国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

含需求響應(yīng)與碳配額的綜合能源系統(tǒng)優(yōu)化調(diào)度

2023-08-09 07:13劉青李亮王宇曹樂(lè)

劉青 李亮 王宇 曹樂(lè)

摘 要:為提高綜合能源系統(tǒng)的低碳性、經(jīng)濟(jì)性,提出一種考慮需求側(cè)響應(yīng)與碳排放配額的綜合能源系統(tǒng)優(yōu)化模型。首先,構(gòu)建綜合能源系統(tǒng)模型,分析能源在生產(chǎn)、轉(zhuǎn)換、傳輸、存儲(chǔ)、需求5個(gè)環(huán)節(jié)中的損耗;其次,同時(shí)考慮由不同電價(jià)引導(dǎo)的需求側(cè)負(fù)荷響應(yīng)與無(wú)償碳排放配額,以系統(tǒng)綜合成本最小作為目標(biāo),建立系統(tǒng)優(yōu)化調(diào)度模型,并采用CPLEX求解器對(duì)不同場(chǎng)景下的調(diào)度模型進(jìn)行求解。結(jié)果表明:在應(yīng)用碳配額激勵(lì)下,考慮需求側(cè)響應(yīng)會(huì)使系統(tǒng)總成本降低,綜合能源利用效率提高。該方法可有效降低系統(tǒng)碳排放量與經(jīng)濟(jì)成本,改善負(fù)荷在不同時(shí)間段的分布,為系統(tǒng)選擇更為低碳經(jīng)濟(jì)的購(gòu)能方式提供參考。

關(guān)鍵詞:綜合能源系統(tǒng);優(yōu)化調(diào)度;綜合需求響應(yīng);碳排放配額;CPLEX求解器

中圖分類(lèi)號(hào):TM 73

文獻(xiàn)標(biāo)志碼:A

文章編號(hào):1672-9315(2023)04-0787-10

DOI:10.13800/j.cnki.xakjdxxb.2023.0416

Optimal scheduling of integrated energy system with

demand response and carbon quotas

LIU Qing1,LI Liang1,WANG Yu1,CAO Le1,2

(1.

College of Electrical and Control Engineering,Xian University of Science and Technology,Xian 710054,China;

2.College of Electrical Engineering,Xian Jiaotong University,Xian 710049,China)Abstract:

To reduce the cost and carbon-emission

of integrated energy system,an integrated energy system optimization model considering demand-side response and carbon emission allowance is proposed.Firstly,an integrated energy system model is constructed to analyze the losses of energy in the five stages of production,conversion,transmission,storage and demand.Secondly,the demand-side load response guided by different tariffs and free carbon emission allowance are considered simultaneously,and the system optimization dispatching model is established with the objective of minimizing the comprehensive system cost,and the dispatching model under different scenarios is solved by using the CPLEX solver.The simulation results show that considering the demand-side response under the application of carbon allowance incentive leads to the reduction of total system cost and the improvement of comprehensive energy utilization efficiency.This method can effectively reduce the system carbon emissions and economic costs,and improve the load distribution in different time periods,which provides a reference for the system to choose a more low-carbon and economic way to purchase energy.

Key words:integrated energy systems;optimal scheduling;integrated demand response;carbon emission allowances;CPLEX solver

0 引 言

綜合能源系統(tǒng)(Integrated Energy Systems,IES)[1-2]雖打破了原有系統(tǒng)供電、供氣、供熱等方面相互獨(dú)立的局面,但I(xiàn)ES系統(tǒng)的整體經(jīng)濟(jì)性與低碳性問(wèn)題仍亟待解決。

