高正睿 臧廣鵬 宿翠翠 王振龍 施志國(guó) 龔永福 魏玉杰
摘要 隨著藥用植物種植年限的增長(zhǎng),病害的發(fā)生隨之多樣化,從而導(dǎo)致藥源植物產(chǎn)量和品質(zhì)下降,影響了藥用植物產(chǎn)業(yè)的發(fā)展。藥用植物連續(xù)種植導(dǎo)致土壤中病原菌逐年累積,土傳病害發(fā)生嚴(yán)重。從藥用植物連作的危害、連作障礙形成機(jī)制和連作障礙緩解措施3個(gè)方面分析了連作障礙的形成和緩解方法,對(duì)連作障礙的研究方向進(jìn)行展望,以期為藥用植物的實(shí)際生產(chǎn)提供理論依據(jù)。
關(guān)鍵詞 藥用植物;連作障礙;形成機(jī)制;緩解措施
中圖分類號(hào) S567? 文獻(xiàn)標(biāo)識(shí)碼 A
文章編號(hào) 0517-6611(2023)12-0021-05
doi:10.3969/j.issn.0517-6611.2023.12.004
Research Progress on the Formation Mechanism and Mitigation Measures of Continuous Cropping Obstacles in Medicinal Plants
GAO Zheng-rui1,2,3,ZANG Guang-peng1,2,SU Cui-cui1,2,3 et al
(1.Gansu Academy of Agri-engineering Technology,Wuwei,Gansu 733006;2.Key Laboratory of Germplasm Innovation and Safe Utilization of Special Medicinal Plants,Wuwei,Gansu 733006;3.Wuwei Technology Innovation Center of Soil Improvement and Arable Land Conservation,Wuwei,Gansu 733006)
Abstract With the growth of the planting years of medicinal plants,the occurrence of diseases is diversified,which leads to the decline of the yield and quality of medicinal plants,and affects the development of the medicinal plant industry.Continuous planting of medicinal plants resulted in the accumulation of pathogenic bacteria in soil year by year and serious soil-borne diseases.This paper analyzed the formation and mitigation methods of continuous cropping obstacles from three aspects: the harm of continuous cropping of medicinal plants,the formation mechanism of continuous cropping obstacles and the mitigation measures of continuous cropping obstacles,and prospected the research direction of continuous cropping obstacles,in order to provide theoretical basis for the practical production of medicinal plants.
Key words Medicinal plants;Continuous cropping obstacles;Formation mechanism;Mitigation measures
基金項(xiàng)目 甘肅省青年科技基金計(jì)劃項(xiàng)目(21JR7RA749)。
作者簡(jiǎn)介 高正睿(1992—),男,甘肅武威人,助理研究員,碩士,從事微生物在農(nóng)業(yè)方面的應(yīng)用研究。*通信作者,副研究員,從事植物保護(hù)研究。
收稿日期 2022-12-29
藥用植物由于其“道地性”,使得中藥材產(chǎn)地具有一定的局限性,容易造成連續(xù)多年在同一地塊種植,使連作的土壤特性得不到有效恢復(fù)[1],導(dǎo)致藥材長(zhǎng)勢(shì)變?nèi)?,病蟲害發(fā)生嚴(yán)重,出現(xiàn)連作障礙。目前,連作障礙成為影響藥用植物產(chǎn)業(yè)發(fā)展的主要因素。該研究從藥用植物連作的危害、連作障礙形成機(jī)制和連作障礙緩解措施3個(gè)方面分析了連作障礙的形成和緩解方法,對(duì)連作障礙的研究方向進(jìn)行展望,以期為藥用植物的實(shí)際生產(chǎn)提供理論依據(jù)。
1 藥用植物連作的危害
1.1 藥用植物品質(zhì)下降
