胡懷月 陳二虎 韋磊 王康旭 李孟凡 唐培安
摘要:銹赤扁谷盜是一種世界性儲(chǔ)糧害蟲,但對(duì)其分子生物學(xué)方面的基礎(chǔ)研究較少。研究基于PacBio IsoSeq平臺(tái)對(duì)銹赤扁谷盜進(jìn)行全長(zhǎng)轉(zhuǎn)錄組測(cè)序,并對(duì)其數(shù)據(jù)進(jìn)行生物學(xué)分析。測(cè)序數(shù)據(jù)經(jīng)過(guò)校正后,銹赤扁谷盜全長(zhǎng)轉(zhuǎn)錄組平均長(zhǎng)度為1 845.06 bp,N50長(zhǎng)度為2 130 bp;經(jīng)去冗余后,獲得轉(zhuǎn)錄本32 855條。在Nr、KEGG、KOG、Swiss-Prot四大數(shù)據(jù)庫(kù)中,分別有29 404、27 794、20 286、21 197條轉(zhuǎn)錄本被注釋;其中,19 346條轉(zhuǎn)錄本在4個(gè)數(shù)據(jù)庫(kù)中均有注釋,29 416條轉(zhuǎn)錄本至少在一個(gè)數(shù)據(jù)庫(kù)中有注釋,占總數(shù)的89.53%。此外,經(jīng)鑒定,獲得1 139個(gè)轉(zhuǎn)錄因子(TFs)、2 636條長(zhǎng)鏈非編碼RNA(LncRNA)和4 197個(gè)SSR,預(yù)測(cè)后獲得32 800條CDS。
關(guān)鍵詞:銹赤扁谷盜;全長(zhǎng)轉(zhuǎn)錄組;基因組注釋
中圖分類號(hào):S379.5 文獻(xiàn)標(biāo)志碼:A DOI:10.16465/j.gste.cn431252ts.20230326
基金項(xiàng)目:國(guó)家重點(diǎn)研發(fā)計(jì)劃專項(xiàng)(2021YFD2100604-01);江蘇省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(BE2022377);國(guó)家自然科學(xué)基金項(xiàng)目(32272388);江蘇省高校優(yōu)勢(shì)學(xué)科建設(shè)工程資助(PAPD);江蘇省研究生科研與實(shí)踐創(chuàng)新計(jì)劃(KYCX21_1528)。
Sequencing analysis of the full-length transcriptome data of Cryptolestes ferrugineus
Hu Huaiyue1, Chen Erhu1, Wei Lei2, Wang Kangxu1, Li Mengfan1, Tang Peian1
( 1. College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu 210023; 2. Jiangsu Wanjiafu Rice Industry Co., Taizhou, Jiangsu 225700 )
Abstract: Cryptolestes ferrugineus is a worldwide grain storage pest, but there are few basic studies on its molecular biology. In this study, we sequenced the full-length transcriptome of C. ferrugineus based on PacBio Iso-Seq platform and analyzed the data biologically. After the sequencing data were corrected, the average length of the full-length transcriptome was 1 845.06 bp, and the N50 length was 2 130 bp; after redundancy removal, 32 855 transcripts were obtained. Among the four major databases, Nr, KEGG, KOG and Swiss-Prot, 29 404, 27 794, 20 286 and 21 197 transcripts were annotated respectively; among them, 19 346 transcripts were annotated in all four databases, and 29 416 transcripts were annotated in at least one database, accounting for 89.53% of the total. In addition, 1 139 transcription factors (TFs), 2 636 long-stranded non-coding RNAs(LncRNAs) and 4 197 SSR were identified, and 32 800 CDS were obtained after prediction.