為了提高系統(tǒng)的整體經(jīng)濟(jì)性,國(guó)內(nèi)外學(xué)者從系統(tǒng)模型出發(fā),對(duì)源網(wǎng)荷一體化系統(tǒng)進(jìn)行研究。以往研究中,模型多為含新能源、電轉(zhuǎn)氣設(shè)備、多源儲(chǔ)能設(shè)備的熱電聯(lián)供型IES系統(tǒng)調(diào)度模型,從優(yōu)化模型角度提高系統(tǒng)經(jīng)濟(jì)性[3-5]。王磊等通過(guò)系統(tǒng)年凈收益最大為外層優(yōu)化目標(biāo),系統(tǒng)日出力波動(dòng)率和日出力峰谷差最小為內(nèi)層目標(biāo)對(duì)系統(tǒng)經(jīng)濟(jì)性進(jìn)行優(yōu)化[6]。崔楊等對(duì)北方地區(qū)棄新能源問(wèn)題,采用電-熱聯(lián)合儲(chǔ)能調(diào)度方法,降低棄風(fēng)量[7]。LIU等基于電儲(chǔ)能特點(diǎn),建立儲(chǔ)能附加潛在效益模型,降低建筑級(jí)綜合能源系統(tǒng)經(jīng)濟(jì)成本[8]。在對(duì)需求側(cè)負(fù)荷優(yōu)化的以往研究中,主要給出了可中斷、可時(shí)移負(fù)荷模型,構(gòu)建熱電聯(lián)供型微網(wǎng)優(yōu)化配置方案[9-10]。王磊等通過(guò)含補(bǔ)燃裝置系統(tǒng)的熱電比調(diào)節(jié)能力進(jìn)行分析,建立區(qū)域IES多目標(biāo)優(yōu)化模型[11]。以上文獻(xiàn)對(duì)綜合能源系統(tǒng)的研究提供了一定的理論基礎(chǔ),但未考慮用戶負(fù)荷側(cè)的補(bǔ)償作用,同時(shí)針對(duì)電儲(chǔ)-熱儲(chǔ)雙儲(chǔ)能模型的研究較少。

隨著雙碳目標(biāo)的提出,較多學(xué)者針對(duì)IES碳排放問(wèn)題進(jìn)行了研究。張程飛等基于電網(wǎng)碳排放配額模型,提升了系統(tǒng)的運(yùn)行經(jīng)濟(jì)性[12]。朱曉榮等考慮了源、荷雙側(cè)不確定性,與環(huán)境的調(diào)度成本[13]。史佳琪等針對(duì)不同能源構(gòu)建整體和區(qū)域IES模型,考慮設(shè)備碳排放的懲罰費(fèi)用[14]。丁雨昊等考慮碳排放約束及需求側(cè)響應(yīng),但未考慮需求側(cè)響應(yīng)的碳排放量[15]。

李天格、CHENG、魏震波等通過(guò)提出多種能源的需求側(cè)響應(yīng)與碳排放的系統(tǒng),建立日前-日內(nèi)-實(shí)時(shí)三階段的多時(shí)間尺度優(yōu)化模型[16-18]。雖然以上文獻(xiàn)均考慮了需求側(cè)響應(yīng)與碳排放配額,但未考慮用戶需求側(cè)響應(yīng)部分的補(bǔ)償費(fèi)用成本。

針對(duì)以上問(wèn)題,文中將含系統(tǒng)用戶側(cè)補(bǔ)償費(fèi)用的系統(tǒng)綜合成本費(fèi)用最小作為優(yōu)化目標(biāo),從產(chǎn)-轉(zhuǎn)-輸-儲(chǔ)-用5個(gè)環(huán)節(jié)中各設(shè)備之間耦合關(guān)系角度,構(gòu)建考慮需求側(cè)響應(yīng)和碳排放配額的綜合能源系統(tǒng)模型。首先,將需求側(cè)負(fù)荷分為可中斷和可時(shí)移負(fù)荷;其次,針對(duì)綜合能源系統(tǒng)的碳排放構(gòu)建一種碳排放交易機(jī)制;最后,采用綜合能源利用效率作為評(píng)價(jià)指標(biāo),分析不同場(chǎng)景下綜合能源系統(tǒng)的能源利用效率,結(jié)果表明同時(shí)考慮需求側(cè)響應(yīng)和碳排放配額的綜合能源系統(tǒng)能夠平滑負(fù)荷曲線,協(xié)同綜合能源系統(tǒng)經(jīng)濟(jì)性與低碳性,為綜合能源系統(tǒng)的低碳經(jīng)濟(jì)運(yùn)行提供參考。