藥用品質(zhì)的關(guān)鍵因素為藥效活性成分,大多是中藥材的次生代謝產(chǎn)物,中藥材內(nèi)在的遺傳基因和外在的生態(tài)因子通過調(diào)節(jié)植物的代謝產(chǎn)物合成通路,從而影響了藥材的品質(zhì)[2]。土壤是藥用植物生長(zhǎng)發(fā)育的基礎(chǔ),一旦發(fā)生連作障礙,會(huì)造成藥用植物生長(zhǎng)發(fā)育受到抑制,影響次生代謝產(chǎn)物的合成,導(dǎo)致產(chǎn)量和品質(zhì)嚴(yán)重下降。如玄參連作導(dǎo)致爛根、死苗,嚴(yán)重影響其產(chǎn)量,且連作年限越長(zhǎng)對(duì)其影響越嚴(yán)重[3]。與正茬地黃相比,連作造成地黃中總還原糖和梓醇含量明顯下降,嚴(yán)重影響地黃品質(zhì)[4]。連作導(dǎo)致半夏生長(zhǎng)發(fā)育受到抑制,連作半夏年平均株高、塊莖直徑、地上和地下生物量都顯著降低[5]。
1.2 藥用植物病蟲害加重
藥用植物在連作栽培條件下,使土壤根際微生物群落失去平衡,病原菌累積,病蟲害頻發(fā)。當(dāng)歸連作后,容易發(fā)生麻口病、褐斑病、細(xì)菌性葉斑病、根腐?。?]。據(jù)調(diào)查,當(dāng)歸連作地塊通常每年損失在30%以上,有些地塊甚至絕收[7]。滇黃精連作后,容易發(fā)生根莖腐病,嚴(yán)重影響了滇黃精的品質(zhì)和產(chǎn)量[8]。黃連連作使其根腐病發(fā)生嚴(yán)重,平均發(fā)病率達(dá)40%,造成嚴(yán)重的經(jīng)濟(jì)損失[9],百合連作地區(qū)普遍發(fā)生枯萎病,植株根部腐爛,地上部分枯萎死亡,是影響百合產(chǎn)量和品質(zhì)的重要病害[10]。
2 連作障礙形成的機(jī)制
2.1 微生物群落發(fā)生變化
土壤微生物是植物的第二基因組,在植物的生長(zhǎng)和發(fā)育過程中起著重要作用。土壤微生態(tài)系統(tǒng)在促進(jìn)養(yǎng)分循環(huán)、植物生長(zhǎng)和增加產(chǎn)量中發(fā)揮著重要作用。根際微生物通過分泌生物分子直接或間接地促進(jìn)植物生長(zhǎng)或保護(hù)植物[11]。
隨著現(xiàn)代分子生物學(xué)的發(fā)展,聚丙烯酰胺凝膠電泳(DGGE)、高通量測(cè)序技術(shù)、末端限制性片段長(zhǎng)度多樣性(T-RFLP)技術(shù)、多元組學(xué)技術(shù)、基因編輯技術(shù)的出現(xiàn)使得土壤微生物的研究邁上新的臺(tái)階,這些技術(shù)使人們能夠更全面和準(zhǔn)確地描述微生物群落結(jié)構(gòu)的變化。許多研究表明,隨著藥用植物連作年限的增加,土壤中細(xì)菌和真菌的相對(duì)豐度發(fā)生顯著變化,土壤菌群從“細(xì)菌型”向“真菌型”過渡。
常用的道地藥材,如人參、半夏、柴胡、當(dāng)歸、附子、三七、西洋參、穿心蓮、地黃等在種植過程中主要病害有根腐病、銹腐病、軟腐病、葉斑病、黑斑病、白粉病、立枯病等,其中以根腐病最為常見。
通過宏基因組學(xué)技術(shù)對(duì)連作半夏土壤中微生物群落進(jìn)行分析,發(fā)現(xiàn)半夏連作改變了植物根際微生物群落的組成,導(dǎo)致病原菌如鐮刀菌(Fusarium)、氧化克雷伯菌(Klebsiella oxytoca)和果皮桿菌(Pectobacterium carotovorum)的相對(duì)豐度增加。潛在有益菌伯克氏菌屬(Burkholderia)和慢生根瘤菌屬(Bradyrhizobium)的相對(duì)豐度下降[12]。研究表明,人參連作導(dǎo)致常見土傳病原菌的豐度隨著栽培年限的增加而增加,導(dǎo)致土壤菌群失衡,使得土傳病原菌腐皮鐮刀菌(Fusarium solani)、人參銹腐病菌(Ilyonectria robusta)、土赤殼屬(Ilyonectria mors-panacis)、Monographella cucumerina、Nectria ramulariae隨著栽培年限的增加而增加[13]。在研究柴胡種植方式時(shí)發(fā)現(xiàn),柴胡連作大大降低了有益微生物的豐度,如微枝形桿菌屬(Microvirga)、赫黃嗜鹽囊菌屬(Haliangium)、毛殼菌屬(Chaetomium)、被孢霉屬(Mortierella)、光黑殼屬(Preussia)和枝鼻菌屬(Cladorrhinum)。這些根際微生物在植物生長(zhǎng)和抑制病原微生物方面發(fā)揮著重要作用。相比之下,一些潛在致病微生物,如尾梗霉屬(Cercophora)、鏈格孢屬(Alternaria)、異莖點(diǎn)霉屬(Paraphoma)、枝孢屬(Cladosporium)、小畫線殼屬(Monographella)、水球殼屬(Hydropisphaera)和炭疽菌屬(Colletotrichum)顯著增加[14]。在藥用植物連作過程中,破壞了原有的土壤菌群,使得發(fā)病率增加,產(chǎn)量下降。目前,改善連作土壤微生物區(qū)系的措施主要包括輪作、施加有機(jī)肥、土壤消毒和使用有益微生物制劑等方式[15],利用土壤中潛在的有益微生物平衡土壤菌群結(jié)構(gòu),對(duì)于緩解連作障礙,保持土壤健康具有重要意義。常見藥用植物連作土壤中的主要致病菌及潛在有益菌見表1。
2.2 藥用植物化感作用
