郁翰文 劉婷婷
關鍵詞:微電網;優(yōu)化調度;多目標;NSGA-II
0 引言
我國“十四五”規(guī)劃及2035 遠景目標中提出的集中式與分布式能源建設綱要,對推進我國微電網建設具有重大意義[1]。微電網是由分布式電源、負荷、儲能設備等組成的一種分布式能源結構,能夠有效整合可再生能源,實現(xiàn)對負荷多種能源形式的穩(wěn)定供給[2]。
微電網相對于傳統(tǒng)電網有諸多優(yōu)勢,但也有一些短處亟需優(yōu)化??稍偕茉词艿阶匀画h(huán)境的制約,光伏發(fā)電和風力發(fā)電都具有較大的波動性和隨機性,如何提高可再生能源的消納率,同時降低微電網運行成本和環(huán)境治理成本。
本文以并網型微電網進行研究,以風機、光伏、微型燃氣輪機和儲能裝置的微電網系統(tǒng)為研究對象,以微電網運行成本和環(huán)境治理成本最小為優(yōu)化目標,綜合考慮各項約束建立優(yōu)化調度模型,采用組合交叉算子和動態(tài)擁擠度策略改進NSGA-II 算法求解模型。經過算例求解分析,表明Y-NSGA-II 算法具有更優(yōu)搜索精度和個體均勻度,在微電網優(yōu)化調度中能獲得更優(yōu)配置,對比了有無儲能單元對調度優(yōu)化的影響,結果表明儲能裝置能起到風光削峰填谷、降低微電網運行成本,減少污染氣體排放的作用。
1 微電源的數學建模
1.1 風力發(fā)電模型
風力發(fā)電機的發(fā)電功率由風速的大小決定,輸出功率為:
在算法迭代初期,使用較多NDX 交叉算子增大搜索范圍,提高全局尋優(yōu)能力。在算法迭代后期,解集趨于Pareto 最優(yōu)解,使用更多SBX 交叉算子,提高局部搜索能力,加快收斂速度。
3.3 動態(tài)擁擠度策略
個體擁擠度距離是為了計算個體周圍的密度,具體計算方式是某個體相鄰兩個體在不同目標方向上歸一化差值的累加。如果兩個個體的Pareto 等級不同,則選擇等級較高的一個作為下一代。在同等級的Pareto 分層上,NSGA-II 算法依據個體擁擠度選擇最優(yōu)個體,容易刪除密集個體,使得保留的個體分布不均勻。
為了解決在實際應用中的缺陷,本文使用一種新的動態(tài)擁擠度策略。在記錄擁擠度最大的個體后,淘汰該個體并重新計算排序該層剩余個體的擁擠度,然后記錄并淘汰新排序中最大擁擠度個體,更新剩余個體擁擠度排序,重復以上記錄、淘汰和排序過程,直到記錄的個體數量滿足要求停止。
3.4 算法流程
Y-NSGA-II 算法的流程如下:
1)初始化參數設置,設定種群數量、迭代次數、交叉概率和變異概率。
2)根據約束初始化種群,以經濟運行成本和環(huán)境治理成本為適應度函數,計算初始種群的適應度值。
3)根據上一步得到的適應度值基于精英策略進行非支配排序,計算擁擠度。對父代種群進行二元錦標賽選擇,選擇Pareto 優(yōu)先級和擁擠度更高的個體作為交叉變異的對象。
4)將二元錦標賽選出的父代歸一化處理,用組合交叉算子和組合變異算子實現(xiàn)交叉變異操作,如果交叉變異后的子代超過上下限約束,則根據約束條件進行調整,直到滿足約束條件。
5)合并父代和子代種群,進行快速非支配排序,選擇Pareto 優(yōu)先級和擁擠度高的作為新種群。
6)判斷是否達到設定的迭代次數,如果達到終止循環(huán),如果未達到終止循環(huán),返回步驟4)中繼續(xù)運算。
Y-NSGA-II 算法實現(xiàn)流程如圖1 所示。
4 仿真實驗與結果分析
本文以某地區(qū)微電網典型日為例,以一天為調度周期,調度時間為1 h。種群數量為400,迭代次數為200,交叉概率為0.9,變異概率為0.1。該地區(qū)采用的分時電價如表1 所示,各分布式電源的運行參數如表2所示,微電網中各分布式電源的污染物排放系數與處理成本如表3 所示,儲能裝置參數如表4 所示,該地區(qū)一天內的負荷預測功率如圖2 所示,該地區(qū)風機和光伏發(fā)電的預測功率如圖3 所示。
由圖可知光伏發(fā)電在不同時間有很大波動,在11:00—14:00 時間段內光照強度大、氣溫升高,發(fā)電功率處于高峰狀態(tài)。風機在00:00—11:00 時間段內以高功率發(fā)電,風機光伏發(fā)電在一定時間內有互補能力。
由圖4 可知環(huán)境治理成本函數和運行成本函數是相互制約的,在環(huán)境治理成本較高時對應的運行成本較低,反之在環(huán)境治理成本較低時對應的運行成本較高。根據不同的調度目標選擇合理的配置方案提高了微電網運行的靈活性和高效性。Y-NSGA-II 算法提高了搜索精度,更接近真實的Pareto 前沿,解集的分布也更為均勻。