1 綜合能源系統(tǒng)模型

從能量流動(dòng)的角度構(gòu)建的綜合能源系統(tǒng)結(jié)構(gòu)共有產(chǎn)-轉(zhuǎn)-輸-儲(chǔ)-用5個(gè)環(huán)節(jié)[19],如圖1所示,一共包含熱、電2種能量的傳輸,且能量之間會(huì)通過(guò)能源轉(zhuǎn)換環(huán)節(jié)進(jìn)行相互耦合,轉(zhuǎn)換環(huán)節(jié)包含的設(shè)備[1,15]有:熱泵設(shè)備、電轉(zhuǎn)氣設(shè)備(Power to Gas,P2G)、燃?xì)忮仩t設(shè)備以及熱電聯(lián)產(chǎn)設(shè)備(Combined Heating and Power,CHP),通過(guò)5個(gè)環(huán)節(jié)構(gòu)成的綜合能源系統(tǒng),打破原有子系統(tǒng)之間的壁壘,實(shí)現(xiàn)能源之間互補(bǔ)互濟(jì),協(xié)調(diào)優(yōu)化。

2.3 求解方法

文中提出一種考慮需求側(cè)響應(yīng)與碳排放配額的綜合能源系統(tǒng)優(yōu)化模型,目標(biāo)函數(shù)為式(17)~式(21),約束條件為式(22)~式(25),由于所構(gòu)建綜合能源系統(tǒng)優(yōu)化調(diào)度模型為混合整數(shù)線性規(guī)劃問(wèn)題,因此在

Matlab環(huán)境下,在YALMIP平臺(tái)中利用CPLEX求解器求解該模型。YALMIP作為

Matlab中求解優(yōu)化問(wèn)題的一個(gè)工具箱,其模型與求解的算法分離,因此無(wú)需針對(duì)不同算法建立不同模型。求解流程如圖2所示。

3 算例分析

利用圖1描述的綜合能源,對(duì)所提方法進(jìn)行驗(yàn)證。

分時(shí)電價(jià)見(jiàn)表1,能源及負(fù)荷的能質(zhì)系數(shù)見(jiàn)表2,綜合能源系統(tǒng)運(yùn)行參數(shù)見(jiàn)表3、表4,碳配額系數(shù)見(jiàn)表5。

電、熱負(fù)荷數(shù)據(jù)來(lái)自文獻(xiàn)[20],由于風(fēng)機(jī)出力服從威布爾分布,光伏出力服從貝塔分布,將風(fēng)機(jī)、光伏出力的概率性序列進(jìn)行卷積,從而得到風(fēng)光聯(lián)合出力期望值[21-22],因此,電、熱、新能源數(shù)據(jù)如圖3所示。調(diào)度周期24 h,時(shí)間間隔1 h,可時(shí)移負(fù)荷最大為該時(shí)段負(fù)荷的5%[23]。儲(chǔ)能池按完全失去外部電源時(shí),仍能滿功率送電4 h配置蓄能容量和蓄能的充放功率,儲(chǔ)電池在第1時(shí)間段有上一時(shí)刻300 MW的預(yù)留量。用戶側(cè)產(chǎn)熱量占總能源轉(zhuǎn)換節(jié)產(chǎn)熱量比例系數(shù)為零。碳排放系數(shù)為0.9 t/MW·h[24],天然氣價(jià)為2元/m3,1 m3天然氣與

10 kW·h電的能量相等[25],1度電=1 kWh,1 t/h=0.7 MW,1 t二氧化碳的價(jià)格為74元??芍袛嘭?fù)荷單價(jià)為0.3元/kW,可平移負(fù)荷單價(jià)為0.05元/kW,可中斷負(fù)荷的中斷系數(shù)為0.7[21],熱泵系數(shù)為4[26]。