1984年,Rice在《Allelopathy》第二版中將化感作用定義為:植物通過將化合物釋放到環(huán)境中從而直接或間接地對(duì)其他植物(包括微生物)產(chǎn)生有害或有益的作用[26],化感自毒物質(zhì)能通過揮發(fā)、淋溶、植物殘?bào)w降解和根系分泌物滲出釋放,這些釋放到根際的物質(zhì)積累到一定程度就會(huì)導(dǎo)致土壤菌群失衡,影響根系活力,從而對(duì)植物的生長(zhǎng)發(fā)育產(chǎn)生影響。這些自毒物質(zhì)是植物在環(huán)境脅迫下產(chǎn)生的,這種特殊的現(xiàn)象可以理解為植物的自我保護(hù),只是植物本身并不期望自身毒素的不斷積累會(huì)對(duì)自身造成傷害[27]。化感物質(zhì)的范圍從簡(jiǎn)單的碳?xì)浠衔锏綇?fù)雜的多環(huán)芳香族化合物,如酚、萜烯、類黃酮、聚乙炔、脂肪酸、類固醇等[28]。植物在遭遇極端溫度、干旱等脅迫情況下,植物化感物質(zhì)的合成和分泌,以及根系分泌物總量會(huì)隨之增加[29],而許多道地藥材都生長(zhǎng)在干旱、低溫等逆境中,這造成了藥用植物的化感自毒作用尤為嚴(yán)重。
研究表明,常見的藥用植物人參、半夏、甘草、當(dāng)歸、地黃、三七、百合中主要化感物質(zhì)包括酚類、黃酮類、有機(jī)酸、皂苷、酯類等,這些自毒物質(zhì)造成了藥用植物的連作障礙現(xiàn)象。藥用植物中,酚酸類化合物是最主要的化感物質(zhì)?;凶远疚镔|(zhì)具有濃度效應(yīng),自毒作用隨著濃度增高,抑制作用隨之增強(qiáng)[30]。化感物質(zhì)誘導(dǎo)植物產(chǎn)生自毒現(xiàn)象的機(jī)制主要有以下幾個(gè)方面:化感物質(zhì)物能誘導(dǎo)活性氧(ROS)的過量產(chǎn)生,引起膜脂過氧化和細(xì)胞死亡,影響有絲分裂和生理過程,從而抑制受體植物的生長(zhǎng)[31];化感物質(zhì)可以改變細(xì)胞膜的流動(dòng)性和通透性,從而導(dǎo)致植物細(xì)胞死亡;化感物質(zhì)也可以通過破壞光系統(tǒng)I(PSI)、光系統(tǒng)II(PSII)中的電子流、影響光合色素的合成或刺激光合色素的分解等方式對(duì)光合作用產(chǎn)生不利影響[32]。自毒物質(zhì)和土壤微生物還可以產(chǎn)生協(xié)同作用,使化感物質(zhì)毒性增強(qiáng),土壤理化性質(zhì)變差,病原微生物的致病性增強(qiáng),最終導(dǎo)致連作障礙[33]。常見藥用植物中的化感物質(zhì)見表2。
2.3 土壤理化性質(zhì)變化
藥用植物連作會(huì)導(dǎo)致土壤密度和容重增加,土壤孔隙度降低,耕層被破壞。連作還可以使得土壤pH下降,使土壤環(huán)境從中性向酸性轉(zhuǎn)變[63]。土壤pH下降的主要原因是過度使用化學(xué)氮肥、耕作強(qiáng)度提高、植物殘?bào)w生物分解,導(dǎo)致土壤有機(jī)酸積累[64],百合連作后,pH下降[65];細(xì)辛連作后,pH和有機(jī)質(zhì)含量逐漸下降[66]。連作會(huì)導(dǎo)致土壤對(duì)養(yǎng)分的螯合能力變差,連作西洋參顯著降低了根際土壤pH、根際銨態(tài)氮、速效磷、速效鉀含量,提高了根腐病指數(shù)和土壤硝酸鹽含量[67];白術(shù)連作后,導(dǎo)致根際土壤中有效鐵、有效鋁和交換性錳等重金屬元素的含量顯著增加,可能導(dǎo)致其生長(zhǎng)受到抑制[68]。黨參連作后,土壤中的硝態(tài)氮、速效鉀、速效磷、有機(jī)質(zhì)含量顯著降低,影響了黨參的生長(zhǎng)發(fā)育[69]。三七連作導(dǎo)致土壤板結(jié)嚴(yán)重,土壤中有機(jī)質(zhì)、氮、和磷的含量顯著下降,鐵、硼、鋁等元素的含量增加,使得三七產(chǎn)生連作障礙[70]。
3 藥用植物連作障礙緩解措施
3.1 土壤熏蒸消毒
使用熏蒸劑對(duì)土壤進(jìn)行消毒,已經(jīng)在世界各地廣泛應(yīng)用于植物病害的防治[71],這是一種防治土傳病害的重要措施,可以有效地解決作物連作障礙問題。溴甲烷對(duì)于防治土傳病害效果較好,但因其對(duì)臭氧層的破壞而被全球禁用[72]。目前主要的土壤熏蒸劑種類有棉隆、氯化苦、威百畝、硫酰氟、異硫氰酸烯丙酯、二甲基二硫等熏蒸劑[73]。Mao等[74]
發(fā)現(xiàn),棉隆處理可以防治由青枯菌引起的生姜青枯病,顯著降低植株死亡率和病情指數(shù),提高生姜產(chǎn)量。李龍等[75]發(fā)現(xiàn)氯化苦處理三七連作土壤后,土壤中氮、磷等養(yǎng)分增加,促進(jìn)了三七有效成分的累積,Li等[76]發(fā)現(xiàn),氯化苦與棉隆交替施用顯著改善了草莓土壤的理化性質(zhì),抑制了土壤病原菌的累積,提高了草莓產(chǎn)量。王惟萍等[77]研究表明,威百畝在一定環(huán)境條件下可以有效抑制尖孢鐮刀菌,對(duì)防治黃瓜枯萎病有較好的效果。蘇國(guó)禮等[78]研究表明,異硫氰酸烯丙酯處理對(duì)尖孢鐮刀菌百合專化型具有顯著的抑制作用,可以作為防治蘭州百合枯萎病的消毒劑。張大琪等[79]發(fā)現(xiàn),二甲基二硫能顯著增加生姜土壤中銨態(tài)氮和有機(jī)質(zhì)的含量,并對(duì)土傳病原菌有一定的抑制作用。
3.2 微生物調(diào)節(jié)
