梅英皓 孔方麗 張軼釩 祁珊珊 戴志聰 杜道林
摘要:在全球氣候變化的背景下,我國(guó)極端氣候出現(xiàn)的次數(shù)比以往更加頻繁,而極端的高溫或低溫氣候都對(duì)農(nóng)作物的生長(zhǎng)發(fā)育有負(fù)面影響,嚴(yán)重影響了我國(guó)農(nóng)作物的產(chǎn)量。溫度的改變加快了入侵雜草的遷移和演替,農(nóng)田系統(tǒng)中的入侵雜草和農(nóng)作物競(jìng)爭(zhēng)資源并在競(jìng)爭(zhēng)中獲得優(yōu)勢(shì),最終對(duì)農(nóng)業(yè)生產(chǎn)造成極大的威脅和危害。本文綜述了溫度脅迫對(duì)農(nóng)作物和入侵雜草生長(zhǎng)的影響,并闡述了在溫度改變背景下農(nóng)作物系統(tǒng)可能面臨的困境,最后展望了未來(lái)在溫度變化背景下的農(nóng)作物-雜草系統(tǒng)相關(guān)研究的方向。
關(guān)鍵詞:農(nóng)作物;入侵雜草;極端氣候;溫度脅迫;農(nóng)作物-雜草系統(tǒng)
中圖分類號(hào):S451;Q945.78文獻(xiàn)標(biāo)志碼:A文章編號(hào):1003-935X(2023)01-0001-10
Effect Mechanistic of Temperature Stress on Growth of Crops and Invasive Weeds
MEI Ying-hao1, KONG Fang-li1, ZHANG Yi-fan1, QI Shan-shan2, DAI Zhi-cong1, DU Dao-lin1
(1.School of Environment and Safety Engineering,Jiangsu University,Zhenjiang 212013,China;
2.School of Agricultural Engineering,Jiangsu University,Zhenjiang 212013,China)
Abstract:In the context of global climate change,the frequency of extreme climate in China is more frequent than before,and the extreme high temperature or low temperature climate negatively impacts on the growth and development of crops,and seriously affectes their yield. The change in climate temperature accelerates the migration and succession of invasive weeds which compete with crops for resources and usually gain advantages in farming systems .It ultimately poses a great threat and harm to agricultural production. This paper reviewed the effects of temperature stress on the growth of crops and invasive weeds,and described the possible dilemmas faced by crop systems,and finally looked into future directions for research related to crop-weed systems under the context of climate temperature change.
Key words:crop;invasive weed;extreme climate;temperature stress;crop-weed system
收稿日期:2022-09-09
基金項(xiàng)目:國(guó)家自然科學(xué)基金(編號(hào):32271587、32071521);江蘇省自然科學(xué)基金(編號(hào):BK20211321);江蘇省碳達(dá)峰碳中和科技創(chuàng)新專項(xiàng)資金(編號(hào):BK20220030);江蘇大學(xué)青年英才計(jì)劃。
作者簡(jiǎn)介:梅英皓(1997—),男,江蘇南京人,碩士研究生,主要從事農(nóng)業(yè)環(huán)境生態(tài)學(xué)研究。E-mail:myh809772414@163.com。
通信作者:戴志聰,博士,副教授,主要從事環(huán)境科學(xué)與工程、環(huán)境生態(tài)學(xué)研究。E-mail:daizhicong@163.com。
外來(lái)入侵雜草是指由于人為或自然原因,從原始生境進(jìn)入一個(gè)新生境后對(duì)該環(huán)境中的生物、農(nóng)林牧漁業(yè)生產(chǎn)造成巨大經(jīng)濟(jì)損失、對(duì)人類健康造成危害,破壞新生境中原來(lái)生態(tài)平衡的一類植物[1]。介于全球氣候變化的步伐不斷加快,外來(lái)雜草入侵的形勢(shì)已經(jīng)迫在眉睫,如今外來(lái)雜草入侵是全球性的環(huán)境問(wèn)題,尤其對(duì)農(nóng)業(yè)生產(chǎn)造成了極大的危害。為了進(jìn)一步了解有關(guān)農(nóng)作物-雜草系統(tǒng)相關(guān)研究的現(xiàn)狀,筆者通過(guò)WOS數(shù)據(jù)庫(kù)檢索了近35年以來(lái)相關(guān)方向的出版物(圖1),發(fā)現(xiàn)近35年以來(lái)脅迫環(huán)境下農(nóng)作物-雜草系統(tǒng)受到的關(guān)注度在不斷上升,特別是近5年的相關(guān)研究成果顯著。
