袁沛 周旋 楊威,3 尹凌潔 靳拓,5 彭建偉 榮湘民 田昌,*
化肥減氮配施對(duì)洞庭湖區(qū)雙季稻產(chǎn)量和田面水氮磷流失風(fēng)險(xiǎn)的影響
袁沛1周旋2,*楊威1,3尹凌潔4靳拓1,5彭建偉1榮湘民1田昌1,*
(1湖南農(nóng)業(yè)大學(xué) 資源學(xué)院/土肥高效利用國(guó)家工程研究中心,長(zhǎng)沙 410128;2湖南省農(nóng)業(yè)科學(xué)院 土壤肥料研究所,長(zhǎng)沙 410125;3湖南生物機(jī)電職業(yè)技術(shù)學(xué)院,長(zhǎng)沙 410127;4湖南省農(nóng)情研究分析中心,長(zhǎng)沙 410005;5農(nóng)業(yè)農(nóng)村部農(nóng)業(yè)生態(tài)與資源保護(hù)總站,北京 100125;*通信聯(lián)系人,email: zhouxuan_123@126.com;chtian12@126.com)
【目的】探究化學(xué)氮肥減量配施穩(wěn)定水稻產(chǎn)量,提高氮肥利用率,減少氮磷流失風(fēng)險(xiǎn),為洞庭湖雙季稻區(qū)化肥減量施用提供科學(xué)依據(jù)?!痉椒ā坎捎么筇镄^(qū)試驗(yàn),設(shè)置不施氮肥(CK)、常規(guī)施肥(CF)、減氮20%配施硼硅肥(0.8CF+B/Si)、有機(jī)肥替代20%化學(xué)氮肥(0.8CF+0.2OM)、有機(jī)肥替代20%化學(xué)氮肥配施氮肥增效劑(0.8CF+0.2OM+N-serve)、有機(jī)肥替代20%化學(xué)氮肥配施硼硅肥和氮肥增效劑(0.8CF+0.2OM+B/Si+N-serve)共6個(gè)處理,研究化肥減氮配施對(duì)雙季稻產(chǎn)量、氮肥利用率和田面水氮磷流失風(fēng)險(xiǎn)的影響?!窘Y(jié)果】有機(jī)肥替代處理早稻產(chǎn)量較CF均有一定下降,而晚稻產(chǎn)量提高2.02%~5.03%。田面水中總氮、銨態(tài)氮、硝態(tài)氮濃度隨著氮肥施用量的增加而上升,氮素流失風(fēng)險(xiǎn)也增大。與CF處理相比,化肥減氮配施處理早晚稻季田面水總氮、銨態(tài)氮和硝態(tài)氮濃度分別降低8.08%~35.05%、5.88%~34.22%和5.02%~18.06%,有效降低田面水氮素流失風(fēng)險(xiǎn),其中以0.8CF+0.2OM+N-serve處理效果最好。施氮肥后一周是氮素流失的高風(fēng)險(xiǎn)時(shí)期,隨后各處理田面水氮素濃度差異變小且流失風(fēng)險(xiǎn)降低。不施氮肥處理的早、晚稻田面水磷素濃度低于其他處理,而配施硼硅肥處理高于其他處理,田面水中磷素的流失風(fēng)險(xiǎn)增大。此外,配施有機(jī)肥、氮肥增效劑對(duì)磷素減排效果不明顯。施磷肥后9 d左右是磷素流失的關(guān)鍵時(shí)期,之后各處理磷素濃度趨于一致且變化平穩(wěn)?!窘Y(jié)論】有機(jī)肥替代氮肥對(duì)雙季稻增產(chǎn)存在一定滯后性;氮肥增效劑與有機(jī)肥同時(shí)施用會(huì)削弱其延緩氮肥轉(zhuǎn)化的效果,影響?zhàn)B分吸收?;蕼p氮配施是降低雙季稻田面水氮素流失的有效方法,但配施硼硅肥會(huì)提高田面水磷素含量,應(yīng)根據(jù)田間水肥管理酌情施用。
水稻;肥料配施;減氮;產(chǎn)量;田面水;氮磷流失
據(jù)國(guó)家統(tǒng)計(jì)局2022年數(shù)據(jù),我國(guó)糧食已連續(xù)7年穩(wěn)定在1.3萬(wàn)億斤以上,雖然糧食豐產(chǎn),但農(nóng)業(yè)面源污染卻在不斷加劇,成為制約農(nóng)村生態(tài)環(huán)境建設(shè)、經(jīng)濟(jì)發(fā)展的主要原因。我國(guó)是化肥消耗大國(guó),肥料用量持續(xù)高速增長(zhǎng)。但化肥的不合理施用導(dǎo)致肥料利用率降低,大量養(yǎng)分流失進(jìn)入水體,污染區(qū)域生態(tài)環(huán)境。張富林等[1]研究認(rèn)為,稻田面源污染的直接來(lái)源是田面水中氮、磷。因此,掌握田面水氮磷動(dòng)態(tài)特征是防控稻田氮磷污染的重要前提條件之一。
化肥用量直接影響田面水中氮磷的含量,過(guò)量施肥極易增加氮磷流失風(fēng)險(xiǎn)[1]。通過(guò)優(yōu)化施肥量和改變肥料種類,可有效減少稻田氮素徑流損失[2]。李娟等[3]研究發(fā)現(xiàn),施肥后一周內(nèi)是田面水氮素流失的關(guān)鍵時(shí)期,通過(guò)減量施肥可降低田面水氮素含量。隨著施氮量的增加,田面水中氮濃度也會(huì)提高,尤其是總氮和銨態(tài)氮的含量明顯上升[4]。王強(qiáng)等[5]研究表明,不同氮肥類型和用量會(huì)直接影響田面水中銨態(tài)氮的含量;緩控釋肥和化肥減量后一次性施用不會(huì)增加稻田氮素徑流風(fēng)險(xiǎn)。綜上所述,氮肥施用急需確定一個(gè)兼顧糧食安全與環(huán)境安全的平衡點(diǎn),其核心是確定農(nóng)田適宜施氮量與其合理施用方法,這也是從源頭控制氮素污染的有效手段[6]。
李娟等[3]的研究表明,減氮20%能有效減少稻田氮素徑流和滲漏損失,還能保障水稻產(chǎn)量及提高氮肥利用率。此外,許多學(xué)者從田間水肥管理、耕作方式和新型肥料開(kāi)發(fā)等方面對(duì)稻田農(nóng)業(yè)面源污染進(jìn)行研究[7]。有機(jī)肥施用能有效促進(jìn)農(nóng)田作物生產(chǎn)和保護(hù)耕地質(zhì)量,但存在增產(chǎn)效應(yīng)較低和生產(chǎn)成本增加的劣勢(shì)。肥料增效劑能減少養(yǎng)分損失,促進(jìn)作物對(duì)養(yǎng)分的吸收,提高肥料利用率,減少施肥量,降低成本,減輕環(huán)境污染[8]。硅肥與氮肥配施可促進(jìn)水稻生長(zhǎng),提高其產(chǎn)量和氮肥利用率,提高水稻光能利用率,以及增強(qiáng)水稻抗逆性等[9-10]。硼則能促進(jìn)水稻生長(zhǎng),促進(jìn)繁殖器官的正常發(fā)育[11]。因此,合理施用氮肥以及肥料優(yōu)化配施有利于保障農(nóng)作物的產(chǎn)量,提高氮肥利用率,同時(shí)減輕氮素?fù)p失及其對(duì)環(huán)境的污染[12-13]。
目前,關(guān)于化學(xué)氮肥與肥料增效劑、有機(jī)肥、硅肥、硼肥單獨(dú)配施的研究較多,但復(fù)合配施鮮有報(bào)道。本研究以洞庭湖區(qū)雙季稻田為研究對(duì)象,研究化學(xué)氮肥與氮肥增效劑、有機(jī)肥、硅肥和硼肥的配施對(duì)水稻產(chǎn)量、氮肥利用率和田面水氮磷流失風(fēng)險(xiǎn)的影響,以期為水稻優(yōu)質(zhì)高效生產(chǎn),減少化學(xué)氮肥投入和損失,改善農(nóng)村生態(tài)環(huán)境,實(shí)現(xiàn)農(nóng)業(yè)可持續(xù)發(fā)展提供科學(xué)依據(jù)。
圖1 2018年試驗(yàn)地溫度與降水量
Fig. 1. Temperature and precipitation at the test site in 2018.