雖然土壤消毒對(duì)防治土傳病害有很好的防治效果,但是土壤消毒在抑制病原菌的同時(shí),也會(huì)殺滅其他的微生物,導(dǎo)致土壤生態(tài)系統(tǒng)不穩(wěn)定。所以,土壤消毒后及時(shí)補(bǔ)充有益微生物的數(shù)量,使得有益微生物在土壤中富集,是保持土壤健康和作物高產(chǎn)的關(guān)鍵。眾多報(bào)道指出,對(duì)病害土壤進(jìn)行消毒處理和微生物菌劑聯(lián)用能有效控制土傳性病害的發(fā)生,如棉隆土壤消毒配合生防菌處理可以增加土壤中有益微生物的豐富度,對(duì)鳳頭姜姜瘟病有很好的防治效果[80]。研究表明,熏蒸劑處理后,利用生物肥料對(duì)土壤進(jìn)行生物活化,番茄鐮刀菌和疫霉菌的數(shù)量顯著降低,土壤微生物多樣性和有益微生物的相對(duì)豐度均增加,土壤pH和過氧化氫酶活性提高,使得番茄產(chǎn)量顯著提高[81]。Chen等[82]發(fā)現(xiàn),施用微生物有機(jī)肥后,連作花生土壤中引起細(xì)菌性青枯病的雷爾氏菌數(shù)量減少,促進(jìn)花生生長(zhǎng)的有益菌數(shù)量增加,可有效改善花生連作障礙。Li等[83]發(fā)現(xiàn),在半夏連作土壤中添加涇陽鏈霉菌和膠質(zhì)芽孢桿菌,可顯著提高半夏塊莖產(chǎn)量,降低植株的發(fā)病率,提高半夏的品質(zhì)。
3.3 合理施肥
近年來,化肥的濫用導(dǎo)致土壤肥力變差,使得作物發(fā)生連作障礙現(xiàn)象,在連作土壤中適量添加有機(jī)肥可有效改善這一現(xiàn)象。一項(xiàng)7年的田間試驗(yàn)表明,與化肥相比,連續(xù)施用有機(jī)肥料可使小麥籽粒產(chǎn)量和土壤有機(jī)碳顯著提高,連續(xù)施用有機(jī)肥料增加了土壤pH,導(dǎo)致細(xì)菌豐富度和多樣性顯著增加。與化學(xué)施肥相比,持續(xù)施用有機(jī)肥料加強(qiáng)了土壤微生物功能與作物產(chǎn)量之間的聯(lián)系[84]。
Zhang等[85]發(fā)現(xiàn),與不施肥處理相比,在西瓜土壤中連續(xù)施用化肥可抑制有益菌的生長(zhǎng),造成嚴(yán)重的連作障礙。與此相反,持續(xù)施用有機(jī)和生物有機(jī)肥可以通過抑制病原真菌來緩解這些障礙,促進(jìn)西瓜的生長(zhǎng)。Ling等[86]發(fā)現(xiàn),在苗期和移栽期連續(xù)施用生物有機(jī)肥可通過調(diào)控根際細(xì)菌多樣性有效抑制西瓜枯萎病。Wang等[87]發(fā)現(xiàn),在煙草土壤中添加有機(jī)改良劑增加了土壤微生物豐度,施用有機(jī)肥顯著降低了革蘭氏陽性菌與革蘭氏陰性菌的比例,顯著提高了土壤酶活性,結(jié)果表明,有機(jī)肥與化肥配施是緩解連作煙草土壤退化的有效措施。Li等[88]發(fā)現(xiàn),熏蒸后施用有機(jī)肥顯著增加了草莓有益微生物的數(shù)量,改善了土壤理化性質(zhì),提高了土壤酶活性,抑制了土壤病原菌的生長(zhǎng),提高了草莓果實(shí)產(chǎn)量。
3.4 合理輪作倒茬
作物輪作有利于調(diào)節(jié)營(yíng)養(yǎng)和水分平衡,防治病蟲害和雜草,提高作物產(chǎn)量。作物輪作通過抑制病原體生長(zhǎng)繁殖、改善土壤微生態(tài)環(huán)境、產(chǎn)生抑制化合物或特異性拮抗微生物等方式來減少土傳病害的發(fā)生[89]。
Zhang等[90]發(fā)現(xiàn),人參-白屈菜輪作有利于改善土壤質(zhì)量,顯著降低土壤中鐮刀菌的相對(duì)豐度,可有效降低人參根腐病的發(fā)病率,是緩解人參連作障礙的有效措施,Chen等[91]發(fā)現(xiàn),輪作可能通過影響菠蘿細(xì)菌群落結(jié)構(gòu)來提高產(chǎn)量。Li等[92]發(fā)現(xiàn),燕麥-蒙古黃芪輪作有利于改善土壤質(zhì)量,有助于蒙古黃芪的生長(zhǎng),提高了土壤有機(jī)質(zhì)、全氮、全磷和速效鉀含量,輪作增加了蒙古黃芪根際細(xì)菌群落多樣性,增加了一些有益細(xì)菌的豐度,是緩解蒙古黃芪連作障礙的有效方法。劉海嬌等[93]發(fā)現(xiàn),蔥-三七輪作可以顯著增加土壤中有益微生物的豐度,而降低三七根腐病原菌的數(shù)量,對(duì)改善三七連作障礙有一定效果。
4 展望
近年來,我國(guó)對(duì)藥用植物的需求量與日俱增,人工栽培的面積逐年擴(kuò)大,導(dǎo)致藥用植物的連作障礙問題日益突出,嚴(yán)重威脅著藥用植物的產(chǎn)量和品質(zhì)。研究表明,造成連作障礙的原因主要包括3類,即植物的化感自毒作用、土壤根際微生物群落改變、土壤理化性質(zhì)改變,這3種因素相互關(guān)聯(lián),協(xié)同作用。因此,解決連作障礙問題需要從改善根際微生態(tài)環(huán)境出發(fā),從土壤消毒配合生物菌劑處理;減少化肥用量,增施有機(jī)肥;合理輪作倒茬,改善土壤微環(huán)境等方面進(jìn)行研究。連作障礙的發(fā)生是各方面因素綜合造成的,需要多學(xué)科合作才有可能實(shí)現(xiàn)突破,在治理的過程中應(yīng)采取多種措施相結(jié)合的方法,構(gòu)建綠色防控技術(shù)體系,做到“預(yù)防為主,綜合防治”。
參考文獻(xiàn)
[1] 王紅燕,陳垣,郭鳳霞,等.棉隆土壤熏蒸對(duì)黨參育苗品質(zhì)和產(chǎn)量的效應(yīng)[J].中國(guó)實(shí)驗(yàn)方劑學(xué)雜志,2021,27(24):138-147.
