核中并參與了果實的成熟調(diào)控[71]。
總之,“ABA-PYR1-PP2C-SnRK2”核心信號組分是ABA 調(diào)控果實成熟的保守機制[72- 73];同時“ABA-ABAR-RIPK1-ABI4”是調(diào)控草莓果實的成熟新機制[35, 62, 74],表明ABA作用機制的復雜性、保守性和多樣性。
2.3 ABA通過多種協(xié)同機制調(diào)控非呼吸躍變型果實成熟
在草莓果實成熟過程中,ABA 和生長素(indoleaceticacid,IAA)是重要的協(xié)同調(diào)控激素,乙烯和赤霉素的作用較弱[75]。在果實發(fā)育過程中,IAA和赤霉素GA4(gibberellic acid 4)含量均以小綠時期的草莓果實最高,并隨著發(fā)育過程逐漸降低;ABA含量隨果實成熟迅速增加,與著色變化趨勢一致;茉莉酸甲酯濃度隨時間變化不明顯,水楊酸含量逐漸增加;茉莉酸(jasmonic acid,JA)和乙烯含量太低,無法量化[39]。IAA 主要在瘦果中產(chǎn)生,而ABA、乙烯、細胞分裂素(cytokinin,CTK)和赤霉素主要在花托中合成;赤霉素在一定程度上延緩了成熟,而細胞分裂素和乙烯似乎參與了成熟的后期調(diào)控[13]。隨著草莓果實成熟的開始,ABA、乙烯和多胺的作用增強,而GA和IAA的作用減弱[76]。此外,JA 參與果實花青素積累、細胞壁軟化及乙烯的生物合成,最終加速了草莓果實的成熟[77]??傊?,非呼吸躍變型果實成熟的調(diào)控是一個復雜的過程,涉及了多種激素的協(xié)同調(diào)控。
2.3.1 ABA 與乙烯的相互作用 盡管乙烯是躍變型果實成熟的關(guān)鍵調(diào)節(jié)因子[78],但這種氣體分子也通過與ABA的相互作用參與非呼吸躍變型果實成熟[79-80]。在采后草莓果實中,乙烯促進ABA在花托組織中的積累,但不影響ABA分解代謝[80]。乙烯反應調(diào)節(jié)因子FveERF 的超表達激活草莓果實成熟期間的酰基轉(zhuǎn)移酶(alcohol acyltransferase,AAT)基因的轉(zhuǎn)錄和酯積累[79]。呼吸躍變型李果實及其非呼吸躍變型突變體果實的ACS1(ACC synthase1)啟動子區(qū)序列差異較?。蝗欢鳤BI5 在非呼吸躍變型突變體李果實成熟期間的表達低于呼吸躍變型李果實,表明ABA在乙烯合成中起著至關(guān)重要的作用[81]。黃瓜MADS-box 蛋白CsSHP 通過ABA 介導CsSEPs(SEPARALATA)調(diào)控[59]。ABA 和乙烯相關(guān)基因在葡萄漿果成熟過程中受到一組轉(zhuǎn)錄因子的差異調(diào)控,包括MADS-box、MYB、NAC、AP2/ERF、bHLH和ZIP[82]。因此,ABA與乙烯的相互作用在非呼吸躍變型果實成熟過程中起著重要作用。
2.3.2 ABA 與IAA 的相互作用 在葡萄果實發(fā)育過程中,乙烯和IAA 之間存在“拮抗調(diào)控作用”,ABA和IAA之間存在“協(xié)同調(diào)控作用”,在激素生物合成和信號轉(zhuǎn)導水平上形成一個精確的調(diào)控分子網(wǎng)絡(luò)[83]。在果實成熟前期,葡萄果實種子中的IAA 含量比果皮中高出多倍,種子/果實鮮質(zhì)量比率高的果皮具有較高的IAA/ABA 水平,而比率低的漿果中NCED和MYB表達量顯著升高[84]。在葡果實中發(fā)現(xiàn)了GH3.1,它編碼一個生長素-氨基酸合成酶(IAAaminosynthetase),能使IAA-氨基酸結(jié)合并導致游離生長素含量降低,最終促進成熟,這種調(diào)控機制在呼吸躍變型及非呼吸躍變型果實中普遍存在[85]。
在草莓果實發(fā)育過程中,IAA和ABA是主導激素并以協(xié)同或獨立的方式發(fā)揮作用:IAA 決定花托發(fā)育而ABA 決定成熟;乙烯和GA 基本不起作用[76, 86]。高水平的生長素促進了種子組織的發(fā)育,生長素響應因子基因的轉(zhuǎn)錄產(chǎn)物在果皮組織中積累;而在成熟后期,生長素作用減弱,ABA作用逐步增強,表明生長期間IAA/ABA 比率較高,成熟期間比率較低[87]。草莓瘦果中IAA含量的降低可加速成熟進度[88]。ABA 及IAA 在瘦果中的含量顯著高于花托,協(xié)同調(diào)控了種子及果肉的生理成熟[86, 89]。
發(fā)育的瘦果中IAA 和ABA的積累量大于花托中IAA和ABA的積累量,這可以表明這兩種激素調(diào)控草莓果實成熟的機制是復雜的[86]。研究發(fā)現(xiàn),花托中IAA 依賴于瘦果中輸出的IAA,后期果實的膨大依賴于多種植物激素的協(xié)同調(diào)控,包括GA、ABA和乙烯等[90]。IAA和ABA在果實成熟中的重要作用涉及了多種生理過程[91-92],如FaRGlyase1(鼠李糖半乳糖醛酸裂解酶基因)[93],F(xiàn)aSHP(一種C-type MADSbox基因)[94],F(xiàn)aβGal4(β-半乳糖苷酶基因)[95]和Fa-NIP1;1(質(zhì)膜水通道蛋白基因)[96],這些基因在草莓果實成熟期間受到ABA的正調(diào)控與生長素的負調(diào)控。
此外,膜聯(lián)蛋白FaAnn5 和FaAnn8 可能通過鈣信號,參與草莓果實生長和成熟過程中ABA和IAA 的協(xié)同調(diào)節(jié);受體激酶和泛素連接酶對IAA和ABA都有反應,并可能在兩種激素的互作中發(fā)揮關(guān)鍵作用[92]。