溫度脅迫被認(rèn)為是影響生物過(guò)程、限制植物生長(zhǎng)和生產(chǎn)力的主要環(huán)境因素之一[2]。研究表明,全球平均氣溫將會(huì)在2050年前上升 1.5 ℃[3]。因此,短期內(nèi)平均溫度的升高和極端溫度脅迫的出現(xiàn)都可能對(duì)農(nóng)作物生長(zhǎng)和發(fā)育產(chǎn)生不可挽回的負(fù)面影響[2]。例如,溫度脅迫能夠誘導(dǎo)植物在分子、細(xì)胞、生理和生化水平上發(fā)生顯著改變[4],并會(huì)嚴(yán)重破壞蛋白質(zhì)、破壞細(xì)胞膜、影響水養(yǎng)關(guān)系、干擾光合作用、影響植物的生長(zhǎng)發(fā)育,最終導(dǎo)致產(chǎn)量下降[2]。對(duì)農(nóng)田系統(tǒng)而言,雜草入侵(生物脅迫)和溫度脅迫(非生物脅迫)的共同作用可能對(duì)田間農(nóng)作物產(chǎn)生的負(fù)面影響更加嚴(yán)重,例如雜草競(jìng)爭(zhēng)和高溫脅迫的共同作用對(duì)大豆的生產(chǎn)力造成了明顯的抑制[5];高溫加快了雜草的入侵速度并導(dǎo)致了大豆和玉米產(chǎn)量的損失[6]。
當(dāng)今,入侵雜草在世界各地內(nèi)都造成了嚴(yán)重的危害,例如嚴(yán)重破壞了當(dāng)?shù)氐奈锓N多樣性,對(duì)生態(tài)環(huán)境造成危害;過(guò)度入侵傷害了原生境內(nèi)的本地農(nóng)作物生長(zhǎng),給農(nóng)業(yè)生產(chǎn)和人們的生活帶來(lái)巨大麻煩;需要消耗大量人力物力對(duì)入侵雜草進(jìn)行治理,造成了巨大的經(jīng)濟(jì)損失[7]。因此,揭示溫度脅迫下農(nóng)作物及雜草的響應(yīng)機(jī)制,合理預(yù)測(cè)并預(yù)防入侵雜草對(duì)農(nóng)作物產(chǎn)生的負(fù)面影響,提出對(duì)農(nóng)作物管理的可行性計(jì)劃,有助于實(shí)現(xiàn)未來(lái)農(nóng)業(yè)的可持續(xù)發(fā)展并保障日益增長(zhǎng)的世界人口的糧食安全[8]。本文分別闡述了溫度脅迫對(duì)農(nóng)作物及入侵雜草生長(zhǎng)的影響,并進(jìn)一步探討現(xiàn)階段環(huán)境溫度脅迫對(duì)農(nóng)作物-入侵雜草系統(tǒng)的影響,最后對(duì)未來(lái)有關(guān)溫度脅迫下農(nóng)作物培養(yǎng)的研究方向進(jìn)行展望。
1 溫度脅迫對(duì)農(nóng)作物生長(zhǎng)的影響
非生物脅迫通常是相互關(guān)聯(lián)的,無(wú)論是單獨(dú)的還是聯(lián)合的,都會(huì)引起形態(tài)、生理、生化和分子變化,從而對(duì)植物的生長(zhǎng)和生產(chǎn)力產(chǎn)生不利影響,并最終影響農(nóng)作物的產(chǎn)量。高溫、干旱、低溫和鹽分是主要的非生物脅迫,它們會(huì)在包括農(nóng)作物在內(nèi)的植物物種中引起嚴(yán)重的細(xì)胞損傷。植物生長(zhǎng)和繁殖過(guò)程中會(huì)自然發(fā)生溫度波動(dòng),然而極端高溫或低溫變化會(huì)破壞正常生長(zhǎng)所需的分子間的相互作用,從而損害植物發(fā)育和坐果。為了進(jìn)一步了解溫度脅迫對(duì)農(nóng)作物影響的相關(guān)研究程度,筆者首先在WOS數(shù)據(jù)庫(kù)中“農(nóng)作物”和“脅迫”的基本搜索選項(xiàng)卡下搜索了所有領(lǐng)域的結(jié)果,利用VOSviewer 1.6.18軟件對(duì)WOS數(shù)據(jù)庫(kù)的前10 000個(gè)結(jié)果進(jìn)行分析并生成了網(wǎng)絡(luò)圖,添加條件中每個(gè)術(shù)語(yǔ)出現(xiàn)的最小次數(shù)為20次。圖2中節(jié)點(diǎn)的距離反映了各個(gè)熱詞間的關(guān)聯(lián)性。網(wǎng)絡(luò)圖的結(jié)果表明,與脅迫(tolerance)、植物生長(zhǎng)(plant growth)以及模型(model)有關(guān)的研究占據(jù)較大的比重,同時(shí)脅迫條件也與植物生長(zhǎng)關(guān)聯(lián)性極強(qiáng)。極端氣候溫度的變化已經(jīng)對(duì)全世界的農(nóng)業(yè)生產(chǎn)產(chǎn)生了重大影響,因?yàn)闇囟让{迫會(huì)造成嚴(yán)重的產(chǎn)量損失,給未來(lái)的全球糧食安全帶來(lái)巨大風(fēng)險(xiǎn)[9]。據(jù)預(yù)測(cè),極端氣候溫度將對(duì)植物的生長(zhǎng)和發(fā)育產(chǎn)生普遍的負(fù)面影響,導(dǎo)致作物生產(chǎn)力的災(zāi)難性損失,并導(dǎo)致廣泛的饑荒。總的來(lái)說(shuō),溫度脅迫給未來(lái)的農(nóng)業(yè)生產(chǎn)和全球糧食安全帶來(lái)了額外的挑戰(zhàn),因此對(duì)溫度脅迫下農(nóng)作物生長(zhǎng)機(jī)制的研究是極具意義的。
1.1 高溫脅迫對(duì)農(nóng)作物生長(zhǎng)的影響
植物在自然界所面臨的主要非生物脅迫形式中,高溫脅迫對(duì)植物細(xì)胞的生理和代謝有不同程度的負(fù)面影響。植物對(duì)高溫的敏感性隨植物的發(fā)育階段而變化,高溫脅迫在一定程度上影響所有的無(wú)性和生殖階段。在高溫下可以觀察到植物的各種生理?yè)p傷,例如葉片和莖干被灼燒、葉片的脫落和衰老、芽和根的生長(zhǎng)被抑制或是果實(shí)被損傷,這些都能夠?qū)е轮参锏纳a(chǎn)力下降[10]。但在許多情況下,植物會(huì)通過(guò)改變自身結(jié)構(gòu)形態(tài)來(lái)避免高溫脅迫帶來(lái)的影響,例如下胚軸和葉柄伸長(zhǎng)[11]。