試驗(yàn)于2018年4―11月在湖南省益陽(yáng)市赫山區(qū)龍光橋鎮(zhèn)新月村進(jìn)行。該區(qū)屬于中亞熱帶向北亞熱帶過(guò)渡的季風(fēng)濕潤(rùn)性氣候,年均氣溫16.9℃,年無(wú)霜期272 d,年日照1553.7 h,年雨量1432.8 mm。供試土壤理化性質(zhì):全氮2.24 g/kg,全磷0.29 g/kg,全鉀7.63 g/kg,有機(jī)質(zhì)39.62 g/kg,堿解氮168.00 mg/kg,有效磷18.5 mg/kg,速效鉀186.93 mg/kg。
供試水稻品種:湘早秈45號(hào)(早稻)和玉針香(晚稻)。供試肥料:普通尿素(N:46%)、鈣鎂磷肥(P2O5:12%)和氯化鉀(K2O:60%);強(qiáng)湘牌有機(jī)肥(含有機(jī)質(zhì)47%,N 2.26%,P2O52.33%,K2O 1.14%,湖南省湘暉農(nóng)業(yè)技術(shù)開(kāi)發(fā)有限公司生產(chǎn));硅肥(硅酸鈉,有效硅21%);硼肥(有效硼15%,由長(zhǎng)沙綠霸肥料有限公司生產(chǎn))。
早、晚稻各設(shè)置6個(gè)施肥處理。早稻處理1:不施氮肥(CK);處理2:常規(guī)施肥(CF),純N 150 kg/hm2;處理3:減氮20%配施硼硅肥(0.8CF+B/Si),純N 120 kg/hm2,硅肥75 kg/hm2,硼肥7.5 kg/hm2;處理4:有機(jī)肥代替20%化學(xué)氮肥(0.8CF+0.2OM),純N 120 kg/hm2,有機(jī)肥30 kg/hm2(折合純氮);處理5:有機(jī)肥代替20%化學(xué)氮肥配施氮肥增效劑(0.8CF+ 0.2OM+N-serve),純N 120 kg/hm2,氨基酸肥料45 kg/hm2,氫醌2.4 kg/hm2,雙氰胺5 kg/hm2,有機(jī)肥30 kg/hm2(折合純氮);處理6:有機(jī)肥替代20%化學(xué)氮肥配施硼硅肥+氮肥增效劑(0.8CF+0.2OM+B/Si+ N-serve),純N 120 kg/hm2,硅肥75 kg/hm2,硼肥7.5 kg/hm2,氨基酸肥料45 kg/hm2,氫醌2.4 kg/hm2,雙氰胺5 kg/hm2,有機(jī)肥30 kg/hm2(折合純氮)。各處理的磷鉀肥總量一致:折合P2O575 kg/hm2,折合K2O 120 kg/hm2。晚稻處理1:不施氮肥(CK);處理2:常規(guī)施肥(CF),純N 180 kg/hm2;處理3:減20%化學(xué)氮肥配施硼、硅肥(0.8CF+B/Si),純N 144 kg/hm2,硅肥75 kg/hm2,硼肥7.5 kg/hm2;處理4:有機(jī)肥代替20%化學(xué)氮肥(0.8CF+0.2OM),純N 144 kg/hm2,有機(jī)肥36 kg/hm2(折合純氮);處理5:有機(jī)肥代替20%化學(xué)氮肥配施氮肥增效劑(0.8CF+0.2OM+N-serve),純N 144 kg/hm2,氨基酸肥料45 kg/hm2,氫醌2.88 kg/hm2,雙氰胺6 kg/hm2,有機(jī)肥36 kg/hm2(折合純氮);處理6:有機(jī)肥代替20%化學(xué)氮肥配施硼硅肥+氮肥增效劑(0.8CF+0.2OM+B/Si+N-serve),純N 144 kg/hm2,硅肥75 kg/hm2,硼肥7.5 kg/hm2,氨基酸肥料45 kg/hm2,氫醌2.88 kg/hm2,雙氰胺6 kg/hm2,有機(jī)肥36 kg/hm2(折合純氮)。各處理的磷鉀肥總量一致:折合P2O545 kg/hm2,折合K2O 120 kg/hm2。硼肥、硅肥、雙氰胺、氫醌、氨基酸肥料、有機(jī)肥均是與基肥混勻后一起基施。氮肥為尿素,鉀肥為氯化鉀,均按基肥∶分蘗肥為6∶4的比例施用;磷肥全部用作基肥。
各處理分別設(shè)置3次重復(fù),采用隨機(jī)區(qū)組排列,小區(qū)面積為50 m2,插植密度為20 cm × 20 cm,區(qū)組內(nèi)土壤肥力要求一致,試驗(yàn)小區(qū)四周筑小田埂,并用塑料薄膜包覆,各小區(qū)單獨(dú)排灌,防止肥、水相互滲透。插秧前保持1~2 cm淺水,插秧后2~3 d灌水保持3~4 cm,維持7 d左右,后維持2~3 cm水層2周左右促分蘗,待每蔸水稻的分蘗數(shù)達(dá)15~20個(gè)時(shí),停止灌水、開(kāi)始曬田,曬田3~5 d后再上新水,保水2~3 d,再放水落干,保持干濕交替。水稻孕穗期間保持水層3~5 cm,抽穗期間保持水層2~3 cm,灌漿結(jié)實(shí)期后進(jìn)行干濕交替間歇灌溉,進(jìn)入黃熟階段排水落干。早稻于4月18日施基肥,次日移栽,4月28日追肥,7月13日收獲;晚稻于7月20日施基肥,次日移栽,7月30日追肥,11月3日收獲。其他按常規(guī)方式管理進(jìn)行。
水稻移栽后第1、2、3、5、7、9天和追肥后第1、2、3、5、7、9、11、13、15、19天取田面水樣,采樣時(shí)用100 mL醫(yī)用注射器抽取田面水,取樣時(shí)不擾動(dòng)水層,按對(duì)角線取樣,每個(gè)小區(qū)取5個(gè)點(diǎn),取田面水300 mL,測(cè)定田面水總氮、硝態(tài)氮、銨態(tài)氮、總磷、水溶性總磷含量。