為了分析碳配額激勵(lì)、需求側(cè)響應(yīng)對(duì)IES的影響,采用以下幾種場(chǎng)景進(jìn)行對(duì)比。

場(chǎng)景1:不考慮碳配額激勵(lì)和需求側(cè)響應(yīng)。

場(chǎng)景2:考慮碳配額機(jī)制、不考慮需求側(cè)響應(yīng)。

場(chǎng)景3:考慮需求側(cè)響應(yīng),不考慮碳配額機(jī)制。

場(chǎng)景4:在碳配額激勵(lì)下考慮需求側(cè)響應(yīng),即文中所描述的場(chǎng)景。

3.1 場(chǎng)景4的優(yōu)化效果

描述場(chǎng)景4綜合能源系統(tǒng)熱、電負(fù)荷需求側(cè)響應(yīng)如圖4所示。在24 h內(nèi),總的移出負(fù)荷量等于總的移入負(fù)荷量,從圖4可以看出,熱、電負(fù)荷根據(jù)價(jià)格引導(dǎo),需求響應(yīng)規(guī)律基本一致,在晚上電價(jià)較低時(shí)段,有負(fù)荷移入該時(shí)段,中斷負(fù)荷量??;當(dāng)在電價(jià)高的時(shí)段,有部分負(fù)荷移出該時(shí)段,中斷負(fù)荷量大。

考慮需求側(cè)響應(yīng)后的熱、電負(fù)荷各設(shè)備出力如圖5所示。通過(guò)對(duì)不同時(shí)間段制定不同的電價(jià)水平,從而引導(dǎo)需求側(cè)負(fù)荷響應(yīng),對(duì)每一時(shí)段系統(tǒng)負(fù)荷進(jìn)行調(diào)整,引導(dǎo)用戶盡量在需求高峰時(shí)間段少用電,在需求低谷時(shí)間段多用電,降低電負(fù)荷的“峰谷差”,達(dá)到緩解系統(tǒng)負(fù)荷側(cè)曲線波動(dòng),提高系統(tǒng)經(jīng)濟(jì)性的目的。

能源價(jià)格是影響系統(tǒng)中負(fù)荷優(yōu)化調(diào)度的重要因素。圖6為場(chǎng)景4下系統(tǒng)的熱、電負(fù)荷優(yōu)化效果。從圖6可以看出,電能在非再生能源中最先被利用,其次是天然氣。在低電價(jià)時(shí)段,電負(fù)荷需求不大,由電網(wǎng)和新能源提供出力,多余出力則儲(chǔ)存起來(lái),以備系統(tǒng)出力不足時(shí)使用;在高電價(jià)時(shí)段,會(huì)由燃?xì)廨啓C(jī)和新能源出力,由于電網(wǎng)出力會(huì)有碳排放的產(chǎn)生,新能源出力無(wú)碳排放,因此新能源出力值大。由于熱負(fù)荷在各時(shí)段出力較小且均勻,主要由熱泵供給,少部分的電量由蓄電池、燃?xì)廨啓C(jī)和新能源提供。以此降低綜合系統(tǒng)的整體費(fèi)用,減少電網(wǎng)發(fā)電產(chǎn)生的過(guò)多碳排放。儲(chǔ)熱罐在低電價(jià)時(shí)段進(jìn)行儲(chǔ)能,在高電價(jià)時(shí)段放電,達(dá)到系統(tǒng)能量動(dòng)態(tài)平衡。

3.2 經(jīng)濟(jì)性分析

表6是4種場(chǎng)景下綜合能源系統(tǒng)成本,可以看出,場(chǎng)景2僅考慮碳配額的情況下,相較場(chǎng)景1總費(fèi)用降低了約150萬(wàn)元,碳排放費(fèi)用降低了約100萬(wàn)元,碳排放量降低13 460 t,總費(fèi)用成本降低約9%;場(chǎng)景3僅考慮需求側(cè)響應(yīng),在均不考慮碳配額抵消作用的場(chǎng)景1與場(chǎng)景3中,碳排放量降低4 094 t,降低了IES和碳排放費(fèi)用,說(shuō)明需求側(cè)響應(yīng)可以降低系統(tǒng)的碳排放量。場(chǎng)景4比場(chǎng)景3的IES費(fèi)用下降約30萬(wàn)元,總費(fèi)用降低了27%。因此場(chǎng)景4為系統(tǒng)選擇的相對(duì)經(jīng)濟(jì)、低碳的購(gòu)能方式。