通常來(lái)說(shuō),高溫脅迫會(huì)引起植物器官呼吸和光合作用的變化,從而導(dǎo)致植物生命周期的縮短和生產(chǎn)力的下降[12]。早期的高溫脅迫會(huì)促使植物的葉綠體蛋白復(fù)合物發(fā)生結(jié)構(gòu)改變和酶活性降低[13]。此外,高溫脅迫會(huì)通過(guò)對(duì)細(xì)胞膜、微管組織并最終對(duì)細(xì)胞骨架造成傷害,從而改變細(xì)胞膜的通透性并改變細(xì)胞的分化、伸長(zhǎng)和擴(kuò)張過(guò)程[14]。例如,葉綠體基質(zhì)和類囊體膜系統(tǒng)被認(rèn)為是受高溫?fù)p傷的主要部位[15]。同時(shí),高溫對(duì)葉綠素和光合器官產(chǎn)生的負(fù)面影響與有害活性氧 (ROS) 的產(chǎn)生有關(guān)[16],高溫脅迫通過(guò)增加葉綠素酶活性和減少光合色素的數(shù)量來(lái)降低植物的光合和呼吸活性[17]。
一般而言,在高溫脅迫下的植物組織中,代謝產(chǎn)物的生物合成往往會(huì)受到干擾[18]。高溫通過(guò)下調(diào)碳水化合物代謝中的特定基因來(lái)改變淀粉積累、碳代謝酶和蔗糖合成酶的活性[19],響應(yīng)高溫脅迫而積累的主要代謝物包括脯氨酸、甘氨酸甜菜堿和可溶性糖[20]。許多植物物種也會(huì)積累其他滲透物,例如糖醇(多元醇)、三級(jí)和四級(jí)銨化合物[21]。酚類等次級(jí)代謝物包括黃酮類化合物、花青素和植物類固醇,也積極參與植物在高溫脅迫下的響應(yīng),并且通常在與耐熱性相關(guān)的非生物脅迫反應(yīng)中發(fā)揮作用[20]。例如,高溫脅迫會(huì)導(dǎo)致番茄植株的可溶性酚類物質(zhì)積累,提高苯丙氨酸解氨酶的活性并降低過(guò)氧化物酶和多酚氧化酶的活性,這可能是對(duì)高溫脅迫的一種響應(yīng)[22]。對(duì)植物激素而言,包括脫落酸(ABA)、水楊酸(SA)和乙烯(ET)在內(nèi)的幾種關(guān)鍵植物激素在高溫脅迫下含量會(huì)增加;而其他一些激素,例如細(xì)胞分裂素(CK)、生長(zhǎng)素(AUX) 和赤霉素(GA)的含量則會(huì)降低,這些變化最終會(huì)導(dǎo)致植物過(guò)早衰老[23]。
對(duì)農(nóng)作物而言,農(nóng)作物的發(fā)育和生理過(guò)程廣泛受到高溫脅迫的負(fù)面影響。當(dāng)高溫發(fā)生在繁殖等關(guān)鍵發(fā)育階段時(shí),這成為農(nóng)作物適應(yīng)環(huán)境變化的主要限制之一[24]。例如,小麥生殖發(fā)育過(guò)程中的高溫加速了光合作用和葉面積的下降,降低了其芽和籽粒的質(zhì)量及糖含量,同時(shí)也降低了水分利用效率[25]。長(zhǎng)期以來(lái),人們一直認(rèn)為有性生殖和開(kāi)花對(duì)高溫脅迫極為敏感,這通常會(huì)導(dǎo)致農(nóng)作物產(chǎn)量下降[26]。在溫室下進(jìn)行的研究表明,高溫在花芽萌生階段對(duì)其影響最大,植物對(duì)高溫的敏感性可以維持?jǐn)?shù)十天[27]。許多豆類和谷類在開(kāi)花期間對(duì)高溫脅迫表現(xiàn)得很敏感,并且一些溫帶甚至熱帶果樹(shù)物種的坐果率也嚴(yán)重下降[28]。此外,在許多對(duì)溫度敏感的農(nóng)作物中可以廣泛觀察到高溫脅迫導(dǎo)致的雄性不育,高溫脅迫對(duì)花粉發(fā)育造成的損害是農(nóng)作物減產(chǎn)的主要因素之一[29-30]。例如,高溫脅迫導(dǎo)致了番茄在發(fā)育階段可用碳水化合物的消耗,從而導(dǎo)致其坐果和其他相關(guān)參數(shù)減少[31]。在高粱中,高溫脅迫也減少了其花粉粒中碳水化合物及柱頭組織中三磷酸腺苷(ATP)的積累,從而影響了其最終的產(chǎn)率[32]。總的來(lái)說(shuō),高溫脅迫會(huì)對(duì)農(nóng)作物的各種生理過(guò)程產(chǎn)生負(fù)面影響,最終影響農(nóng)作物的營(yíng)養(yǎng)和生長(zhǎng)發(fā)育,從而對(duì)坐果和產(chǎn)量產(chǎn)生負(fù)面影響。
1.2 低溫脅迫對(duì)農(nóng)作物生長(zhǎng)的影響
低溫脅迫是嚴(yán)重影響植物生長(zhǎng)發(fā)育、影響作物生產(chǎn)力的主要環(huán)境因素之一。植物已經(jīng)進(jìn)化出一系列機(jī)制,使它們能夠在生理和分子水平上適應(yīng)冷脅迫。過(guò)去的20年中,在確定與低溫脅迫耐受性有關(guān)的關(guān)鍵成分并剖析其調(diào)節(jié)機(jī)制方面取得了很大進(jìn)展。然而,許多農(nóng)作物,包括水稻(Oryza sativa)、玉米(Zea mays)、番茄(Solanum lycopersicum)、大豆(Glycine max)和棉花(Gossypium hirsutum)缺乏適應(yīng)寒冷溫度的能力[33]。低溫脅迫往往對(duì)農(nóng)作物的生長(zhǎng)和發(fā)育產(chǎn)生不利影響,限制了農(nóng)作物物種的地理分布,并降低了世界范圍內(nèi)的作物產(chǎn)量[34]。研究表明,植物已經(jīng)進(jìn)化出復(fù)雜的機(jī)制來(lái)抵御寒冷的壓力,冷馴化是其中之一,這是植物在先前暴露于非致命低溫時(shí)獲得增加的抗凍性的過(guò)程[35-36]。
冷脅迫,包括低溫(0~15 ℃)和冷凍(低于 0 ℃),是一種非生物脅迫,對(duì)植物的生長(zhǎng)和農(nóng)業(yè)生產(chǎn)力產(chǎn)生不利影響[37-38]。低溫脅迫通常會(huì)限制植物的生長(zhǎng)發(fā)育,并對(duì)植物細(xì)胞有幾個(gè)主要影響。首先,低溫脅迫會(huì)影響植物細(xì)胞中的膜硬化,這被認(rèn)為是觸發(fā)植物下游冷脅迫反應(yīng)的主要事件[39]。其次,低溫脅迫會(huì)擾亂蛋白質(zhì)或蛋白質(zhì)復(fù)合物的穩(wěn)定性,并降低酶如ROS清除酶的活性,由于二氧化碳的光合作用固定在低溫脅迫下十分有限,這些過(guò)程都會(huì)導(dǎo)致光抑制和光合作用受損,以及相當(dāng)大的膜損傷[40-41]。因此,對(duì)低溫脅迫引起的光抑制的耐受性似乎也是一種冷適應(yīng)的機(jī)制,并且這種機(jī)制與農(nóng)作物的耐冷性密切相關(guān)。