總氮(TN):用堿性過(guò)硫酸鉀消解后,采用紫外分光光度法測(cè)定;硝態(tài)氮(NO3?-N)和銨態(tài)氮(NH4+-N):水樣經(jīng)0.45 μm濾膜過(guò)濾后,采用全自動(dòng)間斷化學(xué)分析儀(Smart 200)測(cè)定。
總磷(TP):用5%過(guò)硫酸鉀消解后,采用鉬銻抗比色法測(cè)定;水溶性總磷(DTP):水樣經(jīng)0.45 μm濾膜過(guò)濾后用5%過(guò)硫酸鉀消解,采用鉬銻抗比色法測(cè)定;顆粒磷(PP)=總磷(TP)?水溶性總磷(DTP)。
氮肥吸收利用率(NRE,%)=(施氮區(qū)地上部植株吸氮量?空白區(qū)地上部植株吸氮量)/施氮量×100;
氮肥偏生產(chǎn)力(NPFP,kg/kg)=施氮處理產(chǎn)量/施氮量;
氮肥農(nóng)學(xué)利用率(NAE,kg/kg)=(施氮區(qū)產(chǎn)量?空白區(qū)產(chǎn)量)/施氮量。
采用Microsoft Excel 201 6和SPSS 17.0數(shù)據(jù)分析軟件進(jìn)行統(tǒng)計(jì)分析,處理間差異顯著性分析采用最小顯著差數(shù)(LSD)檢驗(yàn)法。
由表1可知,CK處理稻谷產(chǎn)量顯著低于施氮肥處理。早稻季以CF處理稻谷產(chǎn)量最高,為7775.9 kg/hm2;0.8CF+B/Si處理略低(7710.7 kg/hm2)。0.8CF+B/Si稻谷產(chǎn)量顯著高于0.8CF+0.2OM和0.8CF+0.2OM+N-serve處理。晚稻季以0.8CF+B/Si處理稻谷產(chǎn)量最高,為6562.8 kg/hm2;0.8CF+0.2OM處理略低(6468.1 kg/hm2)。相比于CF,化肥減氮處理晚稻產(chǎn)量均有提高,增幅分別為2.09%~5.18%,以配施硼硅肥增產(chǎn)效果較好。
早稻季化肥減氮處理氮肥吸收利用率較CF處理提高6.84%~38.01%,處理間差異不顯著;晚稻季化肥減氮處理較CF處理提高7.16%~51.01%,0.8CF+B/Si顯著高于其他施氮肥處理。早稻氮肥偏生產(chǎn)力以0.8CF+B/Si處理最高,達(dá)顯著水平;0.8CF+B/Si和0.8CF+0.2OM+N-serve較CF分別提高23.92%和10.17%;晚稻化肥減氮處理比CF處理均顯著提高23.83%~50.87%。早、晚稻各施氮處理間氮肥農(nóng)學(xué)利用率無(wú)顯著差異,化肥減氮處理普遍降低。
圖2 雙季稻田面水總氮濃度變化
Fig. 2. Changes in total nitrogen(TN) concentration in surface water in double-cropping paddy fields.
2.2.1 總氮
如圖2所示,早稻施氮處理田面水總氮濃度于施基肥后第1天達(dá)到頂峰,其中CF的總氮濃度最高,為34.01 mg/L;其次為0.8CF+0.2OM,為33.94 mg/L,施氮處理較CF降低0.22%~17.26%;施追肥前各處理總氮濃度持續(xù)下降。施基肥后的前5 d,CF田面水總氮濃度高于其他處理;施基肥后第7天,0.8CF+0.2OM+B/Si+N-serve處理的田面水總氮濃度高于CF。施基肥后第1天和施追肥當(dāng)天,田面水總氮濃度最高,各處理施追肥后總氮濃度峰值普遍低于施基肥后。
表1 雙季稻產(chǎn)量和氮肥料利用率
數(shù)據(jù)后標(biāo)相同小寫(xiě)字母者表示差異未達(dá)0.05顯著水平。CK、CF、0.8CF+B/Si、0.8CF+0.2OM、0.8CF+0.2OM+N-serve、0.8CF+0.2OM+B/Si+N-serve分別表示不施氮肥、常規(guī)施肥、減氮20%配施硼硅肥、有機(jī)肥代替20%化學(xué)氮肥、有機(jī)肥代替20%化學(xué)氮肥配施氮肥增效劑、有機(jī)肥替代20%化學(xué)氮肥配施硼硅肥+氮肥增效劑。
Data followed by the common lowercase letter indicate no significant difference at 0.05 level. CK, CF, 0.8CF+B/Si, 0.8CF+0.2OM, 0.8CF+0.2OM+N-serve, 0.8CF+0.2OM+B/Si+N-serve represent no nitrogen fertilizer, conventional fertilizer, 20% nitrogen reduction with borosilicate fertilizer, 80% chemical fertilizer+20% organic fertilizer, 80% chemical fertilizer+20% organic fertilizer with nitrogen synergist, 20% fertilizer combined with borosilicate fertilizer and nitrogen synergist, respectively.