3.3 低碳性分析

圖7為4種場(chǎng)景下一天內(nèi)每個(gè)時(shí)間段的碳排放量變化情況。在場(chǎng)景1與3中,18:00與22:00的碳排放量最大。由于無(wú)償碳配額的提出,場(chǎng)景2的碳排放量最大出現(xiàn)在18:00,約為1 300 t;場(chǎng)景4每小時(shí)的碳排放量均小于其他場(chǎng)景下的排放量,因此,場(chǎng)景4下的系統(tǒng)低碳性最好。

3.4 效率指標(biāo)分析

表7是4種場(chǎng)景下綜合能源系統(tǒng)的效率。圖8是各場(chǎng)景實(shí)時(shí)綜合能源效率。由表7可知,場(chǎng)景2碳配額的提出,相比場(chǎng)景1系統(tǒng)能效提高4%。場(chǎng)景4能源利用效率相比場(chǎng)景3,雖犧牲了2%,但降低了9%的總費(fèi)用,很大程度上提高了系統(tǒng)經(jīng)濟(jì)性。因此場(chǎng)景4是系統(tǒng)選擇的經(jīng)濟(jì)、低碳的調(diào)度策略模型。

3.5 各場(chǎng)景購(gòu)電對(duì)比

圖9是4種場(chǎng)景下系統(tǒng)實(shí)時(shí)購(gòu)電、購(gòu)氣功率對(duì)比,表8為4種場(chǎng)景下購(gòu)電、購(gòu)氣總量。由表8可知場(chǎng)景4的購(gòu)電、購(gòu)氣量最小,購(gòu)電量相較場(chǎng)景1降低約49%,購(gòu)氣量對(duì)比場(chǎng)景1降低了約4.7%。圖9(b)在03:00時(shí),系統(tǒng)中天然氣購(gòu)買(mǎi)費(fèi)用及燃?xì)廨啓C(jī)產(chǎn)生碳排放費(fèi)用小于電能的購(gòu)買(mǎi)費(fèi)用及燃煤機(jī)組所產(chǎn)生的碳排放費(fèi)用,采用燃?xì)廨啓C(jī)所帶來(lái)的經(jīng)濟(jì)性優(yōu)于采用燃煤機(jī)組的經(jīng)濟(jì)性,因此此時(shí)段所需電能主要由天然氣提供,在之后時(shí)段,電負(fù)荷量增加時(shí),由于燃煤機(jī)組碳配額大,碳排放量降低,所以會(huì)由燃煤機(jī)組提供大部分的電能。

4 結(jié) 論

1)同時(shí)考慮碳排放與需求側(cè)響應(yīng),可實(shí)現(xiàn)降低系統(tǒng)碳排放量,降低系統(tǒng)購(gòu)電量、購(gòu)氣量,從而達(dá)到節(jié)約系統(tǒng)綜合成本的目標(biāo),兼顧系統(tǒng)的經(jīng)濟(jì)性與低碳性,為系統(tǒng)選擇了更為合理的購(gòu)能方式。

2)引入可中斷負(fù)荷與可時(shí)移負(fù)荷參與系統(tǒng)調(diào)度,有助于平滑負(fù)荷曲線。通過(guò)綜合能源利用效率這一評(píng)價(jià)指標(biāo),可以得出在綜合能源系統(tǒng)中,同時(shí)考慮碳排放配額與需求側(cè)響應(yīng),可以提高系統(tǒng)能源利用效率。

參考文獻(xiàn)(References):

[1] 李政潔,于強(qiáng),龔文杰,等.計(jì)及模糊機(jī)會(huì)約束的電-氣-熱能源樞紐多目標(biāo)優(yōu)化調(diào)度[J].電力系統(tǒng)及其自動(dòng)化學(xué)報(bào),2021,33(9):49-56.LI Zhengjie,YU Qiang,GONG Wenjie,et al.Multi-objective optimal scheduling of electricity-gas-heat energy hub considering fuzzy chance constraints[J].Proceedings of the CSU-EPSA,2021,33(9):49-56.