例如,菠菜、冬小麥、黑麥和蠶豆等耐寒性農(nóng)作物能在低溫環(huán)境中保持較高的二氧化碳同化率,而對(duì)低溫敏感的黃瓜、煙草和大米的二氧化碳同化率則會(huì)顯著降低[42]。再次,低溫脅迫會(huì)影響基因表達(dá)和蛋白質(zhì)合成,因?yàn)樗欣赗NA二級(jí)結(jié)構(gòu)的形成[43]。冷凍脅迫比寒冷脅迫對(duì)植物的危害更大,甚至可能導(dǎo)致植物死亡。在自然條件下,凍害始于細(xì)胞外冰核,一旦冰核形成,就會(huì)生長(zhǎng)并形成冰晶,冰晶會(huì)擴(kuò)散到質(zhì)外體中,在那里它們會(huì)誘導(dǎo)水流出,導(dǎo)致細(xì)胞脫水,當(dāng)冰晶擴(kuò)散到細(xì)胞中時(shí),會(huì)發(fā)生不可逆轉(zhuǎn)的損害[34]。植物已經(jīng)進(jìn)化出復(fù)雜的機(jī)制來(lái)限制寒冷引起的損害,例如,冷馴化是一個(gè)過(guò)程,在該過(guò)程中,植物在非致命低溫下暴露幾天會(huì)增強(qiáng)抵抗隨后的冰凍脅迫的能力[35-36]。植物會(huì)通過(guò)合成大量的保護(hù)性物質(zhì)(例如可溶性糖、脯氨酸)和蛋白質(zhì)(例如LEA、AFP、CSP)來(lái)提高它們對(duì)冷脅迫的耐受性[44]??扇苄蕴恰⒏彼岷推渌头肿恿咳苜|(zhì)可作為滲透物保護(hù)植物免受冷脅迫造成的損害[40]。最后,低溫脅迫會(huì)通過(guò)影響植物激素的變化從而影響其耐寒性,植物激素中的脫落酸(ABA)、生長(zhǎng)素、赤霉素(GA)、水楊酸(SA)和乙烯與寒冷反應(yīng)呈正相關(guān)或負(fù)相關(guān)[45]。通常ABA水平會(huì)隨著溫度的降低而增加[46],但ABA對(duì)冷響應(yīng)轉(zhuǎn)錄調(diào)節(jié)的作用較為有限。低溫對(duì)一些植物的結(jié)構(gòu)有很大的影響,例如生長(zhǎng)素和GA與低溫條件下的細(xì)胞伸長(zhǎng)率有直接相關(guān)關(guān)系[47]。在低溫條件下,內(nèi)源性GA和生長(zhǎng)素水平降低,會(huì)導(dǎo)致植物的矮化結(jié)構(gòu),例如小麥品種Rht3的表型矮化[48];內(nèi)源性游離SA和葡糖基SA在農(nóng)作物的降溫過(guò)程中積累[22];SA處理增強(qiáng)了各種農(nóng)作物的耐寒性,例如水稻、玉米、小麥、馬鈴薯等[49-50]。綜上所述,低溫脅迫會(huì)嚴(yán)重影響農(nóng)作物的正常生長(zhǎng)發(fā)育和生產(chǎn)力,因此有關(guān)低溫脅迫環(huán)境下如何幫助農(nóng)作物完成生長(zhǎng)發(fā)育的更深層次的研究是不可或缺的。
2 溫度脅迫對(duì)入侵雜草生長(zhǎng)的影響
與農(nóng)作物相比,入侵雜草具有更強(qiáng)的可塑性,因?yàn)樗鼈儧](méi)有被針對(duì)特定的優(yōu)勢(shì)性狀(如抗病性、生長(zhǎng)均勻、高結(jié)實(shí)率等)進(jìn)行選擇培育。因此,與農(nóng)作物相比,入侵雜草往往在響應(yīng)環(huán)境壓力時(shí)能夠表現(xiàn)出更強(qiáng)的適應(yīng)能力。此外,入侵雜草之間的高度遺傳多樣性使它們能夠在氣候變化的環(huán)境下獲得更強(qiáng)的競(jìng)爭(zhēng)適應(yīng)性[51],氣候變化對(duì)入侵雜草的影響主要包括物種豐度、豐富度、地理范圍和物候。同樣地,為了進(jìn)一步了解溫度脅迫對(duì)雜草影響的相關(guān)研究程度,筆者首先在WOS數(shù)據(jù)庫(kù)中“雜草”和“脅迫”的基本搜索選項(xiàng)卡下搜索了所有領(lǐng)域的結(jié)果,再利用VOSviewer (1.6.18)軟件對(duì)WOS數(shù)據(jù)庫(kù)中共2 306個(gè)結(jié)果進(jìn)行分析并生成了網(wǎng)絡(luò)圖,添加條件中每個(gè)術(shù)語(yǔ)出現(xiàn)的最小次數(shù)為20次,圖中節(jié)點(diǎn)的距離反映了各個(gè)熱詞間的關(guān)聯(lián)性。結(jié)果如圖3表示,與管理(management)、競(jìng)爭(zhēng)(competition)以及機(jī)制(mechanism)有關(guān)的研究占據(jù)較大的比重,同時(shí)競(jìng)爭(zhēng)也與管理關(guān)聯(lián)性極強(qiáng),這說(shuō)明脅迫環(huán)境下有關(guān)雜草機(jī)制的研究是當(dāng)前的熱點(diǎn)和重心。
環(huán)境溫度是植物生長(zhǎng)最重要的環(huán)境因子之一,溫度的變化會(huì)在短期或長(zhǎng)期時(shí)間尺度內(nèi)對(duì)入侵雜草產(chǎn)生影響。許多研究報(bào)道了入侵雜草對(duì)環(huán)境溫度變化的響應(yīng),例如,入侵雜草石茅(Sorghum halepense)在寒冷氣候下的空間分布由于其根莖不耐受低溫而被限制[52]。同樣地,牽?;ú荒偷蜏?,但它們能夠在較高的溫度環(huán)境里發(fā)芽和生長(zhǎng)[53]。此外,Ziska等的研究表明,在溫度升高 3 ℃ 的環(huán)境下,筒軸茅(Rottboellia cochinchinensis)的生物量和葉面積都在很大程度上得到增長(zhǎng)[54]。許多入侵雜草的地理范圍主要由溫度決定,人們?cè)缇驼J(rèn)識(shí)到溫度決定了入侵雜草在新環(huán)境中的成功定植[55],氣候變暖將影響入侵雜草的生長(zhǎng)、繁殖和分布。例如,溫度升高改變了美國(guó)境內(nèi)中西部和中南部地區(qū)的緯度區(qū)分,從而改變了對(duì)入侵雜草的地理限制;熱帶或亞熱帶環(huán)境中許多入侵性非常強(qiáng)的入侵雜草導(dǎo)致了大量大豆和玉米的損失[56]。此外,溫度上升可能對(duì)C3和C4植物的生長(zhǎng)特別重要,可能更有利于C4入侵雜草[51],如鼠尾粟(Sporobolus indicus)。同時(shí),這又可以為一些受限于低溫的入侵雜草提供合適的生長(zhǎng)條件,而一些熱帶和亞熱帶物種的分布則會(huì)因此受到限制。一些熱帶和亞熱帶C4物種的分布可能向北轉(zhuǎn)移[57],從而使溫帶地區(qū)的農(nóng)業(yè)受到入侵雜草的影響。此外,Ziska等認(rèn)為,溫度上升將促進(jìn)入侵雜草的擴(kuò)張,在溫度升高3 ℃的情況下,筒軸茅的生物量和葉面積分別增加88%和68%[54],這將可能幫助其加快入侵進(jìn)程。相反,極端低溫氣候的出現(xiàn)可能會(huì)對(duì)部分入侵雜草的入侵范圍造成限制,例如野生黍稷和加拿大薊皆受到低溫影響[57]。