晚稻施基肥后,施氮處理田面水總氮濃度在施基肥后第1天達(dá)到頂峰,其中CF處理最高,為50.83 mg/L;其次是0.8CF+0.2OM+B/Si+N-serve,為44.41 mg/L。追肥前各處理總氮濃度不斷下降;施基肥后的前7 d,CF的田面水總氮濃度一直高于其他處理,施基肥后第9天,各施氮肥處理田面水總氮濃度達(dá)到最低;施基肥后第1天,化肥減氮處理田面水總氮較CF降低12.64%~31.65%。各施氮肥處理田面水總氮濃度于追肥當(dāng)天達(dá)到第二個(gè)峰值,較CF提高6.54% ~30.98%,之后逐漸降低;至第21天,田面水總氮濃度達(dá)到最低。
2.2.2 銨態(tài)氮
如圖3所示,早、晚稻田面水銨態(tài)氮濃度的變化趨勢(shì)與總氮濃度變化基本一致。早稻施氮處理田面水銨態(tài)氮濃度峰值出現(xiàn)在基肥后第2天,化肥減氮處理較CF銨態(tài)氮濃度降低4.14%~14.21%。施基肥后第7天,0.8CF+0.2OM+B/Si+N-serve處理田面水銨態(tài)氮濃度高于CF。施追肥當(dāng)天,0.8CF+B/Si和0.8CF+0.2OM田面水銨態(tài)氮濃度出現(xiàn)第二次峰值,其峰值分別為25.79 mg/L、24.35 mg/L;施追肥第2天,CF、0.8CF+ 0.2OM+N-serve和0.8CF+0.2OM+B/ Si+N-serve出現(xiàn)第二次峰值,濃度分別為26.14 mg/L、21.37 mg/L和24.78 mg/L,追肥后第2天化肥減氮處理較CF低5.06%、7.52%、18.25%和5.23%,峰值后銨態(tài)氮濃度開(kāi)始下降,至施追肥后第21天平穩(wěn)。
圖3 雙季稻田面水銨態(tài)氮濃度變化
Fig. 3. Changes of NH4+-N concentration in surface water of double-cropping paddy fields.
晚稻施氮處理田面水銨態(tài)氮濃度峰值出現(xiàn)在施基肥后第1~2天,濃度為26.52 mg/L~ 39.94 mg/L;施基肥后7 d內(nèi),CF銨態(tài)氮濃度高于其他處理;第9天達(dá)到最低值。施追肥當(dāng)天,CF、0.8CF+0.2OM、0.8CF+0.2OM+N-serve、0.8CF+ 0.2OM+B/Si+N-serve銨態(tài)氮濃度出現(xiàn)第二次峰值(20.30~41.61 mg/L),施追肥后第1天0.8CF+B/Si銨態(tài)氮濃度出現(xiàn)第二次峰值,為24.83 mg/L,峰值后銨態(tài)氮濃度逐漸下降,至第21天達(dá)到平穩(wěn)。
圖4 雙季稻田面水硝態(tài)氮濃度變化
Fig. 4. Changes of NO3?-N concentration in surface water in double-cropping paddy fields.
圖5 雙季稻田面水總磷濃度變化
Fig. 5. Changes of total phosphorus(TP) concentration in surface water in double-cropping paddy fields.
2.2.3 硝態(tài)氮
如圖4所示,早晚稻各處理硝態(tài)氮濃度在施肥后第1天最低,監(jiān)測(cè)期內(nèi)呈上升趨勢(shì);施肥后第2天,CF田面水硝態(tài)氮濃度高于化肥減氮處理,CF增速最快。早稻施基肥后第16天(施追肥后第7天),各處理田面水硝態(tài)氮濃度增幅減小,因此施基肥和追肥后一周是硝態(tài)氮濃度升高的關(guān)鍵時(shí)期。晚稻各處理田面水硝態(tài)氮在整個(gè)取樣期內(nèi)濃度均未達(dá)到平穩(wěn)時(shí)期,硝態(tài)氮濃度上升的趨勢(shì)依然明顯,晚稻田面水硝態(tài)氮流失的時(shí)間要長(zhǎng)于早稻。
2.3.1 總磷
如圖5所示,早稻在施肥后當(dāng)天,各處理田面水總磷出現(xiàn)峰值,為0.46 ~2.30 mg/L,隨后逐漸下降;施肥后第5天,各處理總磷含量較接近(0.24 ~0.48 mg/L);施肥后3 d內(nèi),0.8CF+B/Si、0.8CF+ 0.2OM+B/Si+N-serve總磷濃度高于其他處理,至施肥后第9天趨于平穩(wěn)。晚稻田面水總磷濃度變化規(guī)律與早稻一致,施肥后第7天各處理的總磷濃度較為接近(0.11~0.18 mg/L),至施肥后第9天總磷濃度趨于平穩(wěn)。
2.3.2 顆粒磷
如圖6所示,早稻各處理田面水顆粒磷濃度在施肥后當(dāng)天出現(xiàn)峰值,施氮處理田面水顆粒磷濃度均在1.00 mg/L以上,隨后逐漸下降;施肥后3 d內(nèi),0.8CF+B/Si、0.8CF+0.2OM+B/Si+N-serve處理田面水顆粒磷濃度高于其他處理;施肥后第9天,各處理田面水顆粒磷濃度趨于平穩(wěn)。晚稻0.8CF+0.2OM田面水顆粒磷濃度于施肥后第1天出現(xiàn)峰值,其余處理于施肥后當(dāng)天出現(xiàn)峰值,之后顆粒磷濃度逐漸下降,各處理峰值濃度為0.11~0.24 mg/L。峰值后顆粒磷濃度逐漸下降,施肥后3天內(nèi)0.8CF+B/Si、0.8CF+0.2OM+ B/Si+N-serve處理的顆粒態(tài)磷濃度高于其他處理,施肥后第9天各處理田面水顆粒磷濃度趨于平穩(wěn)。
Fig. 6. Changes of particulate phosphorus(PP) concentration in surface water in double-cropping paddy fields.
