摘 要:研究了一類非線性記憶項(xiàng)的弱耦合半線性雙波動系統(tǒng)解的爆破情況。 運(yùn)用測試函數(shù)和切片化方法,證明了其柯西問題在次臨界情況下解的全局非存在性。 同時(shí),還得到了其解的生命跨度上界估計(jì)。
關(guān)鍵詞:非線性記憶項(xiàng);弱耦合半線性雙波動系統(tǒng); 爆破
中圖分類號:O175.4
文獻(xiàn)標(biāo)志碼:A
參考文獻(xiàn):
[1]AGEMI R, KUROKAWA Y H. TAKAMURA H. Critical curve for p-q systems of nonlinear wave equations in three space dimensions[J]. Journal of Differential Equations, 2000, 167(1): 87-133.
[2] ZHOU Y. Life span of classical solutions to [J]. Chinese Annals Mathematics, Series B, 1992, 13: 230-243.
[3] LIU Y, LI Y F, SHI J C. Estimates for the linear viscoelastic damped wave equation on the Heisenberg group[J]. Journal of Differential Equations, 2021, 285: 663-685.
[4] YORDANOV B T, ZHANG Q S. Finite time blow up for critical wave equations in high dimensions[J]. Journal of Functional Analysis, 2006, 231 (2): 361-374.
[5] CHEN W H, PALMIERI A. Blow-up result for a semilinear wave equation with a nonlinear memory term// Cicognani M, Del Santo D, Parmeggiani A, Reissig M. Anomalies in Partial Differential Equations. Switzerland: Springer, 2021: 77-97.
[6] CHEN W H. Interplay effects on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms[J]. Nonlinear Analysis, 2021, 202: 112160.
[7] CHEN W H, REISSIG M. Blow-up of solutions to Nakao's problem via an iteration argument[J]. Journal of Differential Equations, 2021, 275: 733-756.
[8] CHEN W H, PALMIERI A. Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case[J]. Discrete and Continuous Dynamical Systems, 2020, 40: 5513-5540.
[9] 歐陽柏平,肖勝中. 具有非線性項(xiàng)的弱耦合半線性Moore-Gibson-Thompson系統(tǒng)解的全局非存在性[J/OL]. 貴州大學(xué)學(xué)報(bào)(自然科學(xué)版): 1-9[2021-10-21]. http://kns.cnki.net/kcms/detail/52.5002.N.20210915.1740.002.html.
[10]LAI N A, TAKAMURA H. Nonexistence of global solutions of nonlinear wave equations with weak time-dependent damping related to Glassey's conjecture[J]. Differential Integral Equations, 2019, 32: 37-48.
(責(zé)任編輯:于慧梅)
Blow-up Analysis on Solutions to a Weakly Coupled Semilinear
Double-wave System with Nonlinear Memory Terms
OUYANG Baiping*
(Guangzhou Huashang College, Guangzhou 511300, China)
Abstract:
Blow-up of solutions to a class of weakly coupled semilinear double-wave system with nonlinear memory terms is studied. By employing test functions and slicing methods, nonexistence of global solutions to the Cauchy problem for the semilinear double-wave system in the subcritical case is proved. Also, the upper bound estimate of the lifespan of solutions is obtained.
Key words:
nonlinear memory term; weakly coupled semilinear double-wave system; blow-up
收稿日期:2021-10-21
基金項(xiàng)目:廣東省普通高校創(chuàng)新團(tuán)隊(duì)資助項(xiàng)目(2020WCXTD008);廣州華商學(xué)院校內(nèi)資助項(xiàng)目(2020HSDS01,2021HSKT01)
作者簡介:歐陽柏平(1979—),男,講師,碩士,研究方向:偏微分方程,E-mail:oytengfei79@163.com.
通訊作者:歐陽柏平,E-mail:oytengfei79@163.com.
貴州大學(xué)學(xué)報(bào)(自然科學(xué)版)2023年2期