總體而言,大量的研究表明了入侵雜草在氣候變暖的環(huán)境下有進(jìn)一步擴(kuò)張其入侵范圍的可能性,但有關(guān)低溫脅迫對(duì)入侵雜草的限制和影響仍需要大量的研究投入,這將為預(yù)測(cè)全球氣溫變化對(duì)入侵雜草的影響(特別是雜草往兩極入侵)提供可靠的依據(jù)和對(duì)策。
3 溫度脅迫對(duì)農(nóng)作物-入侵雜草系統(tǒng)的影響
氣候變化對(duì)農(nóng)作物與入侵雜草競(jìng)爭(zhēng)結(jié)果的影響很難僅通過(guò)單一模型來(lái)預(yù)測(cè)和判斷,因?yàn)樵谵r(nóng)田系統(tǒng)中的各種氣候條件會(huì)同時(shí)發(fā)生交互作用,最終將影響農(nóng)作物和雜草競(jìng)爭(zhēng)的結(jié)果[6]。氣候溫度的上升往往伴隨著二氧化碳濃度的上升和干旱
頻率的增多[58],因此,僅單一地探討溫度脅迫對(duì)農(nóng)作物和入侵雜草體系的影響是不夠充足的,需要將多種氣候變化因素的相互作用綜合考慮在內(nèi),這樣才能合理地預(yù)估溫度脅迫對(duì)農(nóng)作物和入侵雜草競(jìng)爭(zhēng)體系的影響。相似地,為了進(jìn)一步了解溫度脅迫對(duì)農(nóng)作物-雜草體系影響的相關(guān)研究程度,筆者首先在WOS數(shù)據(jù)庫(kù)中以“農(nóng)作物”“雜草”和“脅迫”的基本搜索選項(xiàng)卡下搜索了所有領(lǐng)域的結(jié)果,再利用VOSviewer (1.6.18)軟件對(duì)WOS數(shù)據(jù)庫(kù)中共941個(gè)結(jié)果進(jìn)行分析并生成了網(wǎng)絡(luò)圖,添加條件中每個(gè)術(shù)語(yǔ)出現(xiàn)的最小次數(shù)為20次。如圖4所示,與溫度(temperature)、管理(management)以及除草劑(herbicide)有關(guān)的研究占據(jù)較大的比重,同時(shí)溫度條件也與諸多術(shù)語(yǔ)有緊密的相關(guān)性。
有研究表明,相對(duì)較小的氣溫變化也會(huì)強(qiáng)烈刺激熱帶雜草的生長(zhǎng)[59],但對(duì)于熱帶農(nóng)作物而言,二氧化碳上升對(duì)這些雜草的潛在協(xié)同效應(yīng)尚未明確。據(jù)報(bào)道,增高的溫度和二氧化碳皆對(duì)草原生態(tài)系統(tǒng)中的植物生長(zhǎng)速度產(chǎn)生負(fù)面影響[60]。溫度和二氧化碳水平升高將改變雜草與農(nóng)作物的競(jìng)爭(zhēng)作用,因而對(duì)入侵雜草的控制也會(huì)受到這些環(huán)境變化的影響[61]。對(duì)入侵雜草而言,溫度脅迫會(huì)降低其蒸騰作用并導(dǎo)致其葉片表型特征的變化,或因二氧化碳升高而導(dǎo)致其根莖比的增大,這會(huì)影響雜草對(duì)除草劑的吸收,最終導(dǎo)致除草劑效率的降低[62]。對(duì)農(nóng)作物而言,溫度脅迫會(huì)導(dǎo)致其葉片發(fā)育、開(kāi)花、收獲和結(jié)果的物候發(fā)生改變[63]。此外,溫度脅迫會(huì)導(dǎo)致更高的呼吸速率、更短的種子形成期和更少的生物量產(chǎn)量,從而降低了農(nóng)作物產(chǎn)量[64]。尤其是玉米、大豆、小麥和棉花等溫度敏感作物的產(chǎn)量[65]及杏仁等核果、葡萄等漿果、柑橘類等特殊作物的產(chǎn)量將隨著區(qū)域和局部尺度的溫度升高而降低[66]。
有關(guān)高溫脅迫和長(zhǎng)期干旱對(duì)雜草入侵的影響預(yù)期表明,較長(zhǎng)的干旱期與偶爾潮濕的氣候相交織將加劇雜草的入侵?jǐn)U張。因?yàn)楦邷孛{迫和干旱都會(huì)對(duì)本地定植的農(nóng)作物產(chǎn)生負(fù)面影響,削弱本地農(nóng)作物的生存能力,從而留出更多的生態(tài)空間給予雜草入侵的可能[67]??傮w來(lái)說(shuō),有關(guān)農(nóng)作物和入侵雜草在溫度脅迫下的交互是復(fù)雜而重要的,這能夠?yàn)槿藗冊(cè)谖磥?lái)農(nóng)作物生產(chǎn)及入侵雜草防治上提供一定的思路和方法。
4 展望
在過(guò)去的幾年里,保障糧食安全和準(zhǔn)備應(yīng)對(duì)極端氣候變化的必要性變得越來(lái)越重要。許多研究表明,溫度的上升會(huì)加快入侵雜草進(jìn)一步向北部低溫地區(qū)的擴(kuò)張進(jìn)程[68-70],并且入侵雜草較強(qiáng)的可塑性往往能夠幫助自身更快地適應(yīng)溫度的改變[71]。因此,適應(yīng)性更強(qiáng)的入侵雜草嚴(yán)重影響了本地農(nóng)作物的生長(zhǎng)和生存,給人類經(jīng)濟(jì)和生態(tài)環(huán)境都造成了傷害。目前,在全球氣候變暖的背景下,大量的研究著重于環(huán)境脅迫對(duì)農(nóng)作物類植物所產(chǎn)生的影響和危害。實(shí)際上,隨著全球氣候變化的加劇,全球范圍內(nèi)入侵雜草的擴(kuò)張也很大程度上影響了農(nóng)作物的生長(zhǎng)和生存空間。預(yù)計(jì)未來(lái)的氣候變化會(huì)以多種方式影響農(nóng)業(yè)生產(chǎn),氣候變化可能會(huì)影響農(nóng)作物和入侵植物的生長(zhǎng),有時(shí)使農(nóng)作物受益,有時(shí)使入侵雜草受益。