大量田間試驗(yàn)表明,適當(dāng)比例的有機(jī)肥替代化肥后促進(jìn)水稻增產(chǎn)。田昌等[14]研究指出,有機(jī)肥替代20%化肥氮處理中稻產(chǎn)量、氮磷肥農(nóng)學(xué)利用率較常規(guī)施肥無(wú)顯著差異。孫志祥等[15]連續(xù)2年4季水稻產(chǎn)量結(jié)果表明,有機(jī)肥在早稻季施用,晚稻季表現(xiàn)出增產(chǎn)效應(yīng),且第二年的增產(chǎn)效果更為明顯。本研究中,0.8CF+B/Si處理早稻產(chǎn)量較CF處理無(wú)顯著差異,晚稻產(chǎn)量提高5.18%,說(shuō)明配施硅硼肥對(duì)水稻能起到明顯的增產(chǎn)效果。而其他化肥減氮處理的早稻產(chǎn)量較CF處理均有所降低,晚稻產(chǎn)量較CF處理提高2.02%~5.03%。0.8CF+0.2OM處理及配施硅硼肥和氮肥增效劑早稻產(chǎn)量出現(xiàn)減產(chǎn),而晚稻較CF均不同程度增產(chǎn),可能是因?yàn)?-5月份溫度偏低且降雨偏多,導(dǎo)致有機(jī)肥肥效釋放緩慢,從而影響早稻產(chǎn)量,晚稻的增產(chǎn)說(shuō)明有機(jī)肥替代化肥對(duì)水稻增產(chǎn)存在滯后性。
施用氮肥增效劑后水稻葉片光合功能期得到延長(zhǎng),能有效提高產(chǎn)量及氮肥利用率[16]。在0.8CF+0.2OM基礎(chǔ)上配施氮肥增效劑,早、晚稻產(chǎn)量、氮肥農(nóng)學(xué)利用率及利用率較0.8CF+0.2OM無(wú)明顯差異,原因可能與施肥和氮肥增效劑的作用原理有關(guān)。本研究中施用氮肥增效劑為雙氰胺、氫醌,能延緩氮肥在土壤中的轉(zhuǎn)化,提高作物的養(yǎng)分吸收,而氮肥增效劑與基肥一同施用,當(dāng)基肥有大量有機(jī)肥時(shí),氮肥增效劑與氮肥的接觸面積會(huì)減少,在一定程度上減輕氮肥增效劑的作用效果[17]。
氮肥施用可明顯提高田面水含氮量,田面水的總氮、可溶性總氮、銨態(tài)氮濃度的變化趨勢(shì)一致,但隨施氮量的增加而增加[4-5]。本研究中,早、晚稻季田面水總氮濃度在施基肥后第一天和追肥當(dāng)天總氮濃度均達(dá)到峰值,與前人研究結(jié)果相符[5]。施肥后9天是氮素流失的關(guān)鍵時(shí)期。相比于CF處理,早稻季化肥減氮處理總氮平均濃度降低14.77%~ 27.56%,晚稻季降低8.08%~35.05%。其中,0.8CF+ 0.2OM+N-serve處理田面水總氮濃度最低,主要是由于脲酶與硝化抑制劑能有效抑制硝化作用與反硝化作用,從而降低田面水氮素的流失風(fēng)險(xiǎn)[18]。0.8CF+B/Si處理降低氮素流失風(fēng)險(xiǎn)的效果次之,可能是硼、硅肥降低田面水總氮濃度[19]。張雪麗等[20]研究指出,有機(jī)肥替代50%化學(xué)氮肥會(huì)延長(zhǎng)氮素的流失高峰時(shí)期。本研究結(jié)果表明,0.8CF+0.2OM處理由于有機(jī)肥的營(yíng)養(yǎng)元素主要是有機(jī)態(tài),養(yǎng)分釋放速率十分緩慢,只有少部分養(yǎng)分溶解到田面水中,從而降低氮素流失風(fēng)險(xiǎn)[14-15,21]。復(fù)合處理雖然配施氮肥增效劑、有機(jī)肥、硼硅肥等多種調(diào)理劑,但降低氮素流失風(fēng)險(xiǎn)的效果不如單個(gè)措施效果好。
研究表明,田面水中的氮素以銨態(tài)氮為主,占總氮的比例隨著施氮量的增加而增加[22-23]。本研究結(jié)果表明,施氮肥處理田面水銨態(tài)氮濃度占總氮濃度的70%以上。相比CF,早稻季化肥減氮處理田面水銨態(tài)氮濃度降低6.92%~23.33%,晚稻季降低5.88%~34.22%。石敦杰等[24]研究表明,施用控釋氮肥減氮20%后,田面水硝態(tài)氮濃度遠(yuǎn)低于總氮和銨態(tài)氮,施肥后硝態(tài)氮濃度緩慢上升,在追肥后第9天左右穩(wěn)定。本研究中,田面水硝態(tài)氮濃度遠(yuǎn)低于銨態(tài)氮、總氮的濃度,在施肥后硝態(tài)氮濃度一直緩慢上升,施基肥前3 d各處理濃度較為接近,隨后CK與其他處理差距增大。相比于CF,化肥減氮處理早稻季田面水硝態(tài)氮濃度分別降低5.02%~18.06%,晚稻季降低5.70%~14.87%,其中0.8CF+0.2OM+ N-serve處理硝態(tài)氮濃度最低,主要與氮肥增效劑作用有關(guān)。
夏小江等[25]研究表明,稻田田面水總磷濃度在施肥后第1天達(dá)到最高峰,隨后呈下降趨勢(shì),到第8~9天濃度趨于穩(wěn)定。謝學(xué)儉等[26]研究發(fā)現(xiàn),施肥之后,徑流水中磷素濃度與磷素流失量呈遞減趨勢(shì)。本研究中,稻田總磷濃度在施肥后第1天達(dá)到峰值,隨后濃度開(kāi)始下降,施肥后前5 d下降速率最快,第9天濃度趨于平穩(wěn),但仍呈下降趨勢(shì),距離施肥時(shí)間越長(zhǎng)總磷濃度下降速率越慢。晚稻季田面水的總磷濃度整體上低于早稻季,可能與磷肥施用量有關(guān)。CK的總磷濃度低于其他處理,而配施硼硅肥處理高于其他處理,主要是由于硅能活化土壤中的磷,減少磷在土壤中的固定,導(dǎo)致土壤中釋放出來(lái)的磷素溶解在田面水中。在未減磷的情況下配施有機(jī)肥、氮肥增效劑對(duì)減少田面水磷素流失風(fēng)險(xiǎn)的效果不明顯。
易均等[27]研究表明,磷素徑流損失量與濃度會(huì)隨著磷肥施用量的增加而提高,距離施肥時(shí)間越久,田面水中總磷、顆粒磷的損失量和濃度越小。本研究結(jié)果表明,田面水顆粒磷濃度的變化規(guī)律與總磷濃度的變化規(guī)律一致,顆粒磷的峰值出現(xiàn)在施肥后第1天,隨后濃度開(kāi)始下降。CK顆粒磷濃度最低,而配施硼硅肥處理高于其他處理,與總磷原因相同。早稻顆粒磷平均濃度占總磷平均濃度50%以上,晚稻顆粒磷平均濃度占總磷平均濃度的36%~46%,早晚稻田面水顆粒磷平均濃度占總磷平均濃度有差異,可能與施磷量有關(guān),晚稻磷肥施用量比早稻減少40%,晚稻磷肥溶解更加充分。
有機(jī)肥替代化肥后對(duì)水稻增產(chǎn)的效應(yīng)具有一定的滯后性,第一季的晚稻增產(chǎn)效果較早稻好;氮肥增效劑作為基肥與有機(jī)肥一同施用時(shí),其效果會(huì)大幅降低。早、晚稻季田面水中總氮、銨態(tài)氮、硝態(tài)氮濃度隨著氮肥用量的增加而升高?;蕼p氮處理較常規(guī)施肥處理均能不同程度降低田面水氮素濃度,降低氮素流失風(fēng)險(xiǎn),以減氮20%配施氮肥增效劑的效果最好。配施硼硅肥會(huì)提高田面水磷素濃度,增加磷素流失風(fēng)險(xiǎn)。氮肥施用后一周和磷肥施用后9 d分別是氮、磷流失的關(guān)鍵時(shí)期,應(yīng)加強(qiáng)田間水肥管理。
[1] 張富林, 吳茂前, 夏穎, 翟麗梅, 段小麗, 范先鵬, 熊桂云, 劉冬碧, 高立. 江漢平原稻田田面水氮磷變化特征研究[J]. 土壤學(xué)報(bào), 2019, 56(5): 1190-1200.