[2] 陳歡,譚舒舒,羅小泉,等.中藥道地藥材的研究進(jìn)展[J].時(shí)珍國(guó)醫(yī)國(guó)藥,2018,29(9):2228-2230.
[3] 宋旭紅,譚均,潘媛,等.連作對(duì)玄參產(chǎn)量和根際土壤肥力及酶活性的影響[J].中藥材,2017,40(6):1243-1248.
[4] 李振方,楊燕秋,謝冬鳳,等.連作條件下地黃藥用品質(zhì)及土壤微生態(tài)特性分析[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2012,20(2):217-224.
[5] 安艷,楊丹,李鑫,等.半夏連作障礙效應(yīng)及生理機(jī)制研究[J].西北農(nóng)業(yè)學(xué)報(bào),2018,27(7):1017-1022.
[6] 王霞,楊少杰,晉小軍.不同殺菌劑對(duì)當(dāng)歸主要病害防效、產(chǎn)量及品質(zhì)的影響[J].中國(guó)野生植物資源,2022,41(7):32-38S54.
[7] 李鵬程,尚虎山,肖貴.當(dāng)歸麻口病防治農(nóng)藥組合篩選[J].植物保護(hù),2018,44(4):233-236.
[8] 張磊,李輝山,楊枝中,等.云南滇黃精根莖腐病病原鑒定[J].植物病理學(xué)報(bào),2021,51(6):1000-1004.
[9] 陳姍姍,羅秀媚,楊星勇.重慶市石柱縣黃連根腐病病原菌的分離與鑒定[J].植物保護(hù)學(xué)報(bào),2018,45(6):1437-1438.
[10] 牟曉玲,李瀟瀟,師桂英,等.蘭州百合枯萎病病原菌鑒定及罹病組織超微結(jié)構(gòu)觀察[J].植物保護(hù)學(xué)報(bào),2022,49(4):1111-1118.
[11] PATEL N,BUTANI N,DESAI P.Functional diversity in rhizosphere microbial community: Concept to applications[M]//NATH M,BHATT D,BHARGAVA P,et al.Microbial metatranscriptomics belowground.Singapore:Springer singapore,2021:343-365.
[12] ZHAO Y,QIN X M,TIAN X P,et al.Effects of continuous cropping of Pinellia ternata (Thunb.) Breit.on soil physicochemical properties,enzyme activities,microbial communities and functional genes[J].Chemical and biological technologies in agriculture,2021,8:1-12.
[13] TONG A Z,LIU W,LIU Q,et al.Diversity and composition of the Panax ginseng rhizosphere microbiome in various cultivation modesand ages[J].BMC microbiology,2021,21:1-13.
[14] LIU L,CAO H L,GENG Y N,et al.Response of soil microecology to different cropping practice under Bupleurum chinense cultivation[J].BMC microbiology,2022,22(1):1-11.
[15] 戴傳超,張偉.有益微生物緩解花生連作障礙機(jī)理研究進(jìn)展[J].微生物學(xué)雜志,2022,42(1):1-8.
[16] DONG L L,XU J,LI Y,et al.Manipulation of microbial community in the rhizosphere alleviates the replanting issues in Panax ginseng[J].Soil biology and biochemistry,2018,125:64-74.
[17] XIA F,WANG L N,CHEN J Y,et al.Variations of microbial community in Aconitum carmichaeli Debx.rhizosphere soilin a short-term continuous cropping system[J].Journal of? microbiology,2021,59(5):481-490.
[18] GONG X F,ZHU Y,PENG Y N,et al.Insights into the deriving of rhizosphere microenvironments and its effects on the growth of authentic Angelica sinensis seedlings under continuous monoculture[J].Annals of microbiology,2022,72(1):1-15.
[19] DU J F,LI X Z,LIU M Y,et al.Screening for antagonistic bacteria against Fusarium oxysporum and their influence on the consecutive monoculture problem of Rehmannia glutinosa[J].Journal of plant pathology,2020,102(2):489-497.
[20] YANG Q X,WANG R F,XU Y Y,et al.Dynamic change of the rhizosphere microbial community in response to growth stages of consecutively monocultured Rehmanniae glutinosa[J].Biologia,2016,71(12):1320-1329.
[21] DONG L L,XU J,F(xiàn)ENG G Q,et al.Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system[J].Scientific reports,2016,6:1-11.
[22] LI J R,CHEN X Z,LI S M,et al.Variations of rhizospheric soil microbial communities in response to continuous Andrographis paniculata cropping practices[J].Botanical studies,2020,61:1-13.