由于極端高溫或低溫的出現(xiàn)頻率增高,許多地區(qū)的農(nóng)作物產(chǎn)量將下降,而盡管技術(shù)進(jìn)步,但入侵雜草的惡性競(jìng)爭(zhēng)將進(jìn)一步加劇農(nóng)作物產(chǎn)量的下降。因此,未來(lái)需要一種方法,不僅能夠幫助農(nóng)作物來(lái)抵消溫度脅迫的負(fù)面影響,而且還需要提高農(nóng)作物對(duì)抗入侵雜草的競(jìng)爭(zhēng)力。根據(jù)氣候條件對(duì)農(nóng)作物品種進(jìn)行定向培育和篩選則是一種合理的方案[72],諸如培育能夠耐受高溫/低溫、干旱或養(yǎng)分短缺等氣候變化的品種可以大大減少肥料和灌溉的投入;選擇成熟期較長(zhǎng)的品種有利于應(yīng)對(duì)極端溫度和干旱期的延長(zhǎng);此外,將對(duì)入侵雜草有抑制能力的品種加入農(nóng)田系統(tǒng)也可以減少除草劑的投入[73-74]。合理調(diào)整農(nóng)作物密度和均勻度對(duì)雜草生物量有顯著而持久的抑制作用,這對(duì)農(nóng)作物的生物量和產(chǎn)量也產(chǎn)生了積極的作用[75]。
選擇合適的品種和種植方式將有利于環(huán)境和農(nóng)業(yè)的可持續(xù)發(fā)展,因此必須擴(kuò)大研究力度,研究各種非生物脅迫和種植系統(tǒng)下的入侵雜草如何影響農(nóng)作物的品種性能和隨后的產(chǎn)量結(jié)果。這些信息可以納入育種計(jì)劃,以提高農(nóng)作物品種在非生物(氣候變化)和生物(入侵雜草競(jìng)爭(zhēng))脅迫下的性能,而不會(huì)影響最終產(chǎn)量。
參考文獻(xiàn):
[1]廖慧璇,周 婷,陳寶明,等. 外來(lái)入侵植物的生態(tài)控制[J]. 中山大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,60(4):1-11.
[2]Fahad S,Bajwa A A,Nazir U,et al. Crop production under drought and heat stress:plant responses and management options[J]. Frontiers in Plant Science,2017,8:1147.
[3]Key?er L T,Lenzen M.1.5 ℃ degrowth scenarios suggest the need for new mitigation pathways[J]. Nature Communications,2021,12:2676.
[4]Li N N,Yue C,Cao H L,et al. Transcriptome sequencing dissection of the mechanisms underlying differential cold sensitivity in young and mature leaves of the tea plant (Camellia sinensis)[J]. Journal of Plant Physiology,2018,224/225:144-155.
[5]Pacanoski Z,Mehmeti A. Review:managing weed populations through alteration of the cropping pattern[J]. Agraarteadus,2020,31(1):74-83
[6]Korres N E,Norsworthy J K,Tehranchian P,et al. Cultivars to face climate change effects on crops and weeds:a review[J]. Agronomy for Sustainable Development,2016,36(1):1-12.
[7]Kumar Rai P,Singh J S. Invasive alien plant species:their impact on environment,ecosystem services and human health[J]. Ecological Indicators,2020,111:106020.
[8]全世文. 中國(guó)糧食安全戰(zhàn)略及其轉(zhuǎn)型[J]. 華南師范大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版),2022(3):112-121,207.
[9]Muhammad I,Shalmani A,Ali M,et al. Mechanisms regulating the dynamics of photosynthesis under abiotic stresses[J]. Frontiers in Plant Science,2021,11:615942.
[10]Jagadish S V K,Way D A,Sharkey T D. Plant heat stress:concepts directing future research[J]. Plant,Cell & Environment,2021,44(7):1992-2005.
[11]Tian J,Belanger F C,Huang B R. Identification of heat stress-responsive genes in heat-adapted thermal Agrostis scabra by suppression subtractive hybridization[J]. Journal of Plant Physiology,2009,166(6):588-601.
[12]Jahan M S,Guo S R,Sun J et al. Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress[J]. Plant Physiology and Biochemistry,2021,167:309-320.