Zhang F L, Wu M Q, Xia Y, Zhai L M, Duan X L, Fan X P. Xiong G X, Liu D B, Gao L. Changes in nitrogen and phosphorus in surface water of paddy field in Jianghan Plain[J]., 2019, 56(5): 1190-1200. (in Chinese with English abstract)
[2] Xue L H, Yu Y L, Yang L Z. Maintaining yields and reducing nitrogen loss in rice-wheat rotation system in Taihu Lake region with proper fertilizer management[J]., 2014, 9(11): 115010- 115020.
[3] 李娟, 李松昊, 鄔奇峰, 祝小祥, 吳建軍. 不同施肥處理對(duì)稻田氮素徑流和滲漏損失的影響[J]. 水土保持學(xué)報(bào), 2016, 30(5): 23-28+33.
Li J, Li S H, Wu Q F, Zhu X X, Wu J J. Effects of different fertilization treatments on runoff and leaching losses of nitrogen in paddy field[J]., 2016, 30(5): 23-28, 33. (in Chinese with English abstract)
[4] 柳云龍, 盧小遮, 龔峰景, 趙永才. 稻田施肥后田面水氮素動(dòng)態(tài)變化特征[J]. 江蘇農(nóng)業(yè)科學(xué), 2017, 45(21): 268-271.
Liu Y L, Lu X Z, Gong F J, Zhao Y C. Dynamic changes of surface nitrogen in paddy field after fertilization[J]., 2017, 45(21): 268-271. (in Chinese with English abstract)
[5] 王強(qiáng), 姜麗娜, 潘建清, 馬軍偉, 葉靜. 一次性施肥稻田田面水氮素變化特征和流失風(fēng)險(xiǎn)評(píng)估[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2019, 38(1): 168-175.
Wang Q, Jiang L N, Pan J Q, Ma J W, Ye J. Dynamic variation and runoff loss evaluation of nitrogen in the surface water of paddy fields as affected by single basal fertilizer application[J]., 2019, 38(1): 168-175. (in Chinese with English abstract)
[6] 張亦濤, 王洪媛, 劉申, 劉宏斌, 翟麗梅, 雷秋良, 任天志. 氮肥農(nóng)學(xué)效應(yīng)與環(huán)境效應(yīng)國(guó)際研究發(fā)展態(tài)勢(shì)[J].生態(tài)學(xué)報(bào), 2016, 36(15): 4594-4608.
Zhang Y T, Wang H Y, Liu S, Liu H B, Zhai L M, Lei Q L,Ren T Z. A bibliometrical analysis of status and trends of international researches on theagronomic and environmental effects of nitrogen application to farmland[J].,2016,36(15): 4594- 4608. (in Chinese with English abstract)
[7] 陶春, 高明, 徐暢, 慈恩. 農(nóng)業(yè)面源污染影響因子及控制技術(shù)的研究現(xiàn)狀與展望[J]. 土壤, 2010, 42(3): 336-343.
Tao C, Gao M, Xu C, Ci E. Research status and prospect on influential factors and control technology of agricultural non-point source pollution: A review[J]., 2010, 42(3): 336-343. (in Chinese with English abstract)
[8] 周旋, 吳良?xì)g, 戴鋒, 董春華. 生化抑制劑組合與施肥模式對(duì)黃泥田稻季田面水及滲漏液氮素動(dòng)態(tài)變化的影響[J]. 土壤, 2019, 51(3): 434-441.
Zhou X, Wu L H, Dai F, Dong C H. Effects of combined biochemical inhibitors and fertilization models on nitrogen dynamics in surface water and leachate from yellow clayey paddy field[J]., 2019, 51(3): 434-441. (in Chinese with English abstract)
[9] 潘韜文, 陳俁, 蔡昆爭(zhēng). 硅肥和氮肥配施對(duì)優(yōu)質(zhì)稻植株養(yǎng)分含量、產(chǎn)量和品質(zhì)的影響[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2021, 37(1): 120-126.
Pan T W, Chen Y, Cai K Z. Effect of nitrogen and silicon fertilizer on plant nutrient content, yield and quality of high quality rice[J]., 2021, 37(1): 120-126. (in Chinese with English abstract)
[10] 趙海成, 李紅宇, 陳立強(qiáng), 赫臣, 鄭桂萍. 硅氮配施對(duì)寒地水稻產(chǎn)量品質(zhì)及抗倒性的影響[J]. 上海農(nóng)業(yè)學(xué)報(bào), 2018, 34(4): 7.
Zhao H C, Li H Y, Chen L Q, He C, Zheng G P. Effect of combined application of silicon and nitrogen on yield and lodging resistance of cold-region rice[J]., 2018, 34(4): 7. (in Chinese with English abstract)
[11] 李進(jìn)前, 李有清, 楊立年, 周定邦, 魏麗, 蔡明清. 硼肥對(duì)水稻生長(zhǎng)和產(chǎn)量的影響[J]. 中國(guó)稻米, 2018, 24(3): 108-110.