綜上所述,IAA和ABA是草莓果實成熟的關(guān)鍵調(diào)控因子,ABA和IAA通過一個復雜的分子網(wǎng)絡(luò)在非呼吸躍變型果實成熟調(diào)控中發(fā)揮核心作用[97]。
2.3.3 ABA 與糖的相互作用 糖在果實成熟和品質(zhì)調(diào)控中發(fā)揮重要作用,因為糖的代謝和積累對風味有很大的影響。蔗糖能夠作為一種信號,通過刺激ABA的產(chǎn)生和積累促進草莓果實成熟[34, 53]。ABA和蔗糖都能誘導葡萄漿果成熟,蔗糖以ABA依賴和非依賴兩種方式發(fā)揮作用[56]。葡萄漿果在沒有外源脫落酸的情況下,2%蔗糖顯著促進花色苷的積累[98]。糖-ABA信號轉(zhuǎn)導耦合因子,如PP2C及轉(zhuǎn)錄因子WRKY和HOMEOBOX,是葡萄果實成熟的核心組分[26]。
另外,研究還發(fā)現(xiàn)蔗糖通過ABA調(diào)控果實的成熟[34, 53]。如用蔗糖處理大綠果草莓果實會促進ABA合成并誘導成熟,且這種誘導在采后儲存的第一天最為明顯[99]。ABA和蔗糖會抑制糖酵解,并促進草莓果實成熟,表明ABA與蔗糖的相互作用是通過抑制糖酵解而影響成熟的[100]。此外,糖酵解關(guān)鍵酶FaGAPC2(胞質(zhì)甘油醛-3-磷酸脫氫酶)/ FaGAPCp1(質(zhì)體甘油醛-3-磷酸脫氫酶)對草莓果實中ABA和蔗糖介導的成熟具有負調(diào)控作用[100]。轉(zhuǎn)錄因子ABA-stress-ripening(ASR)參與ABA和蔗糖信號轉(zhuǎn)導[101-102],ASR通過ABA和蔗糖之間的耦合調(diào)節(jié)草莓果實的成熟[102]。因此,ABA與糖的相互作用在非呼吸躍變型果實成熟過程中發(fā)揮至關(guān)重要的作用。
2.3.4 ABA 與多胺的相互作用 在草莓果實成熟期間,多胺(ployamines,PA),尤其是精胺(spermine,Spm),以ABA為主導的和IAA-乙烯協(xié)同參與的方式調(diào)控草莓果實的成熟[89]。在草莓果實成熟開始時期,NCED3 轉(zhuǎn)錄促進ABA的快速積累,從而抑制多胺氧化酶FaPAO5 的表達,導致精胺和亞精胺的積累[103]。有趣的是,精胺和亞精胺(spermidine,Spd)含量的增加觸發(fā)了SAM脫羧酶SAMDC、亞精胺合酶SPDS和精胺合酶SPMS基因的表達,進一步加速了精胺和亞精胺的積累和果實成熟[103]。以上研究揭示了ABA和多胺的相互作用在草莓果實成熟調(diào)控中發(fā)揮重要作用。總之,F(xiàn)aPAO5 介導的多胺代謝Spd/Spm 產(chǎn)生H2O2,與ABA、乙烯、NO、Ca2+構(gòu)成復雜網(wǎng)絡(luò):Put 和乙烯在果實成熟過程中形成負協(xié)調(diào)環(huán),Spd/Spm 和ABA 組成了一個正調(diào)控環(huán),揭示了ABA 和多胺的相互作用在草莓果實成熟調(diào)控中產(chǎn)生重要影響[104]。
3 結(jié)論和展望
果實的發(fā)育過程包括早期的細胞分裂和膨大,隨后葉綠素降解、細胞壁軟化,以及成熟過程中苯丙酸、類黃酮、淀粉/蔗糖和類胡蘿卜素代謝的變化。這些過程受植物激素嚴格控制,主要包括乙烯在呼吸躍變型果實成熟中的作用、ABA在非呼吸躍變型果實成熟中的作用以及二者的相互作用[105-107]。在中間成熟類型無花果中的研究表明,ABA能促進乙烯的積累及果實的成熟啟動,而乙烯調(diào)控果實的成熟依賴于ABA受體識別,ABA的作用方式與乙烯的系統(tǒng)Ⅰ/Ⅱ密切相關(guān)[108]。綜上所述,筆者提出了脫落酸調(diào)控果實成熟的分子機制(圖1)。隨著果實啟動成熟,糖、NO、Ca2+等發(fā)育信號及光等環(huán)境信號導致ROS積累,進而觸發(fā)ABA合成及積累,同時協(xié)同抑制GA、IAA 和CTK 的合成和作用,并協(xié)同促進乙烯、JA,PA及BR(油菜素內(nèi)酯)的合成及作用。這些激素組成了復雜的調(diào)控網(wǎng)絡(luò),其中ABA是調(diào)控果實成熟的核心機制,存在著乙烯依賴(呼吸躍變型)和不依賴(非呼吸躍變型)類型。總之,ABA、乙烯和IAA 的協(xié)同調(diào)控主要表現(xiàn)為非呼吸躍變型果實中ABA-IAA 互作、呼吸躍變型果實中的乙烯-IAA 互作以及兩類果實中的ABA-乙烯互作,他們在果實成熟中協(xié)同發(fā)揮關(guān)鍵的調(diào)控作用。
總之,近十年來,我國植物分子生物學研究取得了較大的進展,并且已開始從模式植物向果樹木本植物轉(zhuǎn)變,但果樹栽培周期長及遺傳轉(zhuǎn)化體系瓶頸限制了果樹分子生物學發(fā)展。未來,結(jié)合基因組學、轉(zhuǎn)錄組學、蛋白組學、代謝組學和表觀遺產(chǎn)學的發(fā)展及基因敲除CRISPR/Cas9 等最新技術(shù)的應用,深入剖析果實成熟激素調(diào)控分子機制的共性和特異性,及種子和果肉的協(xié)同調(diào)控分子機制是未來重要的研究方向。
參考文獻References:
[1] KUMAR R,KHURANA A,SHARMA A K. Role of plant hormones
and their interplay in development and ripening of fleshy
fruits[J]. Journal of Experimental Botany,2014,65(16):4561-
4575.