[13]Hu S S,Ding Y F,Zhu C. Sensitivity and responses of chloroplasts to heat stress in plants[J]. Frontiers in Plant Science,2020,11:375.
[14]Faseela P,Sinisha A K,Bresticˇ M,et al. Chlorophyll a fluorescence parameters as indicators of a particular abiotic stress in rice[J]. Photosynthetica,2020,58(SI):293-300.
[15]Sachdev S,Ansari S A,Ansari M I,et al. Abiotic stress and reactive oxygen species:generation,signaling,and defense mechanisms[J]. Antioxidants,2021,10(2):277.
[16]Jahan M S,Shu S,Wang Y,et al. Melatonin pretreatment confers heat tolerance and repression of heat-induced senescence in tomato through the modulation of ABA-and GA-mediated pathways[J]. Frontiers in Plant Science,2021,12:650955.
[17]Yang P Q,van der Tol C. Linking canopy scattering of far-red sun-induced chlorophyll fluorescence with reflectance[J]. Remote Sensing of Environment,2018,209:456-467.
[18]Cohen I,Zandalinas S I,Huck C,et al. Meta-analysis of drought and heat stress combination impact on crop yield and yield components[J]. Physiologia Plantarum,2021,171(1):66-76.
[19]Gonzalez-Rivas P A,Chauhan S S,Ha M,et al. Effects of heat stress on animal physiology,metabolism,and meat quality:a review[J]. Meat Science,2020,162:108025.
[20]Li Y Q,Kong D X,F(xiàn)u Y,et al. The effect of developmental and environmental factors on secondary metabolites in medicinal plants[J]. Plant Physiology and Biochemistry,2020,148:80-89.
[21]de Vries J,de Vries S,Curtis B A,et al. Heat stress response in the closest algal relatives of land plants reveals conserved stress signaling circuits[J]. The Plant Journal,2020,103(3):1025-1048.
[22]Meena Y K,Khurana D S,Kaur N,et al. Towards enhanced low temperature stress tolerance in tomato:an approach[J]. Journal of Environmental Biology,2018,39(4):529-535.
[23]Li N,Euring D,Cha J Y,et al. Plant hormone-mediated regulation of heat tolerance in response to global climate change[J]. Frontiers in Plant Science,2021,11:627969.
[24]Hall A E. Crop developmental responses to temperature,photoperiod,and light quality[M]//Crop responses to environment.Boca Raton:CRC Press,2018:95-107.
[25]Impa S M,Raju B,Hein N T,et al. High night temperature effects on wheat and rice:current status and way forward[J]. Plant,Cell & Environment,2021,44(7):2049-2065.
[26]Kumari V V,Roy A,Vijayan R,et al. Drought and heat stress in cool-season food legumes in sub-tropical regions:consequences,adaptation,and mitigation strategies[J]. Plants,2021,10(6):1038.
[27]El Yaacoubi? A,Oukabli A,Legave J. Response of almond flowering and dormancy to Mediterranean temperature conditions in the context of adaptation to climate variations[J]. Scientia Horticulturae,2019,257:108687.
[28]Frank G,Pressman E,Ophir R,et al. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins,ROS scavengers,hormones,and sugars in the heat stress response[J]. Journal of Experimental Botany,2009,60(13):3891-3908.
[29]Krishna Jagadish S V.Heat stress during flowering in cereals-effects and adaptation strategies[J]. New Phytologist,2020,226(6):1567-1572.
[30]Khan A,Ahmad M,Ahmed M,et al. Rising atmospheric temperature impact on wheat and thermotolerance strategies[J]. Plants,2020,10(1):43.
[31]Haque M S,Husna M T,Uddin M N,et al. Heat stress at early reproductive stage differentially alters several physiological and biochemical traits of three tomato cultivars[J]. Horticulturae,2021,7(10):330.
[32]Jain M,Vara Prasad P V,Boote K J,et al. Effects of season-long high temperature growth conditions on sugar-to-starch metabolism in developing microspores of grain Sorghum (Sorghum bicolor L. Moench)[J]. Planta,2007,227(1):67-79.
[33]Chinnusamy V,Zhu J H,Zhu J K. Cold stress regulation of gene expression in plants[J]. Trends in Plant Science,2007,12(10):444-451.
[34]Zhang Z B,Hu M H,Xu W W,et al. Understanding the molecular mechanism of anther development under abiotic stresses[J]. Plant Molecular Biology,2021,105(1):1-10.
[35]Raza A,Charagh S,García-Caparrós P,et al. Melatonin-mediated temperature stress tolerance in plants[J]. GM Crops & Food,2022,13(1):196-217.
[36]Sun Y J,Zhou J,Guo J S.Advances in the knowledge of adaptive mechanisms mediating abiotic stress responses in Camellia sinensis[J]. Frontiers in Bioscience-Landmark,2021,26(12):1714-1722.
[37]Guo X Y,Liu D F,Chong K.Cold signaling in plants:insights into mechanisms and regulation[J]. Journal of Integrative Plant Biology,2018,60(9):745-756.
[38]Liu J Y,Shi Y T,Yang S H.Insights into the regulation of C-repeat binding factors in plant cold signaling[J]. Journal of Integrative Plant Biology,2018,60(9):780-795.
[39]Amparo P,MaryRus M,?ngeles F M. Cold stress in Citrus:a molecular,physiological and biochemical perspective[J]. Horticulturae,2021,7(10):340.
[40]Ermilova E.Cold stress response:an overview in Chlamydomonas[J]. Frontiers in Plant Science,2020,11:569437.
[41]Wei X S,Liu S,Sun C,et al. Convergence and divergence:signal perception and transduction mechanisms of cold stress in Arabidopsis and rice[J]. Plants,2021,10(9):1864.
[42]Yamori W,Noguchi K,Hikosaka K,et al. Phenotypic plasticity in photosynthetic temperature acclimation among crop species with different cold tolerances[J]. Plant Physiology,2009,152(1):388-399.
[43]Zhong P,Zhou M,Zhang J J,et al. The role of cold-inducible RNA-binding protein in respiratory diseases[J]. Journal of Cellular and Molecular Medicine,2022,26(4):957-965.