Key words: Cryptolestes ferrugineus, full-length transcriptome, genome annotation
銹赤扁谷盜Cryptolestes ferrugineus(Stephens)屬于鞘翅目扁谷盜科,主要分布在溫帶和熱帶地區(qū)。在全球范圍內(nèi),銹赤扁谷盜是發(fā)生最嚴(yán)重、最廣泛的儲(chǔ)糧害蟲之一,一旦發(fā)生便會(huì)造成嚴(yán)重的不可逆損失[1-2]。銹赤扁谷盜在我國(guó)主要分布于糧食生態(tài)區(qū),在廣東、云南和海南等地都有發(fā)生,常見(jiàn)于米廠、面粉廠、酒廠和一些糧倉(cāng)內(nèi)[3]。銹赤扁谷盜在糧堆的分布也受溫度和濕度的影響[4],在糧堆發(fā)熱的情況下,更容易造成銹赤扁谷盜的繁殖,嚴(yán)重時(shí)可出現(xiàn)糧堆結(jié)露,進(jìn)而使糧食發(fā)生霉變,給儲(chǔ)糧安全帶來(lái)極大的威脅[5]。
盡管二代測(cè)序高通量測(cè)序技術(shù)對(duì)轉(zhuǎn)錄組學(xué)的相關(guān)研究起到了極大的推動(dòng)作用,但還是存在測(cè)序讀長(zhǎng)較短[6]、重復(fù)區(qū)域拼接效果差、無(wú)法得到較完整的轉(zhuǎn)錄本[7]等局限性。近年來(lái),與第二代測(cè)序相比,三代轉(zhuǎn)錄組測(cè)序可快速全面地獲得某一物種的全長(zhǎng)轉(zhuǎn)錄本信息,逐漸被應(yīng)用于昆蟲學(xué)研究中,例如,按蚊[8]、家蠶[9]、小菜蛾[10]等,主要集中在生長(zhǎng)發(fā)育抗藥性和遺傳變異等方面。在銹赤扁谷盜的研究中,關(guān)于三代測(cè)序的報(bào)道相對(duì)較少,因此,本文對(duì)銹赤扁谷盜進(jìn)行全長(zhǎng)轉(zhuǎn)錄組測(cè)序并通過(guò)基因功能注釋、CDS預(yù)測(cè)、TFs分析等,進(jìn)一步從分子水平對(duì)銹赤扁谷盜的研究奠定基礎(chǔ),也為探究新的靶標(biāo)基因、利用分子設(shè)計(jì)實(shí)現(xiàn)害蟲防治提供理論依據(jù)并豐富鞘翅目昆蟲的全長(zhǎng)轉(zhuǎn)錄組數(shù)據(jù)庫(kù)。
1 材料與方法
1.1 供試?yán)ハx
本試驗(yàn)銹赤扁谷盜種群采自上海福星面粉廠,于南京財(cái)經(jīng)大學(xué)糧食儲(chǔ)運(yùn)國(guó)家工程實(shí)驗(yàn)室培養(yǎng)。在實(shí)驗(yàn)室內(nèi)以人工飼料(全麥粉∶燕麥∶小麥碎∶酵母粉=5∶3∶3∶1)、恒溫29~31 ℃、相對(duì)濕度為70%~80% RH、無(wú)光照條件下飼養(yǎng)。在培養(yǎng)過(guò)程中,銹赤扁谷盜以3 d產(chǎn)的卵為同一齡期,每隔3 d將瓶中銹赤扁谷盜成蟲全部挑出放入相同飼料的新瓶子中,重復(fù)此操作4~5次之后即可獲得齡期一致的試蟲。
1.2 方法
1.2.1 總RNA提取及文庫(kù)構(gòu)建
對(duì)銹赤扁谷盜幼蟲、蛹、成蟲3個(gè)階段分別進(jìn)行取樣,每個(gè)階段3個(gè)重復(fù),對(duì)混合樣品進(jìn)行RNA提取和富集,使用NanoDrop分光光度計(jì)檢測(cè)樣品RNA的濃度;使用Agilent2100檢測(cè)樣品RNA的完整度。總RNA(含有poly(A))檢測(cè)合格后,利用Clontech SMARTer PCR cDNA Synthesis Kit反轉(zhuǎn)錄成第一鏈cDNA,PCR擴(kuò)增合成雙鏈cDNA并對(duì)PCR產(chǎn)物進(jìn)行純化,對(duì)cDNA進(jìn)行DNA損傷修復(fù)、末端修復(fù)、連接Adapter和文庫(kù)質(zhì)量評(píng)估工作后形成完整的SMRT bell文庫(kù),再對(duì)文庫(kù)進(jìn)行測(cè)序。
1.2.2 全長(zhǎng)轉(zhuǎn)錄組數(shù)據(jù)分析和校正