[2]WANG Y,MA Y,SONG F,et al.Economic and efficient multi-objective operation optimization of integrated energy system considering electro-thermal demand response[J].Energy,2020,205:118022.

[3]魏震波,黃宇涵,高紅均,等.含電轉(zhuǎn)氣和熱電解耦熱電聯(lián)產(chǎn)機(jī)組的區(qū)域能源互聯(lián)網(wǎng)聯(lián)合經(jīng)濟(jì)調(diào)度[J].電網(wǎng)技術(shù),2018,42(11):3512-3520.WEI Zhenbo,HUANG Yuhan,GAO Hongjun,et al.Joint economic scheduling of power-to-gas and thermoelectric decoupling CHP in regional energy internet[J].Power System Technology,2018,42(11):3512-3520.

[4]ZHU X,ZHAN X,HAO L,et al.The optimal design and operation strategy of renewable energy-CCHP coupled system applied in five building objects[J].Renewable Energy,2020,146:2700-2715.

[5]NI L N,LIU W J,WEN F S,et al.Optimal operation of electricity,natural gas and heat systems considering intergrated demand responses and diversified storage devices[J].Journal of Modern Power Systems Clean Energy,2018,6(3):423-437.

[6]王磊,王昭,馮斌,等.基于雙層優(yōu)化模型的風(fēng)-光-儲(chǔ)互補(bǔ)發(fā)電系統(tǒng)優(yōu)化配置[J].太陽(yáng)能學(xué)報(bào),2022,43(5):98-104.WANG Lei,WANG Zhao,F(xiàn)ENG Bin,et al.Optimal configuration of wind photovoltaicess complementary power generation system based on bilevel optimization model[J].Acta Energiae Solaris Sinica,2022,43(5):98-104.

[7]崔楊,紀(jì)銀鎖,仲悟之,等.基于電-熱聯(lián)合儲(chǔ)能的棄風(fēng)消納調(diào)度方法[J].太陽(yáng)能學(xué)報(bào),2021,42(12):192-199.CUI Yang,JI Yinsuo,ZHONG Wuzhi,et al.Dispatching method of wind power curtailment based on electric-thermal combined energy storage[J].Acta Energiae Solaris Sinica,2021,42(12):192-199.

[8]LIU S,ZHOU C,GUO H,et al.Operational optimization of a building-level integrated energy system considering additional potential benefits of energy storage[J].Protection and Control of Modern Power Systems,2021,6(4):1-10.

[9]李政潔,撖奧洋,周生奇,等.計(jì)及綜合需求響應(yīng)的綜合能源系統(tǒng)優(yōu)化調(diào)度[J].電力系統(tǒng)保護(hù)與控制,2021,49(21):36-42.LI Zhengjie,HAN Aoyang,ZHOU Shengqi,et al.Optimization of an integrated energy system considering integrated demand response[J],Power System Protection and Control,2021,49(21):36-42.

[10]ZHANG C,XU Y,DONG Z Y,et al.Robust coordination of distributed generation and price-based demand response in microgrids[J].IEEE Transactions on Smart Grid,2018,9(5):4236-4247.

[11]王磊,姜濤,宋丹,等.基于靈活熱電比的區(qū)域綜合能源系統(tǒng)多目標(biāo)優(yōu)化調(diào)度[J].電力系統(tǒng)保護(hù)與控制,2021,49(8):151-159.WANG Lei,JIANG Tao,SONG Dan,et al.Multi-objective optimal dispatch of a regional integrated energy system based on a flexible heat-to-electric ratio[J].Power System Protection and Control,2021,49(8):151-159.