[23] 周界,李明,徐友陽,等.基于高通量測(cè)序的穿心蓮連作根際土壤細(xì)菌群落多樣性分析[J].華南農(nóng)業(yè)大學(xué)學(xué)報(bào),2021,42(3):55-63.
[24] LI C W,CHEN G Z,ZHANG J L,et al.The comprehensive changes in soil properties are continuous cropping obstacles associated with American ginseng (Panax quinquefolius) cultivation[J].Scientific reports,2021,11(1):1-14.
[25] LIU S,WANG Z Y,NIU J F,et al.Changes in physicochemical properties,enzymatic activities,and the microbial community of soil significantly influence the continuous cropping of Panax quinquefolius L.(American ginseng)[J].Plant and soil,2021,463(1/2):427-446.
[26] RICE E L.Allelopathy[M].2nd Edition.New York:Academic Press,1984.
[27] YUAN Y D,ZUO J J,ZHANG H Y,et al.The Chinese medicinal plants rhizosphere: Metabolites,microorganisms,and interaction[J/OL].Rhizosphere,2022,22[2022-07-25].https://doi.org/10.1016/j.rhisph.2022.100540.
[28] JILANI G,MAHMOOD S,CHAUDHRY A N,et al.Allelochemicals:Sources,toxicity and microbial transformation in soil:A review[J].Annals of microbiology,2008,58(3):351-357.
[29] BERTIN C,YANG X H,WESTON L A.The role of root exudates and allelochemicals in the rhizosphere[J].Plant and soil,2003,256(1):67-83.
[30] 孫雪冰,范鶴齡,黃小龍,等.山藥化感物質(zhì)對(duì)山藥和玉米種子萌發(fā)及幼苗生長(zhǎng)的影響[J].熱帶作物學(xué)報(bào),2022,43(9):1853-1861.
[31] YAN Z Q,WANG D D,DING L,et al.Mechanism of artemisinin phytotoxicity action: Induction of reactive oxygen species and cell death in lettuce seedlings[J].Plant physiology & biochemistry,2015,88:53-59.
[32] LATIF S,CHIAPUSIO G,WESTON L A.Allelopathy and the role of allelochemicals in plant defence[J].Advances in botanical research,2017,82:19-54.
[33] 鞠吉東,付心雨,焦煥然,等.根際分泌物介導(dǎo)土壤微生物協(xié)同致害連作藥用植物的分析與探討[J].中國(guó)實(shí)驗(yàn)方劑學(xué)雜志,2022,28(20):92-99.
[34] 戰(zhàn)宇,張連學(xué),孟祥茹,等.不同盆栽人參土壤酚酸含量及酶活性變化研究[J/OL].吉林農(nóng)業(yè)大學(xué)學(xué)報(bào),2020-12-18[2022-04-25].https://doi.org/10.13327/j.jjlau.2020.5987.
[35] 李自博,周如軍,解宇嬌,等.人參連作根際土壤中酚酸物質(zhì)對(duì)人參銹腐病菌的化感效應(yīng)[J].應(yīng)用生態(tài)學(xué)報(bào),2016,27(11):3616-3622.
[36] 楊莉,于俐,孫卓,等.人參根系分泌物中有機(jī)酸及皂苷對(duì)人參病原菌與生防菌的化感差異研究[J].中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),2022,24(6):145-155.
[37] 黃小芳,李勇,易茜茜,等.五種化感物質(zhì)對(duì)人參根系酶活性的影響[J].中草藥,2010,41(1):117-121.
[38] MENG L F,XIA Z,LV J S,et al.Extraction and GC-MS analysis of phenolic acids in rhizosphere soil of Pinellia ternate[J].Journal of radiation research and applied sciences,2022,15(3):40-45.
[39] 萬子玉,李巧,賴月月,等.半夏酚酸類化感物質(zhì)積累規(guī)律研究[J].生態(tài)毒理學(xué)報(bào),2021,16(6):335-344.
[40] LIU J K,YAN Z Q,LI X Z,et al.Characterization of allelochemicals from the rhizosphere soil of Pinellia ternate (Thnub.) and their inhibition activity on protective enzymes[J].Applied soil ecology,2018,125:301-306.
[41] 王禮科,羅夫來,王華磊,等.半夏不同連作年限土壤酶活性、微生物及化感物質(zhì)的分析[J].中藥材,2021,44(4):798-801.
[42] 唐成林,羅夫來,趙致,等.半夏植株腐解液對(duì)8種作物的化感作用及化感物質(zhì)成分分析[J].核農(nóng)學(xué)報(bào),2018,32(8):1639-1648.
[43] 李麗,蔣景龍,董艷鑫,等.連作西洋參根際土壤化感物質(zhì)篩選及化感效應(yīng)分析[J].西北農(nóng)業(yè)學(xué)報(bào),2022,31(8):1046-1057.
[44] 李麗,蔣景龍.基于代謝組學(xué)分析根腐病西洋參根際土壤特異代謝物[J].分子植物育種,2021,19(18):6012-6019.
[45] REN X,YAN Z Q,HE X F,et al.Allelochemicals from rhizosphere soils of Glycyrrhiza uralensis Fisch: Discovery of the autotoxic compounds of a traditional herbal medicine[J].Industrial crops & products,2017,97:302-307.
[46] XIN A Y,LI X Z,JIN H,et al.The accumulation of reactive oxygen species in root tips caused by autotoxic allelochemicals-A significant factor for replant problem of Angelica sinensis (Oliv.) Diels[J].Industrial crops & products,2019,138:1-8.