使用SMRT Link V8.0原始數(shù)據(jù)進(jìn)行分析。首先從下機(jī)數(shù)據(jù)中提取高質(zhì)量的CCS(circular consensus sequence)序列,移除引物和barcode、poly(A)和連環(huán)結(jié)構(gòu),得到全長(zhǎng)非嵌合序列(FLNC),再對(duì)相似的FLNC reads進(jìn)行聚類,合并成一個(gè)完整的轉(zhuǎn)錄本序列。使用LoRDEC軟件進(jìn)行轉(zhuǎn)錄本校正,LoRDEC采用混合策略,需要使用兩組數(shù)據(jù):參考reads(二代短reads)、PacBio長(zhǎng)reads。通過(guò)讀取短reads,建立DBG圖,針對(duì)長(zhǎng)reads中的錯(cuò)誤區(qū)域?qū)ふ倚U蛄?。之后,通過(guò)Nr、KEGG、KOG、Swiss-Prot、Pfam和GO數(shù)據(jù)庫(kù)分別對(duì)銹赤扁谷盜全長(zhǎng)轉(zhuǎn)錄組進(jìn)行功能注釋,并進(jìn)行轉(zhuǎn)錄因子(TFs)鑒定、長(zhǎng)鏈非編碼RNA(lncRNAs)預(yù)測(cè)和SSR分析等。
2 結(jié)果與分析
2.1 測(cè)序數(shù)據(jù)分析
測(cè)序結(jié)果表明,銹赤扁谷盜全長(zhǎng)轉(zhuǎn)錄組數(shù)據(jù)庫(kù)包含414 552條CCSs,平均長(zhǎng)度為1 868 bp。此外,結(jié)果顯示含有12 009 936條子序列,子序列平均長(zhǎng)度為1 845 bp,N50長(zhǎng)度為2 094 bp。在聚類和校正之后,對(duì)序列進(jìn)行去冗余,獲得32 855條轉(zhuǎn)錄本,平均長(zhǎng)度為1 845.06 bp(如圖1),N50長(zhǎng)度為2 130 bp,如表1。
2.2 功能注釋
2.2.1 基本注釋
對(duì)得到的32 855條轉(zhuǎn)錄本進(jìn)行Nr、KEGG、KOG、Swiss-Prot四大數(shù)據(jù)庫(kù)注釋,如圖2所示,其中Nr數(shù)據(jù)庫(kù)中有29 404條轉(zhuǎn)錄本被注釋,KEGG數(shù)據(jù)庫(kù)中有27 794條轉(zhuǎn)錄本被注釋,KOG數(shù)據(jù)庫(kù)中有20 286條轉(zhuǎn)錄本被注釋,SwissProt數(shù)據(jù)庫(kù)中有21 197條轉(zhuǎn)錄本被注釋,其中至少被一個(gè)數(shù)據(jù)庫(kù)注釋的轉(zhuǎn)錄本數(shù)目為29 416條(89.53%),19 346條轉(zhuǎn)錄本在四大數(shù)據(jù)庫(kù)中都有注釋。
2.2.2 E值分布
將所有轉(zhuǎn)錄本在 Nr、Swiss-Prot、KEGG 和KOG 四大數(shù)據(jù)庫(kù)中的最佳比對(duì)結(jié)果的E值進(jìn)行統(tǒng)計(jì),將其分為5個(gè)范圍。由E值可以看出,轉(zhuǎn)錄與數(shù)據(jù)庫(kù)中匹配序列為同源序列的假陽(yáng)性概率。如圖3所示,Nr數(shù)據(jù)庫(kù)中,在0≤E值≤1E-150范圍內(nèi)有16 004條轉(zhuǎn)錄本,占54.43%;SwissProt數(shù)據(jù)庫(kù)中,在0≤E值≤1E-150范圍內(nèi)有4 843條轉(zhuǎn)錄本,占22.85%;KEGG數(shù)據(jù)庫(kù)中,在0≤E值≤1E-150范圍內(nèi)有11 321條轉(zhuǎn)錄本,占40.73%;KOG 數(shù)庫(kù)中,在0≤E值≤1E-150范圍內(nèi)有5 454條轉(zhuǎn)錄本,占26.89%。
2.2.3 物種分布
利用Blastx將轉(zhuǎn)錄本序列與Nr數(shù)據(jù)庫(kù)進(jìn)行比對(duì)后,取每個(gè)轉(zhuǎn)錄本在Nr數(shù)據(jù)庫(kù)中比對(duì)結(jié)果最好(E值最低)的那一條序列作為對(duì)應(yīng)同源序列確定同源序列所屬物種,統(tǒng)計(jì)比對(duì)到各個(gè)物種的同源序列數(shù)量,同源性較高的前3位分別是光肩星天牛、赤擬谷盜和蜂箱小甲蟲,如表2所示。