[2] SHEN Y Y,ROSE J K C. ABA metabolism and signaling in
fleshy fruits[M]//ZHANG D P. Abscisic Acid:Metabolism,
Transport and Signaling. Dordrecht:Springer,2014:271-286.
[3] FINKELSTEIN R R,ROCK C D. Abscisic acid biosynthesis
and response[J]. The Arabidopsis Book,2002,(1):e0058.
[4] HIRAYAMA T,SHINOZAKI K. Perception and transduction of
abscisic acid signals:keys to the function of the versatile plant
hormone ABA[J]. Trends in Plant Science,2007,12(8):343-351.
[5] WANG X F,ZHANG D P. Abscisic acid receptors:multiple signal-
perception sites[J]. Annals of Botany,2008,101(3):311-317.
[6] LENG P,YUAN B,GUO Y D. The role of abscisic acid in fruit
ripening and responses to abiotic stress[J]. Journal of Experimental
Botany,2014,65(16):4577-4588.
[7] LI C L,JIA H F,CHAI Y M,SHEN Y Y. Abscisic acid perception
and signaling transduction in strawberry:a model for nonclimacteric
fruit ripening[J]. Plant Signaling & Behavior,2011,6
(12):1950-1953.
[8] GIRIBALDI M,G?NY L,DELROT S,SCHUBERT A. Proteomic
analysis of the effects of ABA treatments on ripening Vitis
vinifera berries[J]. Journal of Experimental Botany,2010,61
(9):2447-2458.
[9] JIANG Y M,JOYCE D C. ABA effects on ethylene production,
PAL activity,anthocyanin and phenolic contents of strawberry
fruit[J]. Plant Growth Regulation,2003,39(2):171-174.
[10] KOYAMA K,SADAMATSU K,GOTO-YAMAMOTO N. Abscisic
acid stimulated ripening and gene expression in berry
skins of the Cabernet Sauvignon grape[J]. Functional & Integrative
Genomics,2010,10(3):367-381.
[11] CHEN P,SUN Y F,KAI W B,LIANG B,ZHANG Y S,ZHAI
X W,JIANG L,DU Y W,LENG P. Interactions of ABA signaling
core components (SlPYLs,SlPP2Cs,and SlSnRK2s) in tomato
(Solanum lycopersicon) [J]. Journal of Plant Physiology,
2016,205:67-74.
[12] MCATEE P,KARIM S,SCHAFFER R,DAVID K. A dynamic
interplay between phytohormones is required for fruit development,
maturation,and ripening[J]. Frontiers in Plant Science,
2013,4:79.
[13] GU T T,JIA S F,HUANG X R,WANG L,F(xiàn)U W M,HUO G
T,GAN L J,DING J,LI Y. Transcriptome and hormone analyses
provide insights into hormonal regulation in strawberry ripening[
J]. Planta,2019,250(1):145-162.
[14] 王晉芳,許勇,王艷萍,郭紹貴,田守蔚,張潔,任毅,孫宏賀,宮
國義,張海英.脫落酸途徑調(diào)控西瓜果實成熟及品質(zhì)進化[J].
中國瓜菜,2019,32(8):215-216.
WANG Jinfang,XU Yong,WANG Yanping,GUO Shaogui,
TIAN Shouwei,ZHANG Jie,REN Yi,SUN Honghe,GONG
Guoyi,ZHANG Haiying. Abscisic acid pathway involved in the
requlation of watermelon fruit ripening and quality trait evolution[
J]. China Cucurbits and Vegetables,2019,32(8):215-216.
[15] 王鵬洋,曲姍姍. ABA 對果實品質(zhì)的影響研究進展[J]. 現(xiàn)代農(nóng)
業(yè)科技,2019(7):198.
WANG Pengyang,QU Shanshan. Research progress on the effect
of ABA on fruit quality[J]. Modern Agricultural Science and
Technology,2019(7):198.
[16] PEPPI M C,F(xiàn)IDELIBUS M W,DOKOOZLIAN N K. Application
timing and concentration of abscisic acid affect the quality
of‘Redglobegrapes[J]. The Journal of Horticultural Science
and Biotechnology,2007,82(2):304-310.
[17] 王世明. 外源激素ABA 和EBR 處理有助于葡萄果實品質(zhì)提
升[J]. 中國果業(yè)信息,2020,37(2):52-53.
WANG Shiming. Exogenous hormones ABA and EBR are helpful
to improve the quality of grape fruit[J]. China Fruit News,
2020,37(2):52-53.
[18] 王西成,王壯偉,吳偉民,趙密珍,錢亞明. 植物生長調(diào)節(jié)劑對
葡萄果實品質(zhì)影響的研究進展[J]. 中外葡萄與葡萄酒,2018
(4):103-107.
WANG Xicheng,WANG Zhuangwei,WU Weimin,ZHAO Mizhen,
QIAN Yaming. Research progress on effect of plant
growth regulators of grape quality[J]. Sino- overseas Grapevine
&Wine,2018(4):103-107.
[19] LI D D,LUO Z S,MOU W S,WANG Y S,YING T J,MAO L
C. ABA and UV-C effects on quality,antioxidant capacity and
anthocyanin contents of strawberry fruit (Fragaria ananassa
Duch.)[J]. Postharvest Biology and Technology,2014,90:56-62.
[20] LAMA K,MODI A,PEER R,IZHAKI Y,F(xiàn)LAISHMAN M A.
On-tree ABA application synchronizes fruit ripening and maintains
keeping quality of figs (Ficus carica L.)[J]. Scientia Horticulturae,
2019,253:405-411.