[47] 張新慧,郎多勇,張恩和.當(dāng)歸根際土壤水浸液的自毒作用研究及化感物質(zhì)的鑒定[J].中草藥,2010,41(12):2063-2066.
[48] QIAO B,LI C Y,LIANG C Y,et al.Determination of phenolic acids in Rehmannia glutinosa rhizosphere using a new method of microdialysis-HPLC[J].South African journal of botany,2022,148:387-395.
[49] 李振方,齊曉輝,李奇松,等.地黃自毒物質(zhì)提取及其生物指標(biāo)測(cè)定[J].生態(tài)學(xué)報(bào),2010,30(10):2576-2584.
[50] ZHANG B,WESTON P A,GU L,et al.Identification of phytotoxic metabolites released from Rehmannia glutinosa suggest their importance in the formation of its replant problem[J].Plant and soil,2019,441(1/2):439-454.
[51] 吳立潔,劉杰,王文祎,等.三七根際土壤中酚酸類物質(zhì)的鑒定及含量測(cè)定[J].世界科學(xué)技術(shù)-中醫(yī)藥現(xiàn)代化,2014,16(4):825-829.
[52] QIAO Y J,GU C Z,ZHU H T,et al.Allelochemicals of Panax notoginseng and their effects on various plants and rhizosphere microorganisms[J].Plant diversity,2020,42(5):323-333.
[53] 向維.三七根系分泌物的自毒作用及自毒物質(zhì)研究[D].南寧:廣西大學(xué),2016.
[54] 周艷,張紅瑞,沈玉聰,等.三七總皂苷及兩種單體皂苷對(duì)三七幼苗的化感作用研究[J].河南農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,51(6):786-791.
[55] 游佩進(jìn).連作三七土壤中自毒物質(zhì)的研究[D].北京:北京中醫(yī)藥大學(xué),2009.
[56] 黃鈺芳,張恩和,張新慧,等.蘭州百合不同連作年限土壤中化感物質(zhì)的檢測(cè)及其自毒效應(yīng)的研究[J].干旱地區(qū)農(nóng)業(yè)研究,2021,39(2):62-68,94.
[57] 黃鈺芳,張恩和,張新慧,等.蘭州百合連作土壤水浸液自毒作用研究[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,48(7):84-93.
[58] 黃鈺芳,張恩和,張新慧,等.蘭州百合根及鱗莖水浸液自毒作用的研究[J].草業(yè)學(xué)報(bào),2017,26(8):93-103.
[59] 楊焱.微生物肥料對(duì)黃芪連作障礙的緩解作用[D].楊凌:西北農(nóng)林科技大學(xué),2022.
[60] 林超,邱黛玉,陳垣,等.黨參根際土壤浸提液對(duì)其種子萌發(fā)和幼苗生長(zhǎng)的影響[J].江蘇農(nóng)業(yè)學(xué)報(bào),2022,38(4):900-906.
[61] XIE M,YAN Z Q,REN X A,et al.Codonopilate A,a triterpenyl ester as main autotoxin in cultivated soil of Codonopsis pilosula (Franch.) Nannf[J].Journal of agricultural & food chemistry,2017,65(10):2032-2038.
[62] 謝敏.黨參、黃芪化感作用及黨參地上部分化學(xué)成分研究[D].北京:中國(guó)科學(xué)院大學(xué),2018.
[63] LI W H,LIU Q Z,CHEN P.Effect of long-term continuous cropping of strawberry on soil bacterial community structure and diversity[J].Journal of integrative agriculture,2018,17(11):2570-2582.
[64] TAN G,LIU Y J,PENG S G,et al.Soil potentials to resist continuous cropping obstacle:Three field cases[J/OL].Environmental research,2021,200[2022-04-24].https://doi.org/10.1016/j.envres.2021.111319.
[65] 李晶晶,續(xù)勇波.百合連作年限對(duì)設(shè)施土壤理化性質(zhì)和生物學(xué)特性的影響[J].土壤通報(bào),2019,50(5):1171-1177.
[66] 于春雷,高嵩,孫文松.連作對(duì)遼細(xì)辛土壤理化性質(zhì)和根際微生物群落特征的影響[J].江蘇農(nóng)業(yè)科學(xué),2022,50(14):250-258.
[67] LIU N,SHAO C,SUN H,et al.Arbuscular mycorrhizal fungi biofertilizer improves American ginseng (Panax quinquefolius L.) growth under the continuous cropping regime[J/OL].Geoderma,2020,363[2022-04-24].https://doi.org/10.1016/j.geoderma.2019.114155.
[68] 陳慧,楊志玲,袁志林,等.白術(shù)連作根際土壤的理化性質(zhì)及微生物區(qū)系變化[J].植物資源與環(huán)境學(xué)報(bào),2014,23(1):24-29.
[69] 邱黛玉,杜毛笑,巫蓉,等.連作障礙對(duì)黨參根際土壤微環(huán)境的影響[J].中國(guó)野生植物資源,2022,41(5):12-17,22.
[70] 孫雪婷,龍光強(qiáng),張廣輝,等.基于三七連作障礙的土壤理化性狀及酶活性研究[J].生態(tài)環(huán)境學(xué)報(bào),2015,24(3):409-417.
[71] ROKUNUZZAMAN M,HAYAKAWA A,YAMANE S,et al.Effect of soil disinfection with chemical and biological methods on bacterial communities[J].Egyptian journal of basic & applied sciences,2016,3(2):141-148.
[72] KLOSE S,AJWA H A.Enzyme activities in agricultural soils fumigated with methyl bromide alternatives[J].Soil biology & biochemistry,2004,36(10):1625-1635.