2.2.4 GO分類
在GO數(shù)據(jù)庫(kù)中獲得注釋轉(zhuǎn)錄本173 206條,如圖4所示,生物學(xué)過(guò)程(biological process)包括25個(gè)功能組,其中細(xì)胞過(guò)程(cellular process)包含轉(zhuǎn)錄本最多,有13 585條,其次是單一生物過(guò)程(single-organism process)12 740條,最少的是生物階段(biological phase),只有11條;細(xì)胞組分(cellular component)包括21個(gè)功能組,其中細(xì)胞(cell)和細(xì)胞組分(cell part)包含轉(zhuǎn)錄本最多,都有11 053條,最少的是擬核(nucleoid),只有1條;分子功能(molecular function)包括12個(gè)分子功能,其中結(jié)合活性(binding)最多,有10 176條,其次是催化活性(catalytic activity)9 217條,電子載體活性(electron carrier activity)最少,只有14條。
2.3 高級(jí)注釋及基因結(jié)構(gòu)分析
2.3.1 TFs鑒定
將預(yù)測(cè)的蛋白序列同相應(yīng)的TF數(shù)據(jù)庫(kù)(Animal TFdb)進(jìn)行 hmmscan 比對(duì)。結(jié)果顯示,一共預(yù)測(cè)到1 139個(gè)轉(zhuǎn)錄因子,屬于55個(gè)TF家族,對(duì)轉(zhuǎn)錄本數(shù)目最多的前10個(gè)TF家族進(jìn)行繪圖,如圖5所示。其中Zf-C2H2家族有355個(gè)、ZBTB家族有74個(gè)、TF_bzip家族有72個(gè),HMG家族有71個(gè)。
2.3.2 LncRNA預(yù)測(cè)
使用CNCI軟件和CPC軟件進(jìn)行編碼能力預(yù)測(cè),取兩個(gè)軟件都預(yù)測(cè)為“非編碼”的結(jié)果作為最終的lncRNA結(jié)果。如圖6所示,CNCI預(yù)測(cè)lncRNA 2 871個(gè),CPC預(yù)測(cè)lncRNA 2 846個(gè),兩個(gè)軟件同時(shí)預(yù)測(cè)lncRNA 2 636個(gè)。
2.3.3 SSR分析
利用MISA軟件對(duì)轉(zhuǎn)錄組的所有轉(zhuǎn)錄本進(jìn)行搜索,尋找轉(zhuǎn)錄本中的SSR,分析結(jié)果顯示,不同串聯(lián)重復(fù)單元類型的SSR在總SSR中所占比例不同,其中AAT/ATT的頻率最高,所占比例為31.3%。如圖7所示,在SSR核苷酸基序類型中,三核苷酸重復(fù)最多(tri nucleotides,69.19%),依次是四核苷酸重復(fù)(tetra nucleotides,5.23%)、雙核苷酸重復(fù)(di nucleotide motifs,13.27%)、五核苷酸重復(fù)(penta nucleotides,2.14%)和六核苷酸重復(fù)(hexa-nucleotide motifs,0.17%)。
3 討論與結(jié)論
二代測(cè)序雖在轉(zhuǎn)錄組學(xué)相關(guān)研究中應(yīng)用廣泛,但存在測(cè)序讀長(zhǎng)短,對(duì)高重復(fù)區(qū)域無(wú)法較好地拼接等缺點(diǎn)。相比于二代轉(zhuǎn)錄組測(cè)序定量的特點(diǎn),全長(zhǎng)轉(zhuǎn)錄組還可對(duì)轉(zhuǎn)錄本進(jìn)行定性分析,即分析轉(zhuǎn)錄本的結(jié)構(gòu)。第三代測(cè)序技術(shù)具有超長(zhǎng)讀長(zhǎng)、無(wú)需組裝即可直接獲得RNA的全長(zhǎng)序列,還可鑒定基因的可變剪切、可變多聚核苷酸化APA、非編碼RNA等,讓測(cè)序的轉(zhuǎn)錄組數(shù)據(jù)更加豐富可靠。