[21] SINGH S P,SAINI M K,SINGH J,PONGENER A,SIDHU G
S. Preharvest application of abscisic acid promotes anthocyanins
accumulation in pericarp of litchi fruit without adversely affecting
postharvest quality[J]. Postharvest Biology and Technology,
2014,96:14-22.
[22] HU B,LAI B,WANG D,LI J Q,CHEN L H,QIN Y Q,WANG
H C,QIN Y H,HU G B,ZHAO J T. Three LcABFs are involved
in the regulation of chlorophyll degradation and anthocy-
anin biosynthesis during fruit ripening in Litchi chinensis[J].
Plant and Cell Physiology,2019,60(2):448-461.
[23] HU B,LI J Q,WANG D,WANG H C,QIN Y H,HU G B,
ZHAO J T. Transcriptome profiling of Litchi chinensis pericarp
in response to exogenous cytokinins and abscisic acid[J]. Plant
Growth Regulation,2018,84(3):437-450.
[24] JEONG S T,GOTO-YAMAMOTO N,KOBAYASHI S,ESAKA
M. Effects of plant hormones and shading on the accumulation
of anthocyanins and the expression of anthocyanin biosynthetic
genes in grape berry skins[J]. Plant Science,2004,167(2):
247-252.
[25] SHEN X J,GUO X,ZHAO D,ZHANG Q,JIANG Y Z,WANG
Y T,PENG X,WEI Y,ZHAI Z F,ZHAO W,LI T H. Cloning
and expression profiling of the PacSnRK2 and PacPP2C gene
families during fruit development,ABA treatment,and dehydration
stress in sweet cherry[J]. Plant Physiology and Biochemistry,
2017,119:275-285.
[26] GAMBETTA G A,MATTHEWS M A,SHAGHASI T H,
MCELRONE A J,CASTELLARIN S D. Sugar and abscisic acid
signaling orthologs are activated at the onset of ripening in
grape[J]. Planta,2010,232(1):219-234.
[27] SUN L,SUN Y F,ZHANG M,WANG L,REN J,CUI M M,
WANG Y P,JI K,LI P,LI Q,CHEN P,DAI S J,DUAN C R,
WU Y,LENG P. Suppression of 9- cis- epoxycarotenoid dioxygenase,
which encodes a key enzyme in abscisic acid biosynthesis,
alters fruit texture in transgenic tomato[J]. Plant Physiology,
2012,158(1):283-298.
[28] 王世明. 外源ABA 提高蘋果成熟期果實可溶性糖含量[J]. 中
國果業(yè)信息,2019,36(7):53.
WANG Shiming. Exogenous ABA improves soluble sugar content
in mature apple fruit[J]. China Fruit News,2019,36(7):53.
[29] LIAO X,LI M S,LIU B,YAN M L,YU X M,ZI H L,LIU R
Y,YAMAMURO C. Interlinked regulatory loops of ABA catabolism
and biosynthesis coordinate fruit growth and ripening in
woodland strawberry[J]. Proceedings of the National Academy
of Sciences of the United States of America,2018,115(49):
e11542-e11550.
[30] NAMBARA E,MARION-POLL A. Abscisic acid biosynthesis
and catabolism[J]. Annual Review of Plant Biology,2005,56:
165-185.
[31] LEFEBVRE V,NORTH H,F(xiàn)REY A,SOTTA B,SEO M,OKAMOTO
M,NAMBARA E,MARION-POLL A. Functional analysis
of Arabidopsis NCED6 and NCED9 genes indicates that
ABA synthesized in the endosperm is involved in the induction
of seed dormancy[J]. The Plant Journal:for Cell and Molecular
Biology,2006,45(3):309-319.
[32] QIN X Q,ZEEVAART J A D. The 9-cis-epoxycarotenoid cleavage
reaction is the key regulatory step of abscisic acid biosynthesis
in water-stressed bean[J]. Proceedings of the National Academy
of Sciences of the United States of America,1999,96(26):
15354-15361.
[33] QIN X Q,ZEEVAART J A D. Overexpression of a 9-cis-epoxycarotenoid
dioxygenase gene in Nicotiana plumbaginifolia increases
abscisic acid and phaseic acid levels and enhances
drought tolerance[J]. Plant Physiology,2002,128(2):544-551.
[34] JIA H F,CHAI Y M,LI C L,LU D,LUO J J,QIN L,SHEN Y Y.
Abscisic acid plays an important role in the regulation of strawberry
fruit ripening[J]. Plant Physiology,2011,157(1):188-199.
[35] CHERNYS J T,ZEEVAART J A D. Characterization of the 9-
Cis- epoxycarotenoid dioxygenase gene family and the regulation
of abscisic acid biosynthesis in avocado[J]. Plant Physiology,
2000,124(1):343-354.
[36] ZHANG L C,MA G,KATO M,YAMAWAKI K,TAKAGI T,
KIRIIWA Y,IKOMA Y,MATSUMOTO H,YOSHIOKA T,
NESUMI H. Regulation of carotenoid accumulation and the expression
of carotenoid metabolic genes in citrus juice sacs in vitro[
J]. Journal of Experimental Botany,2012,63(2):871-886.
[37] BEHNAM B,IUCHI S,F(xiàn)UJITA M,F(xiàn)UJITA Y,TAKASAKI H,
OSAKABE Y,YAMAGUCHI- SHINOZAKI K,KOBAYASHI
M,SHINOZAKI K. Characterization of the promoter region of
an Arabidopsis gene for 9- cis-epoxycarotenoid dioxygenase involved
in dehydration- inducible transcription[J]. DNA Research,
2013,20(4):315-324.
[38] LENG P,ZHANG G L,LI X X,WANG L H,ZHENG Z M. Cloning
of 9- cis- epoxycarotenoid dioxygenase (NCED) gene encoding
a key enzyme during abscisic acid (ABA) biosynthesis and
ABA- regulated ethylene production in detached young persimmon
calyx[J]. Chinese Science Bulletin,2009,54(16):2830-2838.