[44]Bhat K A,Mahajan R,Pakhtoon M M,et al. Low temperature stress tolerance:an insight into the omics approaches for legume crops[J]. Frontiers in Plant Science,2022,13:888710.
[45]Rachappanavar V,Padiyal A,Sharma J K,et al. Plant hormone:mediated stress regulation responses in fruit crops:a review[J]. Scientia Horticulturae,2022,304:111302.
[46]Ritonga F N,Chen S.Physiological and molecular mechanism involved in cold stress tolerance in plants[J]. Plants,2020,9(5):684-689.
[47]Ku Y S,Sintaha M,Cheung M Y,et al. Plant hormone signaling crosstalks between biotic and abiotic stress responses[J]. International Journal of Molecular Sciences,2018,19(10):3206.
[48]Tonkinson C L,Lyndon R F,Arnold G M,et al. The effects of temperature and the Rht3 dwarfing gene on growth,cell extension,and gibberellin content and responsiveness in the wheat leaf[J]. Journal of Experimental Botany,1997,48(4):963-970.
[49]Kang H M,Saltveit M E.Chilling tolerance of maize,cucumber and rice seedling leaves and roots are differentially affected by salicylic acid[J]. Physiologia Plantarum,2002,115(4):571-576.
[50]Mora-Herrera M E,Lopez-Delgado H,Castillo-Morales A,et al. Salicylic acid and H2O2function by independent pathways in the induction of freezing tolerance in potato[J]. Physiologia Plantarum,2010,125(4):430-440.
[51]Balah M A,Balah A M.Growth and ecological characteristics of Physalis angulata invasive weed species in several invaded communities[J]. Biologia,2022,77(2):325-338.
[52]Dweikat I.A diploid,interspecific,fertile hybrid from cultivated sorghum,Sorghum bicolor,and the common johnsongrass weed Sorghum halepense[J]. Molecular Breeding,2005,16(2):93-101.
[53]Yadav S,Hemke A,Umekar M. Convolvulaceae:a morning glory plant[J]. International Journal of Pharmaceutical Sciences Review and Research,2018,51(1):103-117.
[54]Ziska L H,Bunce J A.Predicting the impact of changing CO2on crop yields:some thoughts on food[J]. New Phytologist,2007,175(4):607-618.
[55]Malhi G S,Kaur M,Kaushik P. Impact of climate change on agriculture and its mitigation strategies:a review[J]. Sustainability,2021,13(3):1318.
[56]Riar D S,Norsworthy J K,Steckel L E,et al. Assessment of weed management practices and problem weeds in the midsouth United States—soybean:a consultant's perspective[J]. Weed Technology,2013,27(3):612-622.
[57]Ziska L,Runion G B.Future weed,pest,and disease problems for plants[M]//Newton P C D,Carran R A,Edwards G R,et al.Agroecosystems in a changing climate.Boca Raton:CRC Press,2006:261-287.
[58]Jabran K,Dogˇan M N.Elevated CO2,temperature and nitrogen levels impact growth and development of invasive weeds in the Mediterranean region[J]. Journal of the Science of Food and Agriculture,2020,100(13):4893-4900.
[59]Bhusal D R,Ghimire K C,Patel P,et al. Temperature and altitude modulate feeding attributes of Mexican beetle,Zygogramma bicolorata Pallister on Parthenium hysterophorus[J]. Journal of Thermal Biology,2020,89:102540.
[60]Ruchel Q,Zandoná R R,F(xiàn)raga D S,et al. Effect of high temperature and recovery from stress on crop-weed interaction[J]. Bragantia,2020,79(4):582-591.
[61]Vilà M,Beaury E M,Blumenthal D M,et al. Understanding the combined impacts of weeds and climate change on crops[J]. Environmental Research Letters,2021,16(3):034043.
[62]Ziska L H.Climate change and the herbicide paradigm:visiting the future[J]. Agronomy,2020,10(12):1953.
[63]Ding Y L,Shi Y T,Yang S H.Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants[J]. New Phytologist,2019,222(4):1690-1704.
[64]Morales F,Ancín M,F(xiàn)akhet D,et al. Photosynthetic metabolism under stressful growth conditions as a bases for crop breeding and yield improvement[J]. Plants,2020,9(1):88.
[65]Schlenker W,Roberts M J.Nonlinear temperature effects indicate severe damages to U.S.crop yields under climate change[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(37):15594-15598.
[66]Lobell D B,F(xiàn)ield C B.California perennial crops in a changing climate[J]. Climatic Change,2011,109(1):317-333.
[67]Raza A,Razzaq A,Mehmood S S,et al. Impact of climate change on crops adaptation and strategies to tackle its outcome:a review[J]. Plants,2019,8(2):34.
[68]Wang H Z,Zhao K P,Li X J,et al. Factors affecting seed germination and emergence of Aegilops tauschii[J]. Weed Research,2020,60(3):171-181.
[69]Chen J Y,Burns E,F(xiàn)leming M,et al. Impact of climate change on population dynamics and herbicide resistance in kochia [Bassia scoparia (L.) A.J.Scott][J]. Agronomy,2020,10(11):1700.
[70]Gandía M L,Casanova C,Sánchez F J,et al. Arable weed patterns according to temperature and latitude gradient in central and southern Spain[J]. Atmosphere,2020,11(8):853.
[71]Karkanis A,Ntatsi G,Alemardan A,et al. Interference of weeds in vegetable crop cultivation,in the changing climate of Southern Europe with emphasis on drought and elevated temperatures:a review[J]. Journal of Agricultural Science,2018,156(10):1175-1185.
[72]Xie H J,Han Y H,Li X Y,et al. Climate-dependent variation in cold tolerance of weedy rice and rice mediated by OsICE1 promoter methylation[J]. Molecular Ecology,2020,29(1):121-137.
[73]Kniss A R.Genetically engineered herbicide-resistant crops and herbicide-resistant weed evolution in the United States[J]. Weed Science,2018,66(2):260-273.
[74]Holmes K H,Lindquist J L,Rebarber R,et al. Modeling the evolution of herbicide resistance in weed species with a complex life cycle[J]. Ecological Applications,2022,32(1):e02473.
[75]Kumar J S,Nedunchezhiyan M,Sunitha S. Weed control approaches for tropical tuber crops:a review[J]. International Journal of Vegetable Science,2021,27(5):439-455.