本研究利用第三代測(cè)序技術(shù)對(duì)銹赤扁谷盜不同齡期混合樣品進(jìn)行測(cè)序,校正后去冗余共獲得32 855條轉(zhuǎn)錄本,平均長(zhǎng)度為1 845.06 bp,N50長(zhǎng)度為2 130 bp。通過(guò)在Nr、KEGG、KOG、Swiss-Prot四大數(shù)據(jù)庫(kù)中注釋,至少被一個(gè)數(shù)據(jù)庫(kù)注釋的轉(zhuǎn)錄本數(shù)目為29 416條,占總轉(zhuǎn)錄本的89.53%,被注釋到Nr數(shù)據(jù)庫(kù)的最多,有29 404條。而對(duì)蓮草直胸跳甲卵、幼蟲、蛹、成蟲4個(gè)發(fā)育階段的樣本的全長(zhǎng)轉(zhuǎn)錄組測(cè)序,共獲得28 982條高質(zhì)量的轉(zhuǎn)錄本,并預(yù)測(cè)得到4 198個(gè)lncRNA,24 040個(gè)開放閱讀框ORF[11];對(duì)家蠶絲腺的測(cè)序獲得11 697條轉(zhuǎn)錄本[12]。lncRNA具有調(diào)控轉(zhuǎn)錄、剪切或相鄰基因的表達(dá)等功能。例如在果蠅中,lncRNA可以調(diào)控雄性果蠅的性別決定[13]、睡眠[14]、運(yùn)動(dòng)行為[15]等生物過(guò)程;在家蠶絲腺中發(fā)現(xiàn)了一些與蠶絲基因表達(dá)相關(guān)的lncRNA[16]。近年來(lái),大量的lncRNA已從家蠶[16]、黑腹果蠅[17]、小菜蛾、岡比亞按蚊、中華蜜蜂[18]等昆蟲中鑒定出來(lái)。本文共獲得2 636個(gè)lncRNA,為后續(xù)在基因表達(dá)和調(diào)控提供參考。在銹赤扁谷盜中共獲得1 139個(gè)轉(zhuǎn)錄因子,Zf-C2H2家族有355個(gè)、ZBTB家族有74個(gè)、TF_bzip家族有72個(gè),HMG家族有71個(gè)。不同的TFs可能參與不同的代謝過(guò)程,也可能有多種不同的功能[19]。在很多研究中發(fā)現(xiàn),轉(zhuǎn)錄因子與解毒酶基因的表達(dá)相關(guān)。例如,在赤擬谷盜中,轉(zhuǎn)錄因子CncC和Maf通過(guò)調(diào)控CYP6BQ基因上調(diào)增強(qiáng)其對(duì)溴氰菊酯的代謝[20];轉(zhuǎn)錄因子FTZ-F1可以調(diào)控小菜蛾CYP6BG1基因的表達(dá),從而使小菜蛾對(duì)氯蟲苯酰胺的代謝增強(qiáng)[21]。所以,對(duì)銹赤扁谷盜的TFs分析會(huì)對(duì)其免疫和抗藥性方面的分析提供依據(jù)。通過(guò)對(duì)SSR開發(fā)標(biāo)記發(fā)掘其功能,也為銹赤扁谷盜遺傳多樣性分析提供更多數(shù)據(jù)支持。
綜上,本文基于全長(zhǎng)轉(zhuǎn)錄組測(cè)序技術(shù)獲得了銹赤扁谷盜的全長(zhǎng)轉(zhuǎn)錄組,并注釋了銹赤扁谷盜全長(zhǎng)轉(zhuǎn)錄組相關(guān)基因功能信息,也為進(jìn)一步研究銹赤扁谷盜的防治篩選靶標(biāo),并為其遺傳機(jī)制的研究奠定基礎(chǔ)。
參 考 文 獻(xiàn)
[1]PHILLIPS T W, THRONE J E. Biorational approaches to managing stored-product insects[J]. Annual review of entomology, 2010, 55: 375-397.
[2] LOSEY S M, DAGLISH G J, PHILLIPS T W. Orientation of rusty grain beetles, Cryptolestes ferrugineus (Coleoptera:Laemophloeidae), to semiochemicals in field and laboratory experiments[J]. Journal of Stored Products Research, 2019, 84: 101513.