Li J Q, Li Y Q, Yang L N, Zhou D B, Wei L, Cai M Q. Effects of boron fertilizer on growth and yield of rice[J]., 2018, 24(3): 108-110. (in Chinese with English abstract)
[12] 張興昌, 鄭劍英, 吳瑞浚, 翟連寧, 馬炳召. 氮磷配合對(duì)土壤氮素徑流流失的影響[J]. 土壤通報(bào), 2001, 32(3): 110-112.
Zhang X C, Zheng J Y, Wu R J, Zhai L N, Ma B Z. Effects of nitrogen and phosphorus combination on soil nitrogen runoff loss[J]., 2001, 32(3): 110-112. (in Chinese with English abstract)
[13] 李菊梅, 徐明崗, 秦道珠, 李冬初, 寶川靖和, 八木一行. 有機(jī)肥無(wú)機(jī)肥配施對(duì)稻田氨揮發(fā)和水稻產(chǎn)量的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2005, 11(1): 51-56.
Li J, Xu M G, Qin D Z, Li D C, Yasukazu Hosen, Kazuyuki Yagi. Effects of chemical fertilizers application combined with manure on ammonia volatilization and rice yield in red paddy soil[J]., 2005, 11(1): 51-56. (in Chinese with English abstract)
[14] 田昌, 周旋, 楊俊彥, 石敦杰, 榮湘民, 謝桂先, 彭建偉. 化肥氮磷優(yōu)化減施對(duì)水稻產(chǎn)量和田面水氮磷流失的影響[J]. 土壤, 2020, 52(2): 311-319.
Chang T, Zhou X, Yang J Y, Shi D J, Rong X M, Xie G X, Peng J W. Effects of reducing nitrogen and phosphorous fertilizers on rice yield, nitrogen and phosphorus losses in paddy field[J]., 2020, 52(2): 311-319. (in Chinese with English abstract)
[15] 孫志祥, 李敏, 韓上, 卜容燕, 王慧, 程文龍, 李佩, 唐杉, 武際, 朱林. 有機(jī)肥部分替代化肥和秸稈還田對(duì)雙季稻產(chǎn)量、養(yǎng)分吸收及土壤肥力的影響[J]. 安徽農(nóng)業(yè)大學(xué)學(xué)報(bào), 2020, 47(6): 1012-1016.
Sun Z X, Li M, Han S, Bu R Y, Wang H, Cheng W L, Li P, Tang B, Wu J, Zhu L. Effects of organic partial replacement of inorganic fertilizers and inorganic fertilizers with straw returning on yield, nutrient absorption and soil fertility of double-cropping rice[J]., 2020, 47(6): 1012-1016. (in Chinese with English abstract)
[16] 帥鵬, 楊宙, 胡蘭香, 束愛(ài)萍, 肖宇龍, 孫明珠, 何虎. 氮肥增效劑對(duì)水稻葉片保護(hù)酶活性、葉綠素含量及產(chǎn)量的影響[J]. 江西農(nóng)業(yè)學(xué)報(bào), 2022, 34(5): 121-126.
Shuai P, Yang Z, Hu L X, Shu A P, Xiao Y L, Sun M Z, He H. Effects of nitrogen fertilizer synergist on leaf protective enzyme activity, chlorophyll content and yield of rice[J]., 2022, 34(5): 121-126. (in Chinese with English abstract)
[17] 石柱, 張丹, 楊奇志, 楊勇. 不同氮肥增效劑對(duì)水稻產(chǎn)量和養(yǎng)分利用率的影響[J]. 作物研究, 2016, 30(1): 14-17.
Shi Z, Zhang D, Yang Q Z, Yang Y. Effects of different nitrogen fertilizer synergists on yield and nutrients use efficiency in rice[J]., 2016, 30(1): 14-17. (in Chinese with English abstract)
[18] Xu X K, Boeckx P, van Cleemput O, Kazuyuki I. Mineral nitrogen in a rhizosphere soil in standing water during rice (L.) growth: Effect of hydroquinone and dicyandiamide[J]., 2005, 109(1): 107-117.
[19] 熊麗萍, 蔡佳佩, 朱堅(jiān), 彭華, 李嘗君, 紀(jì)雄輝. 硅肥對(duì)水稻-田面水-土壤氮磷含量的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2019, 30(4): 1127-1134.
Xiong L P, Cai J P, Zhu J, Peng H, Li C J, Ji X H. Effects of silicon fertilizer on nitrogen and phosphorus contents in the rice-surface water-soil of paddy field[J]., 2019, 30(4): 1127-1134. (in Chinese with English abstract)
[20] 張雪麗, 董文怡, 劉勤, 王洪媛, 嚴(yán)昌榮, 劉宏斌, 陳保青, 劉恩科. 有機(jī)肥替代化肥氮對(duì)水稻田面水和土壤中氮素含量的影響[J]. 中國(guó)農(nóng)業(yè)氣象, 2018, 39(4): 256-266.
Zhang X L, Dong W Y, Liu Q, Wang H Y, Yan C R, Liu H B, Chen B Q, Liu E K. Effects of organic fertilizer substituting chemical nitrogen fertilizer on nitrogen content in the surface water and soil of paddy field in the erhai lake basin[J]., 2018, 39(4): 256-266. (in Chinese with English abstract)
[21] 黃卉, 王波, 朱利群, 劉春曉, 曹陽(yáng), 卞新民. 稻田處理養(yǎng)殖場(chǎng)糞便的氮磷動(dòng)態(tài)效應(yīng)與污染風(fēng)險(xiǎn)研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2009, 28(4): 736-743.
Huang H, Wang B, Zhu L Q, Liu C X, Cao Y, Bian X M. Nitrogen and phosphorus dynamics and pollution risk of potted rice treated with manure from livestock farm[J]., 2009, 28(4): 736-743. (in Chinese with English abstract)
[22] 呂亞敏, 吳玉紅, 李洪達(dá), 雷同, 呂家瓏. 減肥措施對(duì)稻田田面水氮、磷動(dòng)態(tài)變化特征的影響[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2018, 34(4): 349-355.
Lü Y M, Wu Y H, Li H D, Lei T, Lü J L. Effects of dynamic changes of nitrogen and phosphorus concentrations in surface water of paddy field under different fertilizer rate[J]., 2018, 34(4): 349-355. (in Chinese with English abstract)
[23] 施澤升, 續(xù)勇波, 雷寶坤, 劉宏斌. 洱海北部地區(qū)不同氮、磷處理對(duì)稻田田面水氮磷動(dòng)態(tài)變化的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2013, 32(4): 838-846.