[12]張程飛,袁越,張新松,等.考慮碳排放配額影響的含風(fēng)電系統(tǒng)日前調(diào)度計(jì)劃模型[J].電網(wǎng)技術(shù),2014,38(8):2114-2120.ZHANG Chengfei,YUAN Yue,ZHANG Xinsong,et al.Day-ahead dispatching scheduling for power grid integrated with wind farm considering influence of carbon emission quota[J].Power System Technology,2014,38(8):2114-2120.

[13]朱曉榮,謝婉瑩,鹿國(guó)微.采用區(qū)間多目標(biāo)線性規(guī)劃法的熱電聯(lián)供型微網(wǎng)日前調(diào)度[J].高電壓技術(shù),2021,47(8):2668-2679.ZHU Xiaorong,XIE Wanying,LU Guowei.Day-ahead scheduling of combined heating and power microgrid with the interval multi-objective linear programming[J].High Voltage Engineering,2021,47(8):2668-2679.

[14]史佳琪,胡浩,張建華.計(jì)及多個(gè)獨(dú)立運(yùn)營(yíng)商的綜合能源系統(tǒng)分布式低碳經(jīng)濟(jì)調(diào)度[J].電網(wǎng)技術(shù),2019,43(1):127-136.SHI Jiaqi,HU Hao,ZHANG Jianhua.Distributed low-carbon economy scheduling for integrated energy system with multiple individual energy-hubs[J].Power System Technology,2019,43(1):127-136.

[15]丁雨昊,呂干云,劉永衛(wèi),等.考慮碳排放目標(biāo)約束和需求側(cè)響應(yīng)的綜合能源系統(tǒng)日前優(yōu)化調(diào)度[J].南方電網(wǎng)技術(shù),2022,16(8):1-11.DING Yuhao,LYU Ganyun,LIU Yongwei,et al.Day-ahead optimal scheduling of intergrated energy system considering carbon emission target constraints and demand side response[J].Southern Power System Technology,2022,16(8):1-11.

[16]李天格,胡志堅(jiān),陳志,等.計(jì)及電-氣-熱-氫需求響應(yīng)的綜合能源系統(tǒng)多時(shí)間尺度低碳運(yùn)行優(yōu)化策略[J].電力自動(dòng)化設(shè)備,2023,43(1):16-24.LI Tiange,HU Zhijian,CHEN Zhi,et al.Multi-time scale low-carbon operation optimization strategy of integrated energy system considering Electricity-Gas-Heat demand response[J].Electric Power Automation Equipment,2023,43(1):16-24.

[17]CHENG S,WANG R,XU J,et al.Multi-time scale coordinated optimization of an energy hub in the integrated energy system with multi-type energy storage system[J].Sustainable Energy Technologies and Assessments,2021,47:1-10.

[18]魏震波,馬新如,郭毅,等.碳交易機(jī)制下考慮需求響應(yīng)的綜合能源系統(tǒng)優(yōu)化運(yùn)行[J].電力建設(shè),2022,43(1):1-9.WEI Zhenbo,MA Xinru,GUO Yi,et al.Optimized ope-ration of integrated energy system considering demand response under carbon trading mechanism[J].Electric Power Construction,2022,43(1):1-9.

[19]劉曉鷗,葛少云.區(qū)域綜合能源系統(tǒng)的能效定義及其相關(guān)性分析[J].電力系統(tǒng)自動(dòng)化,2020,44(8):8-18.LIU Xiaoou,GE Shaoyun.Definition and correlation analysis on energy utilization efficiency of regional integrated energy system[J].Automation of Electric Power Systems,2020,44(8):8-18.

[20]葛曉琳,王云鵬,朱肖和,等.計(jì)及差異化能量慣性的電-熱-氣綜合能源系統(tǒng)日前優(yōu)化調(diào)度[J].電網(wǎng)技術(shù),2021,45(12):4630-4642.