[39] KIM J,LEE J G,HONG Y,LEE E J. Analysis of eight phytohormone
concentrations,expression levels of ABA biosynthesis
genes,and ripening-related transcription factors during fruit development
in strawberry[J]. Journal of Plant Physiology,2019,
239:52-60.
[40] 祝軍,柴璐,侯柄竹,沈元月,郭家選. 果實中脫落酸的研究進
展與展望[J]. 園藝學報,42(9):1664-1672.
ZHU Jun ,CHAI Lu ,HOU Bingzhu ,SHEN Yuanyue ,GUO
Jiaxuan. Research advances and prospects of ABA in fleshy
fruit[J]. Acta Horticulturae Sinica,2015,42(9):1664-1672.
[41] KARPPINEN K,HIRVEL? E,NEVALA T,SIPARI N,SUOKAS
M,JAAKOLA L. Changes in the abscisic acid levels and
related gene expression during fruit development and ripening in
bilberry (Vaccinium myrtillus L.) [J]. Phytochemistry,2013,95:
127-134.
[42] DWANGYP,WANGY,JI K,DAI S J,HUY,SUN L,LI Q,CHEN
P,SUN Y F,DUAN C R,WU Y,LUO H,ZHANG D,GUO Y D,
LENG P. The role of abscisic acid in regulating cucumber fruit
development and ripening and its transcriptional regulation[J].
Plant Physiology and Biochemistry,2013,64:70-79.
[43] JI K,CHEN P,SUN L,WANG Y P,DAI S J,LI Q,LI P,SUN
Y F,WU Y,DUAN C R,LENG P. Non-climacteric ripening
in strawberry fruit is linked to ABA,F(xiàn)aNCED2 and FaCYP707A1[
J]. Functional Plant Biology,2012,39(4):351-357.
[44] LI Q,JI K,SUN Y F,LUO H,WANG H Q,LENG P. The role
of FaBG3 in fruit ripening and B. cinerea fungal infection of
strawberry[J]. The Plant Journal:for Cell and Molecular Biology,
2013,76(1):24-35.
[45] ZHANG S H,SUN J H,DONG Y H,SHEN Y Y,LI C L,LI Y
Z,GUO J X. Enzymatic and functional analysis of β- glucosidase
FaBG1 during strawberry fruit ripening[J]. The Journal of
Horticultural Science and Biotechnology,2014,89(6):733-739.
[46] SONG C K,GU L,LIU J Y,ZHAO S,HONG X T,SCHULENBURG
K,SCHWAB W. Functional characterization and substrate
promiscuity of UGT71 glycosyltransferases from strawberry
(Fragaria × ananassa)[J]. Plant & Cell Physiology,2015,
56(12):2478-2493.
[47] WANG Y,DING G Q,GU T T,DING J,LI Y. Bioinformatic and
expression analyses on carotenoid dioxygenase genes in fruit development
and abiotic stress responses in Fragaria vesca[J].
Molecular Genetics and Genomics,2017,292(4):895-907.
[48] FUJII H,CHINNUSAMY V,RODRIGUES A,RUBIO S,ANTONI
R,PARK S Y,CUTLER S R,SHEEN J,RODRIGUEZ P
L,ZHU J K. In vitro reconstitution of an abscisic acid signalling
pathway[J]. Nature,2009,462(7273):660-664.
[49] MA Y,SZOSTKIEWICZ I,KORTE A,MOES D,AYANG Y,
CHRISTMANN A,GRILL E. Regulators of PP2C phosphatase
activity function as abscisic acid sensors[J]. Science,2009,324
(5930):1064-1068.
[50] PARK S Y,F(xiàn)UNG P,NISHIMURA N,JENSEN D R,F(xiàn)UJII H,
ZHAO Y,LUMBA S,SANTIAGO J,RODRIGUES A,CHOW T
F F,ALFRED S E,BONETTA D,F(xiàn)INKELSTEIN R,PROVART
N J,DESVEAUX D,RODRIGUEZ P L,MCCOURT P,ZHU J K,
SCHROEDER J I,VOLKMAN B F,CUTLER S R. Abscisic acid
inhibits type 2C protein phosphatases via the PYR/PYL family
of START proteins[J]. Science,2009,324(5930):1068-1071.
[51] HOU B Z,CHEN X H,SHEN Y Y. Interactions between strawberry
ABA receptor PYR/PYLs and protein phosphatase PP2Cs
on basis of transcriptome and yeast two-hybrid analyses[J]. Journal
of Plant Growth Regulation,2021,40(2):594-602.
[52] GONZALEZ-GUZMAN M,PIZZIO G A,ANTONI R,VERASIRERA
F,MERILO E,BASSEL G W,F(xiàn)ERN?NDEZ M A,
HOLDSWORTH M J,PEREZ-AMADOR M A,KOLLIST H,
RODRIGUEZ P L. Arabidopsis PYR/PYL/RCAR receptors
play a major role in quantitative regulation of stomatal aperture
and transcriptional response to abscisic acid[J]. The Plant cell,
2012,24(6):2483-2496.
[53] JIA H F,WANG Y H,SUN M Z,LI B B,HAN Y,ZHAO Y X,LI
X L,DING N,LI C,JIWL,JIAWS. Sucrose functions as a signal
involved in the regulation of strawberry fruit development
and ripening[J]. The New Phytologist,2013,198(2):453-465.
[54] HAN Y,DANG R H,LI J X,JIANG J Z,ZHANG N,JIA M R,
WEI L Z,LI Z Q,LI B B,JIAWS. SUCROSE NONFERMENTING1-
RELATED PROTEIN KINASE2.6,an ortholog of OPEN
STOMATA1,is a negative regulator of strawberry fruit development
and ripening[J]. Plant Physiology,2015,167(3):915-930.
[55] QI L T,ZHENG Y G,WANG PY,SONG J N,JING S S,XU L J,
ZHOU X Y,HAO Z Q,YAN Y P,LIU Z. Overexpression of a
sour jujube gene ZjPYR1,encoding a putative abscisic acid receptor,
increases sensitivity of the stomata and roots to ABA in Arabidopsis
thaliana[J]. Gene Expression Patterns,2020,36:119117.