圖5 為經濟最優(yōu)調度方案, 微電網運行成本為349.85 元, 污染氣體排放量分別為二氧化碳1 163.13 kg,二氧化硫1.16 kg,氮氧化物1.19 kg,環(huán)境治理成本為336.27 元。
以下是分時電價峰谷平時段調度情況的具體說明:
1)峰時段(10:00—15:00、18:00—22:00)
根據峰時段各分布式電源出力情況可知,該時段微型燃氣輪機發(fā)電成本低于電網購電成本,燃氣輪機能夠發(fā)電出售給外部電網獲得利潤。在10:00—14:00 時間段內風力和光伏發(fā)電功率之和大于需求負荷,燃氣輪機發(fā)電售電,將多余的電量出售給外部大電網。在14:00—15:00 時間段內可再生能源發(fā)電功率之和不滿足負荷需求,燃氣輪機發(fā)電,儲能裝置放電。在18:00—22:00 時間段內在儲能裝置和燃氣輪機發(fā)電,在達到儲能裝置和燃氣輪機發(fā)電上限仍低于負荷時,向外部電網購電。
2)谷時段(00:00—07:00、22:00—24:00)
根據谷時段各分布式電源出力情況可知,在0:00—3:00 時間段內風電出力足以滿足負荷需求,儲能裝置在此期間充電,微電網將多余的電量出售給大電網,在3:00—7:00 時間段內儲能裝置處于滿荷電狀態(tài),將溢出的電量出售給外部大電網,獲取利潤。在22:00—24:00時間段內可再生能源只有風力發(fā)電,該時段購電價格最低,此時微電網向外部大電網購電并對儲能裝置充電。
3)平時段(07:00—10:00、15:00—18:00)
根據平時段各分布式電源出力情況可知,在7:00—10:00 時間段內微電網向外部大電網售電,在15:00—18:00 時間段內,燃氣輪機發(fā)電,微電網向外部大電網購電。
圖6 為環(huán)境最優(yōu)調度方案,微電網運行成本為413.58 元,污染氣體排放量分別為二氧化碳970.28 kg,二氧化硫0.82 kg,氮氧化物0.89 kg,環(huán)境治理成本為271.77 元。
在10:00 前發(fā)電單元出力與經濟最優(yōu)調度方案一致,隨著負荷的增加,可再生能源發(fā)電已無法滿足用電需求,在14:00—18:00 時間段內由于燃氣輪機污染治理成本低,優(yōu)先使用燃氣輪機發(fā)電,燃氣輪機因上坡速率限制功率,微電網仍向外部大電網購電,在電價峰時段儲能裝置開始放電。在18:00—22:00 時間段燃氣輪機達到最大功率,儲能裝置放電,可再生能源出力、儲能裝置出力和燃氣輪機出力之和不滿足負荷時,剩余電量向外部大電網購買。22:00—24:00 是電價谷時段,燃氣輪機逐漸降低發(fā)電功率,儲能裝置在此期間充電。
表5 為算法改進前后不同方案的成本,對取到的Pareto 前沿上的兩側端點對應的方案進行分析,方案1對應的是最少運行成本方案,方案2 對應的是最少環(huán)境治理成本方案,在同方案下對比可見改進的算法效果優(yōu)于未改進的調度效果,在微電網長期調度中,降低的環(huán)境經濟成本還是可觀的。
圖7 為無儲能裝置時各發(fā)電機組的出力功率,當微電網缺少儲能裝置時,調度對象為微型燃氣輪機和微電網與外部大電網的交互功率。風力光伏發(fā)電富足的時候,多余電量全部出售給外部電網。風力光伏發(fā)電不能滿足負荷需求時,燃氣輪機和外部電網共同出力,燃氣輪機和外部大電網的配合成為微電網平穩(wěn)運行的關鍵。
從表6可知,當儲能不參與調度時微型燃氣輪機和外部電網會處在較高出力狀態(tài),由于微型燃氣輪機存在爬坡約束限制,微電網調度靈活性降低,無儲能裝置平均運行成本為375.14 元,平均環(huán)境治理成本為331.04 元,易于發(fā)現(xiàn)無儲能裝置時運行成本增加4%,環(huán)境治理成本增加9%。儲能裝置起到調峰的作用,儲能裝置在用電低谷期將各發(fā)電單元產生的過剩電能儲存起來,在電費峰值階段動態(tài)放電,緩解其他發(fā)電單元的壓力。
5結束語
本文針對并網型微電網優(yōu)化配置問題,以運行成本和環(huán)境治理成本最小為目標函數,建立了含光伏、風機、微型燃氣輪機和儲能裝置的多目標優(yōu)化調度模型,對NSGA-Ⅱ算法的交叉算子及擁擠度算子進行改進,仿真結果表明Y-NSGA-Ⅱ算法具有更好的全局搜索能力以及更高的搜索精度,在微電網配置中能夠獲得更優(yōu)的效果,又探討了無儲能電池參與調度的情況,結果表明含有儲能電池可以削峰填谷,提高用電穩(wěn)定性,并有效降低運行環(huán)境成本。