[3] 張瑞杰,王殿軒,白春?jiǎn)?,?中國(guó)12省80地市儲(chǔ)糧中扁谷盜屬昆蟲分布調(diào)查[J].河南工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2018, 39(5):112-118.
[4] JIAN F J, LARSON R, JAYAS D S, et al. Three-dimensional spatial distribution of adults of Cryptolestes ferrugineus (Coleoptera: Laemophloeidae) in stored wheat under different temperatures, moisture contents, and adult densities[J]. Journal of Stored Products Research, 2011, 47(4): 293-305.
[5] PARDE S R, JAYAS D S, WHITE N D G. Movement of Cryptolestes ferrugineus (Coleoptera: Cucujidae) in grain columns containing pockets of high moisture content wheat and carbon dioxide gradients[J]. Journal of Stored Products Research, 2004, 40(3): 299-316.
[6] KOREN S, SCHATZ M C, WALENZ B P, et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads[J]. Nature Biotechnology, 2012, 30(7): 693-700.
[7]田李,張穎,趙云峰.新一代測(cè)序技術(shù)的發(fā)展和應(yīng)用[J].生物技術(shù)通報(bào),2015,31(11):1-8.
[8] JIANG X, HALL A B, BIEDLER J K, et al. Single molecule RNA sequencing uncovers trans‐splicing and improves annotations in Anopheles stephensi[J]. Insect Molecular Biology, 2017, 26(3): 298-307.
[9] KAWAMOTO M, JOURAKU A, TOYODA A, et al. High-quality genome assembly of the silkworm, Bombyx mori [J]. Insect Biochemistry and Molecular Biology, 2019, 107: 53-62.
[10] ZHAO Q, ZHONG W M, HE W Y, et al. Genome-wide profiling of the alternative splicing provides insights into development in Plutella xylostella [J]. BMC Genomics, 2019, 20(1): 1-14.
[11] JIA D, WANG Y X, LIU Y H, et al. SMRT sequencing of fulllength transcriptome of flea beetle Agasicles hygrophila (Selman and Vogt)[J]. Scientific Reports, 2018, 8(1): 1-8.
[12] CHEN T, SUN Q W, MA Y, et al. A transcriptome atlas of silkworm silk glands revealed by PacBio single-molecule long-read sequencing[J]. Molecular Genetics and Genomics, 2020, 295(5): 1227-1237.
[13] MULVEY B B, OLCESE U, CABRERA J R, et al. An interactive network of long non-coding RNAs facilitates the Drosophila sex determination decision[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2014, 1839(9): 773-784.
[14] SOSHNEV A A, ISHIMOTO H, MCALLISTER B F, et al. A conserved long noncoding RNA affects sleep behavior in Drosophila[J]. Genetics, 2011, 189(2): 455-468.
[15] LI M X, WEN S Y, GUO X Q, et al. The novel long non-coding RNA CRG regulates Drosophila locomotor behavior[J]. Nucleic Acids Research, 2012, 40(22): 11714-11727.
[16] WU Y Q, CHENG T C, LIU C, et al. Systematic identification and characterization of long non-coding RNAs in the silkworm, Bombyx mori[J]. PloS one, 2016, 11(1): e0147147.
[17] YOUNG R S, MARQUES A C, TIBBIT C, et al. Identification and properties of 1,119 candidate lincRNA loci in the Drosophila melanogaster genome[J]. Genome Biology and Evolution, 2012, 4(4): 427-442.
[18] JAYAKODI M, JUNG J W, PARK D, et al. Genome-wide characterization of long intergenic non-coding RNAs (lincRNAs) provides new insight into viral diseases in honey bees Apis cerana and Apis mellifera[J]. BMC Genomics, 2015, 16(1): 1-12.
[19] CHEN K, RAJEWSKY N. The evolution of gene regulation by transcription factors and microRNAs[J]. Nature Reviews Genetics, 2007, 8(2): 93-103.
[20] KALSI M, PALLI S R. Transcription factors, CncC and Maf, regulate expression of CYP6BQ genes responsible for deltamethrin resistance in Tribolium castaneum[J]. Insect Biochemistry and Molecular Biology, 2015, 65: 47-56.
[21] LI X X, SHAN C Y, LI F, et al. Transcription factor FTZ‐F1 and cis‐acting elements mediate expression of CYP6BG1 conferring resistance to chlorantraniliprole in Plutella xylostella[J]. Pest Management Science, 2019, 75(4): 1172-1180.