[56] JIA M R,DING N,ZHANG Q,XING S N,WEI L Z,ZHAO Y
Y,DU P,MAO W W,LI J Z,LI B B,JIA W S. A FERONIAlike
receptor kinase regulates strawberry (Fragaria × ananassa)
fruit ripening and quality formation[J]. Frontiers in Plant Science,
2017,8:1099.
[57] CHAI Y M,JIA H F,LI C L,DONG Q H,SHEN Y Y. FaPYR1
is involved in strawberry fruit ripening[J]. Journal of Experimental
Botany,2011,62(14):5079-5089.
[58] AYUB R A,BOSETTO L,GALV?O C W,ETTO R M,INABA
J,LOPES P Z. Abscisic acid involvement on expression of related
gene and phytochemicals during ripening in strawberry fruit
Fragaria×ananassa cv. Camino Real[J]. Scientia Horticulturae,
2016,203:178-184.
[59] CHENG Z H,ZHUO S B,LIU X F,CHE G,WANG Z Y,GU
R,SHEN J J,SONG W Y,ZHOU Z Y,HAN D G,ZHANG X
L. The MADS-box gene CsSHP participates in fruit maturation
and floral organ development in cucumber[J]. Frontiers in Plant
Science,2020,10:1781.
[60] GUPTA M K,LENKA S K,GUPTA S,RAWAL R K. Agonist,
antagonist and signaling modulators of ABA receptor for agronomic
and post- harvest management[J]. Plant Physiology and
Biochemistry,2020,148:10-25.
[61] LIANG S,LU K,WU Z,JIANG S C,YU Y T,BI C,XIN Q,
WANG X F,ZHANG D P. A link between magnesium-chelatase
H subunit and sucrose nonfermenting 1 (SNF1)- related protein
kinase SnRK2.6/OST1 in Arabidopsis guard cell signalling in response
to abscisic acid[J]. Journal of Experimental Botany,
2015,66(20):6355-6369.
[62] SHANG Y,YAN L,LIU Z Q,CAO Z,MEI C,XIN Q,WU F Q,
WANG X F,DU S Y,JIANG T,ZHANG X F,ZHAO R,SUN
H L,LIU R,YU Y T,ZHANG D P. The Mg-chelatase H subunit
of Arabidopsis antagonizes a group of WRKY transcription repressors
to relieve ABA-responsive genes of inhibition[J]. The
Plant Cell,2010,22(6):1909-1935.
[63] HOU B Z,XU C,SHEN Y Y. A leu-rich repeat receptor-like protein
kinase,F(xiàn)aRIPK1,interacts with the ABA receptor,F(xiàn)aABAR,
to regulate fruit ripening in strawberry[J]. Journal of Experimental
Botany,2018,69(7):1569-1582.
[64] MEDINA-PUCHE L,MOLINA-HIDALGO F J,BOERSMAM,
SCHUURINK R C,L?PEZ-VIDRIERO I,SOLANO R,F(xiàn)RANCO-
ZORRILLA J M,CABALLERO J L,BLANCO- PORTALES
R,MU?OZ-BLANCO J. An R2R3-MYB transcription
factor regulates eugenol production in ripe strawberry fruit receptacles[
J]. Plant Physiology,2015,168(2):598-614.
[65] KADOMURA-ISHIKAWAY,MIYAWAKI K,TAKAHASHI A,
MASUDA T,NOJI S. Light and abscisic acid independently regulated
FaMYB10 in Fragaria×ananassa fruit[J]. Planta,2015,
241(4):953-965.
[66] MEDINA-PUCHE L,CUMPLIDO-LASO G,AMIL-RUIZ F,
HOFFMANN T,RING L,RODR?GUEZ-FRANCO A,CABALLERO
J L,SCHWAB W,MU?OZ- BLANCO J,BLANCOPORTALES
R.MYB10 plays a major role in the regulation of
flavonoid/phenylpropanoid metabolism during ripening of
Fragaria × ananassa fruits[J]. Journal of Experimental Botany,
2014,65(2):401-417.
[67] CHAI L,SHEN Y Y. FaABI4 is involved in strawberry fruit ripening[
J]. Scientia Horticulturae,2016,210:34-40.
[68] LI D D,MOU W S,LUO Z S,LI L,LIMWACHIRANON J,
MAO L C,YING T J. Developmental and stress regulation on
expression of a novel miRNA,F(xiàn)an-miR73,and its target ABI5
in strawberry[J]. Scientific Reports,2016,6(1):1-11.
[69] ROMERO P,LAFUENTE M T,RODRIGO M J. The Citrus
ABA signalosome:identification and transcriptional regulation
during sweet orange fruit ripening and leaf dehydration[J]. Journal
of Experimental Botany,2012,63(13):4931-4945.
[70] WANG Y P,WU Y,DUAN C R,CHEN P,LI Q,DAI S J,SUN
L,JI K,SUN Y F,XU W,WANG C L,LUO H,WANG Y,
LENG P. The expression profiling of the CsPYL,CsPP2C and
CsSnRK2 gene families during fruit development and drought
stress in cucumber[J]. Journal of Plant Physiology,2012,169
(18):1874-1882.
[71] LIU J H,JIA C H,DONG F Y,WANG J B,ZHANG J B,XU Y,
XU B Y,JIN Z Q. Isolation of an abscisic acid senescence and
ripening inducible gene from litchi and functional characterization
under water stress[J]. Planta,2013,237(4):1025-1036.
[72] HU W,YAN Y,SHI H T,LIU J H,MIAO H X,TIE W W,
DING Z H,DING X P,WU C L,LIU Y,WANG J S,XU B Y,
JIN Z Q. The core regulatory network of the abscisic acid pathway
in banana:genome-wide identification and expression analyses
during development,ripening,and abiotic stress[J]. BMC
Plant Biology,2017,17(1):145.
[73] JIA H F,LU D,SUN J H,LI C L,XING Y,QIN L,SHEN Y Y.