Shi Z S, Xu Y B, Lei B K, Liu H B. Dynamic changes of nitrogen and phosphorus concentrations in surface waters of paddy soils in the northern area of Erhai Lake[J]., 2013, 32(4): 838-846. (in Chinese with English abstract)
[24] 石敦杰, 楊蘭, 榮湘民, 謝勇, 唐麗, 田昌, 謝桂先, 宋海星, 張玉平. 控釋氮肥和氮磷減量對(duì)水稻產(chǎn)量及田面水氮磷流失的影響[J]. 江蘇農(nóng)業(yè)科學(xué), 2018, 46(11): 44-47.
Shi D J, Yang L, Rong X M, Xie Y, Tang L, Tian C, Xie G X, Song H X, Zhang Y P. Effects of controlled release nitrogen and reduction of nitrogen and phosphorous on rice yield and nitrogen and phosphorus loss in paddy fields[J]., 2018, 46(11): 44-47. (in Chinese with English abstract)
[25] 夏小江, 胡清宇, 朱利群, 陳長(zhǎng)青, 卞新民. 太湖地區(qū)稻田田面水氮磷動(dòng)態(tài)特征及徑流流失研究[J]. 水土保持學(xué)報(bào), 2011, 25(4): 21-25.
Xia X J, Hu Q Y, Zhu L Q, Chen C Q, Bian X M. Study on dynamic changes of nitrogen and phosphorus in surface water of paddy field and runoff loss in Taihu Region[J]., 2011, 25(4): 21-25. (in Chinese with English abstract)
[26] 謝學(xué)儉, 陳晶中, 宋玉芝, 湯莉莉. 磷肥施用量對(duì)稻麥輪作土壤中麥季磷素及氮素徑流損失的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2007, 26(6): 2156-2161.
Xie X J, Chen J Z, Song Y Z, Tang L. Effects of phosphorus application rates on surface runoff losses of soil nitrogen and phosphorus during wheat season in rice- wheat rotation field[J]., 2007, 26(6): 2156-2161. (in Chinese with English abstract)
[27] 易均. 磷肥減量施用對(duì)雙季稻田磷素?fù)p失及水稻磷肥利用效率的影響[D]. 長(zhǎng)沙: 湖南農(nóng)業(yè)大學(xué), 2016: 10-19.
Yi J. Effects of reduced phosphorus fertilizers om phosphorus loss of double cropping field rice and phosphorus use efficiency[D]. Changsha: Hunan Agricultural University, 2016: 10-19. (in Chinese with English abstract)
Effects of Combined Application of Chemical Fertilizers and Nitrogen Reduction on the Yield of Double-cropping Rice and the Risk of Nitrogen and Phosphorus Loss in Field Water in Dongting Lake Area
YUAN Pei1, ZHOU Xuan2,*, YANG Wei1,3, YIN Lingjie4, JIN Tuo1,5, PENG Jianwei1, RONG Xiangmin1,TIAN Chang1,*
(College of Resources, Hunan Agricultural University / National Engineering Research Center for Efficient Utilization of Soil and Fertilizer, Changsha 410128, China; Institute of Soil and Fertilizer, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Biological and Electromechanical Polytechnic, Changsha 410127, China; Hunan Agricultural Research and Analysis Center, Changsha 410005, China; Agricultural Ecology and Resource Protection Station of Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Corresponding author, email: )
【Objective】It is very important to explore chemical nitrogen fertilizer reduction and rationing to stabilize rice yield, improve nitrogen use efficiency, reduce the risk of nitrogen and phosphorus loss, and lay a scientific basis for fertilizer reduction in the Dongting Lake double-cropping rice area. 【Method】The field plot experiment was conducted, and six treatments were set, including no nitrogen fertilizer (CK), conventional fertilizer (CF), 20% nitrogen reduction with borosilicate fertilizer (0.8CF+B/Si), 80% chemical fertilizer+20% organic fertilizer (0.8CF+0.2OM), 80% chemical fertilizer+20% organic fertilizer with nitrogen synergist (0.8CF+0.2OM+N-serve), and 20% organic fertilizer combined with borosilicate fertilizer and nitrogen synergist (0.8CF+0.2OM+B/Si+N-serve). Yield, nitrogen use efficiency, and the risk of nitrogen and phosphorus loss in field water of double-cropping rice were analyzed. 【Result】The yield of early rice was reduced as compared with CF, while the yield of late rice was increased by 2.02%to 5.03%. The concentrations of total nitrogen, ammonium nitrogen, and nitrate nitrogen in surface water increased with the increase in nitrogen application rate, and the risk of nitrogen loss also increased. Compared with CF treatment, the chemical fertilizer nitrogen reduction and rationing treatment reduced total nitrogen, ammonium nitrogen, and nitrate nitrogen concentrations in early and late rice seasonal field water by 8.08% to 35.05%, 5.88% to 34.22%, and 5.02% to 18.06%, respectively, and 0.8CF+0.2OM+N-serve treatment was the most effective in mitigating the risk of nitrogen loss from field water. One week after nitrogen application was the peak period of nitrogen loss, and then the difference in nitrogen concentration in surface water of each treatment decreased, as did the risk of nitrogen loss. The phosphorus concentration of early and late rice surfaces without nitrogen fertilizer was lower than that of other treatments, while the phosphorus concentration of early and late rice surface water with borosilicate fertilizer was higher than that of other treatments, which aggravated the risk of phosphorus loss in rice surface water. In addition, the combined application of organic fertilizer and nitrogen fertilizer synergists had no obvious effect on phosphorus emission reduction. About 9 days after the application of phosphorus fertilizer was the key period of phosphorus loss, after which the phosphorus concentration of each treatment tended to be consistent and changed smoothly. 【Conclusion】The substitution of organic fertilizer for nitrogen fertilizer has a lag effect on rice yield. The simultaneous application of nitrogenous synergists with organic fertilizers will weaken the effect of nitrogen synergists in retarding nitrogen fertilizer conversion. Chemical fertilizer nitrogen reduction and rationing is an effective method to reduce nitrogen loss in the surface water of double-cropping rice fields, but its combination with borosilicate fertilizer can increase phosphorus content in the surface water, so it should be applied according to water and fertilizer management.
rice; fertilizer application; nitrogen reduction; yield; surface water; nitrogen and phosphorus loss
10.16819/j.1001-7216.2023.221003
2022-10-17;
2023-03-02。
國(guó)家自然科學(xué)基金區(qū)域創(chuàng)新發(fā)展聯(lián)合基金資助項(xiàng)目(U19A2050);國(guó)家重點(diǎn)研發(fā)計(jì)劃資助項(xiàng)目(2018YFD0800500);湖南省教育廳重點(diǎn)項(xiàng)目(20A250)。