GE Xiaolin,WANG Yunpeng,ZHU Xiaohe,et al.Day-ahead optimal scheduling for integrated power,heat and gas energy system considering differentiation energy inertia[J].Power System Technology,2021,45(12):4630-4642.

[21]呂智林,孫順吉,湯澤琦,等.基于序列運(yùn)算理論的微電網(wǎng)正負(fù)旋轉(zhuǎn)備用容量?jī)?yōu)化[J].電力系統(tǒng)保護(hù)與控制,2017,45(20):100-109.LYU Zhilin,SUN Shunji,TANG Zeqi,et al.Optimal scheduling of plus and minus spinning reserve in microgrid based on sequence operation theory[J].Power System Protection and Control,2017,45(20):100-109.

[22]寧亮,王晨光,云飛.基于序列運(yùn)算理論的含風(fēng)電系統(tǒng)低碳經(jīng)濟(jì)調(diào)度[J].中國(guó)電力,2016,49(S1):107-110,115.NING Liang,WANG Chenguang,YUN Fei.Low-carbon economic dispatching of wind power integrated systems based on sequence operation theory[J].Electric Power,2016,49(S1):107-110,115.

[23]許周,孫永輝,謝東亮,等.計(jì)及電/熱柔性負(fù)荷的區(qū)域綜合能源系統(tǒng)儲(chǔ)能優(yōu)化配置[J].電力系統(tǒng)自動(dòng)化,2020,44(2):53-59.XU Zhou,SUN Yonghui,XIE Dongliang,et al.Optimal configuration of energy storage for integrated region energy system considering power/thermal fiexible load[J].Automation of Electric Power Systems,2020,44(2):53-59.

[24]崔楊,谷春池,付小標(biāo),等.考慮廣義電熱需求響應(yīng)的含碳捕集電廠綜合能源系統(tǒng)低碳經(jīng)濟(jì)調(diào)度[J].中國(guó)電機(jī)工程學(xué)報(bào),2022,43(23):8431-8446.

CUI Yang,GU Chunchi,F(xiàn)U Xiaobiao,et al..Low carbon economic dispatch of integrated energy system with carbon capture power plants considering generalized electric heating demand response[J].Proceeding of The CSEE,2022,43(23):8431-8446.

[25]張?chǎng)?,魏震波,黃宇涵.含電動(dòng)汽車(chē)的區(qū)域綜合能源系統(tǒng)日前調(diào)度優(yōu)化[J].四川電力技術(shù),2019,42(6):50-54.

ZHANG Wenwen,WEI Zhenbo,HUANG Yuhan.Day-ahead scheduling optimization of regional integrated energy system including electric vehicles[J].Sichuan Electric Power Technology,2019,42(6):50-54.

[26]崔楊,姜濤,仲悟之,等.電動(dòng)汽車(chē)與熱泵促進(jìn)風(fēng)電消納的區(qū)域綜合能源系統(tǒng)經(jīng)濟(jì)調(diào)度方法[J].電力自動(dòng)化設(shè)備,2021,41(2):1-7.

CUI Yang,JIANG Tao,ZHONG Wuzhi,et al.Economic dispatch approach of RIES for electric vehicle and heat pump to promote wind power accommodation[J],Electric Power Automation Equipment,2021,41(2):1-7.

(責(zé)任編輯:高佳)

台南县| 南部县| 平利县| 论坛| 大足县| 潜山县| 巴楚县| 隆回县| 威海市| 尼木县| 新巴尔虎左旗| 昌黎县| 蒙城县| 恩平市| 扶风县| 深水埗区| 克东县| 乡城县| 清镇市| 梅州市| 武义县| 宁城县| 准格尔旗| 安平县| 黔西县| 丰城市| 宜兴市| 甘孜| 盐边县| 永安市| 扎囊县| 乌拉特后旗| 锦州市| 万年县| 察隅县| 新竹市| 洪泽县| 海城市| 怀柔区| 满洲里市| 兴义市|