Type 2C protein phosphatase ABI1 is a negative regulator of
strawberry fruit ripening[J]. Journal of Experimental Botany,
2013,64(6):1677-1687.
[74] ZHANG S H,HOU B Z,CHAI L,YANGAZ,YU XY,SHENYY.
Sigma factor FaSigE positively regulates strawberry fruit ripening
by ABA[J]. Plant Growth Regulation,2017,83(3):417-427.
[75] MEDINA-PUCHE L,BLANCO-PORTALES R,MOLINA-HIDALGO
F J,CUMPLIDO-LASO G,GARC?A-CAPARR?S N,
MOYANO- CA?ETE E,CABALLERO- REPULLO J L,
MU?OZ- BLANCO J,RODR?GUEZ- FRANCO A. Extensive
transcriptomic studies on the roles played by abscisic acid and
auxins in the development and ripening of strawberry fruits[J].
Functional & Integrative Genomics,2016,16(6):671-692.
[76] WANG Q H,ZHAO C,ZHANG M,LI Y Z,SHEN Y Y,GUO J
X. Transcriptome analysis around the onset of strawberry fruit
ripening uncovers an important role of oxidative phosphorylation
in ripening[J]. Scientific Reports,2017,7:41477.
[77] CONCHA C M,F(xiàn)IGUEROA N E,POBLETE LA,O?ATE F A,
SCHWAB W,F(xiàn)IGUEROA C R. Methyl jasmonate treatment induces
changes in fruit ripening by modifying the expression of
several ripening genes in Fragaria chiloensis fruit[J]. Plant
Physiology and Biochemistry,2013,70:433-444.
[78] LIU M C,PIRRELLO J,CHERVIN C,ROUSTAN J P,BOUZAYEN
M. Ethylene control of fruit ripening:revisiting the
complex network of transcriptional regulation[J]. Plant Physiology,
2015,169(4):2380-2390.
[79] LI Z K,WANG Z N,WANG K J,LIU Y,HONG Y H,CHEN C
M,GUAN X Y,CHEN Q X. Co- expression network analysis
uncovers key candidate genes related to the regulation of volatile
esters accumulation in Woodland strawberry[J]. Planta,
2020,252(4):55.
[80] TOSETTI R,ELMI F,PRADAS I,COOLS K,TERRY L A.
Continuous exposure to ethylene differentially affects senescence
in receptacle and achene tissues in strawberry fruit[J].
Frontiers in Plant Science,2020,11:174.
[81] SADKA A,QIN Q P,F(xiàn)ENG J R,F(xiàn)ARCUH M,SHLIZERMAN
L,ZHANG Y T,TOUBIANA D,BLUMWALD E. Ethylene response
of plum ACC synthase 1 (ACS1) promoter is mediated
through the binding site of abscisic acid insensitive 5 (ABI5) [J].
Plants (Basel,Switzerland),2019,8(5):117.
[82] WONG D C J,GUTIERREZ R L,DIMOPOULOS N,GAMBETTA
G A,CASTELLARIN S D. Combined physiological,
transcriptome,and cis- regulatory element analyses indicate that
key aspects of ripening,metabolism,and transcriptional program
in grapes (Vitis vinifera L.) are differentially modulated accordingly
to fruit size[J]. BMC Genomics,2016,17:416.
[83] ZILIOTTO F,CORSO M,RIZZINI F M,RASORI A,BOTTON
A,BONGHI C. Grape berry ripening delay induced by a prevéraison
NAA treatment is paralleled by a shift in the expression
pattern of auxin- and ethylene-related genes[J]. BMC Plant Biology,
2012,12:185.
[84] GOUTHU S,DELUC L G. Timing of ripening initiation in
grape berries and its relationship to seed content and pericarp
auxin levels[J]. BMC Plant Biology,2015,15(1):1-6.
[85] B?TTCHER C,KEYZERS R A,BOSS P K,DAVIES C. Sequestration
of auxin by the indole- 3- acetic acid- amido synthetase
GH3- 1 in grape berry (Vitis vinifera L.) and the proposed
role of auxin conjugation during ripening[J]. Journal of Experimental
Botany,2010,61(13):3615-3625.
[86] SYMONS G M,CHUA Y J,ROSS J J,QUITTENDEN L J,DAVIES
N W,REID J B. Hormonal changes during non-climacteric
ripening in strawberry[J]. Journal of Experimental Botany,
2012,63(13):4741-4750.
[87] GUO J X,WANG S F,YU X Y,DONG R,LI Y Z,MEI X R,
SHEN Y Y. Polyamines regulate strawberry fruit ripening by ab-
scisic acid,auxin,and ethylene[J]. Plant Physiology,2018,177
(1):339-351.
[88] GIVEN N K,VENIS M A,GIERSON D. Hormonal regulation
of ripening in the strawberry,a non-climacteric fruit[J]. Planta,
1988,174(3):402-406.
[89] ARA?JO W L,TOHGE T,OSORIO S,LOHSE M,BALBO I,
KRAHNERT I,SIENKIEWICZ-PORZUCEK A,USADEL B,
NUNES-NESI A,F(xiàn)ERNIE A R. Antisense inhibition of the 2-oxoglutarate
dehydrogenase complex in tomato demonstrates its
importance for plant respiration and during leaf senescence and
fruit maturation[J]. The Plant Cell,2012,24(6):2328-2351.
[90] ESTRADA-JOHNSON E,CSUKASI F,PIZARRO C M,VALLARINO
J G,KIRYAKOVA Y,VIOQUE A,BRUMOS J,MEDINA-
ESCOBAR N,BOTELLA M A,ALONSO J M,F(xiàn)ERNIE
A R,S?NCHEZ-SEVILLA J F,OSORIO S,VALPUESTA V.
Transcriptomic analysis in strawberry fruits reveals active auxin
biosynthesis and signaling in the ripe receptacle[J]. Frontiers in
Plant Science,2017,8:889.