[73] 曹坳程,方文生,李園,等.我國(guó)土壤熏蒸消毒60年回顧[J].植物保護(hù)學(xué)報(bào),2022,49(1):325-335.
[74] MAO L G,JIANG H Y,WANG Q X,et al.Efficacy of soil fumigation with dazomet for controlling ginger bacterial wilt (Ralstonia solanacearum) in China[J].Crop protection,2017,100:111-116.
[75] 李龍,普榮鳳,李明華,等.氯化苦熏蒸對(duì)土壤和三七生長(zhǎng)發(fā)育的影響[J].中國(guó)中藥雜志,2022,47(3):635-642.
[76] LI Q J,ZHANG D Q,CHENG H Y,et al.Chloropicrin alternated with dazomet improved the soil's physicochemical properties,changed microbial communities and increased strawberry yield[J/OL].Ecotoxicology and environmental safety,2021,220[2022-04-25].https://doi.org/10.1016/j.ecoenv.2021.112362.
[77] 王惟萍,石延霞,趙一杰,等.土壤環(huán)境條件對(duì)威百畝熏蒸防治黃瓜枯萎病的影響[J].植物保護(hù)學(xué)報(bào),2017,44(1):159-167.
[78] 蘇國(guó)禮,師桂英,王文珠,等.異硫氰酸烯丙酯對(duì)蘭州百合枯萎病菌的抑菌作用[J].甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),2022,57(1):98-104,113.
[79] 張大琪,顏冬冬,李青杰,等.二甲基二硫的生物活性評(píng)價(jià)及對(duì)土壤養(yǎng)分的影響[J].植物保護(hù),2020,46(1):151-156.
[80] 胡洪濤,朱志剛,楊靖鐘,等.不同處理對(duì)高山鳳頭姜姜瘟病的防效及土壤細(xì)菌群落結(jié)構(gòu)和功能的影響[J].微生物學(xué)通報(bào),2020,47(6):1763-1775.
[81] CHENG H Y,ZHANG D Q,REN L R,et al.Bio-activation of soil with beneficial microbes after soil fumigation reduces soil-borne pathogens and increases tomato yield[J].Environmental pollution,2021,283:1-12.
[82] CHEN W,TENG Y,LI Z G,et al.Mechanisms by which organic fertilizer and effective microbes mitigate peanut continuous cropping yield constraints in a red soil of South China[J].Applied soil ecology,2018,128:23-34.
[83] LI Z T,ALAMI M M,TANG H M,et al.Applications of Streptomyces jingyangensis T.and Bacillus mucilaginosus A.improve soil health and mitigate the continuous cropping obstacles for Pinellia ternata (Thunb.) Breit[J/OL].Industrial crops & products,2022,180[2022-04-25].https://doi.org/10.1016/j.indcrop.2022.114691.
[84] LI J,YANG Y,WEN J L,et al.Continuous manure application strengthens the associations between soil microbial function and crop production: Evidence from a 7-year multisite field experiment on the Guanzhong Plain[J/OL].Agriculture,ecosystems and environment,2022,338[2022-04-26].https://doi.org/10.1016/j.agee.2022.108082.
[85] ZHANG H Q,ZHENG X Q,WANG X T,et al.Effect of fertilization regimes on continuous cropping growth constraints in watermelon is associated with abundance of key ecological clusters in the rhizosphere[J/OL].Agriculture,ecosystems and environment,2022,339[2022-04-26].https://doi.org/10.1016/j.agee.2022.108135.
[86] LING N,DENG K,SONG Y Y,et al.Variation of rhizosphere bacterial community in watermelon continuous mono-cropping soil by long-term application of a novel bioorganic fertilizer[J].Microbiological research,2014,169(7/8):570-578.
[87] WANG C,NING P,LI J Y,et al.Responses of soil microbial community composition and enzyme activities to long-term organic amendments in a continuous tobacco cropping system[J].Applied soil ecology,2022,169:1-14.
[88] LI Q J, ZHANG D Q, SONG Z X,et al.Organic fertilizer activates soil beneficial microorganisms to promote strawberry growth and soil health after fumigation[J/OL].Environmental pollution,2022,295[2022-04-26].https://doi.org/10.1016/j.envpol.2021.118653.
[89] WANG F Y,ZHANG X M,WEI M T,et al.Appropriate crop rotation alleviates continuous cropping barriers by changing rhizosphere microorganisms in Panax notoginseng[J/OL].Rhizosphere,2022,23[2022-04-25].https://doi.org/10.1016/j.rhisph.2022.100568.
[90] ZHANG J X,ZHOU D P,YUAN X Q,et al.Soil microbiome and metabolome analysis reveals beneficial effects of ginseng-celandine rotation on the rhizosphere soil of ginseng-used fields[J/OL].Rhizosphere,2022,23[2022-04-26].https://doi.org/10.1016/j.rhisph.2022.100559.
[91] CHEN J,GONG J L,XU M G.Implications of continuous and rotational cropping practices on soil bacterial communities in pineapple cultivation[J].European journal of soil biology,2020,97:1-9.
[92] LI B Z,ZHANG Q Q,CHEN Y H,et al.Different crop rotation systems change the rhizosphere bacterial community structure of Astragalus membranaceus (Fisch) Bge.var.mongholicus (Bge.) Hsiao[J].Applied soil ecology,2021,166(1):1-10.
[93] 劉海嬌,左登鴻,徐杰,等.蔥輪作改善土壤微生物群落緩解三七連作障礙的潛力分析[J].中國(guó)生物防治學(xué)報(bào),2022,38(6):1473-1483.