[91] CASTILLEJO C,DE LA FUENTE J I,IANNETTA P,BOTELLA
M ?,VALPUESTA V. Pectin esterase gene family in strawberry
fruit:study of FaPE1,a ripening-specific isoform[J]. Journal
of Experimental Botany,2004,55(398):909-918.
[92] CHEN J X,MAO L C,LU W J,YING T J,LUO Z S. Transcriptome
profiling of postharvest strawberry fruit in response to exogenous
auxin and abscisic acid[J]. Planta,2016,243(1):183-197.
[93] MOLINA-HIDALGO F J,F(xiàn)RANCO A R,VILLATORO C,MEDINA-
PUCHE L,MERCADO J A,HIDALGO M A,MONFORT
A,CABALLERO J L,MU?OZ-BLANCO J,BLANCOPORTALES
R. The strawberry (Fragaria×ananassa) fruit-specific
rhamnogalacturonate lyase 1 (FaRGLyase1) gene encodes
an enzyme involved in the degradation of cell-wall middle lamellae[
J]. Journal of Experimental Botany,2013,64(6):1471-1483.
[94] DAMINATO M,GUZZO F,CASADORO G. A SHATTERPROOF-
like gene controls ripening in non-climacteric strawberries,
and auxin and abscisic acid antagonistically affect its expression[
J]. Journal of Experimental Botany,2013,64(12):
3775-3786.
[95] PANIAGUA C,BLANCO-PORTALES R,BARCEL?-MU?OZ
M,GARC?A-GAGO J A,WALDRON K W,QUESADA M A,
MU?OZ-BLANCO J,MERCADO J A. Antisense down-regulation
of the strawberry β- galactosidase gene FaβGal4 increases
cell wall galactose levels and reduces fruit softening[J]. Journal
of Experimental Botany,2016,67(3):619-631.
[96] MOLINA- HIDALGO F J ,MEDINA- PUCHE L,GELIS S,
RAMOS J ,SABIR F,SOVERAL G,PRISTA C,IGLESIASFERN?NDEZ
R,CABALLERO J L,MU?OZ-BLANCO J ,
BLANCO- PORTALES R. Functional characterization of Fa-
NIP1;1 gene ,a ripening- related and receptacle- specific aquaporin
in strawberry fruit[J]. Plant Science,2015,238:198-211.
[97] CORSO M,VANNOZZI A,ZILIOTTO F,ZOUINE M,MAZA
E,NICOLATO T,VITULO N,MEGGIO F,VALLE G,BOUZAYEN
M,M?LLER M,MUNN?-BOSCH S,LUCCHIN M,
BONGHI C. Grapevine rootstocks differentially affect the rate
of ripening and modulate auxin-related genes in Cabernet sauvignon
berries[J]. Frontiers in Plant Science,2016,7:69.
[98] DAI Z W,MEDDAR M,RENAUD C,MERLIN I,HILBERT
G,DELROT S,GOM?S E. Long-term in vitro culture of grape
berries and its application to assess the effects of sugar supply
on anthocyanin accumulation[J]. Journal of Experimental Botany,
2014,65(16):4665-4677.
[99] SIEBENEICHLER T J,CRIZEL R L,CAMOZATTO G H,
PAIM B T,DA SILVA MESSIAS R,ROMBALDI C V,GALLI
V. The postharvest ripening of strawberry fruits induced by abscisic
acid and sucrose differs from their in vivo ripening[J].
Food Chemistry,2020,317:126407.
[100] LUO Y,GE C,LING Y J,MO F,YANG M,JIANG L Y,CHEN
Q,LIN Y X,SUN B,ZHANG Y,WANG Y,LI M Y,WANG X
R,TANG H R. ABA and sucrose co-regulate strawberry fruit ripening
and show inhibition of glycolysis[J]. Molecular Genetics
and Genomics,2020,295(2):421-438.
[101] BREITEL D A,CHAPPELL-MAOR L,MEIR S,PANIZEL I,
PUIG C P,HAO Y W,YIFHAR T,YASUOR H,ZOUINE M,
BOUZAYEN M,GRANELL RICHART A,ROGACHEV I,
AHARONI A. AUXIN RESPONSE FACTOR 2 intersects hormonal
signals in the regulation of tomato fruit ripening[J]. PLoS
Genetics,2016,12(3):e1005903.
[102] JIA H F,JIU S T,ZHANG C,WANG C,TARIQ P,LIU Z J,
WANG B J,CUI LW,F(xiàn)ANG J G. Abscisic acid and sucrose regulate
tomato and strawberry fruit ripening through the abscisic
acid- stress- ripening transcription factor[J]. Plant Biotechnology
Journal,2016,14(10):2045-2065.
[103] MO A W,XU T,BAI Q,SHEN Y Y,GAO F,GUO J X.
FaPAO5 regulates Spm/Spd levels as a signaling during strawberry
fruit ripening[J]. Plant Direct,2020,4(5):e00217.
[104] GAO F,MEI X R,LI Y Z,GUO J X,SHEN Y Y. Update on the
roles of polyamines in fleshy fruit ripening,senescence,and
quality[J]. Frontiers in Plant Science,2021,12:610313.
[105] FORLANI S,MASIERO S,MIZZOTTI C. Fruit ripening:the
role of hormones,cell wall modifications,and their relationship
with pathogens[J]. Journal of Experimental Botany,2019,70
(11):2993-3006.
[106] GARC?A-G?MEZ B E,RUIZ D,SALAZAR J A,RUBIO M,
MART?NEZ-GARC?A P J,MART?NEZ-G?MEZ P. Analysis of
metabolites and gene expression changes relative to apricot
(Prunus armeniaca L.) fruit quality during development and ripening[
J]. Frontiers in Plant Science,2020,11:1269.
[107] JIAO B Z,MENG Q W,L? W. Roles of stay-green (SGR) homologs
during chlorophyll degradation in green plants[J]. Botanical
Studies,2020,61(1):25.
[108] QIAO H,ZHANG H,WANG Z,SHEN Y Y. Fig fruit ripening
is regulated by the interaction between ethylene and abscisic acid[
J]. Journal of Integrative Plant Biology,2021,63(3):553-569.