国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

csi-miR399響應(yīng)柑橘潰瘍病菌侵染的表達(dá)模式及其抗病性分析

2023-05-15 08:52:18王兆昊郭興茹張樂歡何永睿陳善春姚利曉
關(guān)鍵詞:荷爾潰瘍病臍橙

王兆昊,郭興茹,張樂歡,何永睿,陳善春,姚利曉

csi-miR399響應(yīng)柑橘潰瘍病菌侵染的表達(dá)模式及其抗病性分析

西南大學(xué)柑桔研究所/國(guó)家柑桔工程技術(shù)研究中心/國(guó)家柑桔品種改良中心,重慶 400712

【目的】明確csi-miR399響應(yīng)柑橘潰瘍病菌(subsp.,)侵染的表達(dá)模式,篩選其靶基因,進(jìn)而分析csi-miR399與寄主抗性的相關(guān)性,為柑橘潰瘍病抗性種質(zhì)的創(chuàng)制打下基礎(chǔ)?!痉椒ā糠謩e以柑橘潰瘍病抗性品種四季橘()和感病品種紐荷爾臍橙()為試材,通過莖環(huán)qPCR方法分析csi-miR399在葉片離體注射1、3和5 d時(shí)的表達(dá)量變化,明確抗/感品種中csi-miR399響應(yīng)侵染的表達(dá)模式;利用在線軟件psRNATarget預(yù)測(cè)csi-miR399的靶基因,并通過qPCR分析候選靶基因在接種柑橘葉片和瞬時(shí)表達(dá)csi-miR399葉片中表達(dá)量的變化;克隆csi-miR399前體基因序列,通過同源重組方法構(gòu)建病毒表達(dá)載體 pCLBV202-MIR399,根癌農(nóng)桿菌介導(dǎo)的真空浸潤(rùn)法接種尤力克檸檬(),通過qPCR分析csi-miR399表達(dá)量;進(jìn)而采用離體葉片針刺法接種,觀察發(fā)病癥狀,統(tǒng)計(jì)病情指數(shù),分析csi-miR399過表達(dá)對(duì)抗性的影響?!窘Y(jié)果】接種后,csi-miR399在抗病品種四季橘中的表達(dá)呈現(xiàn)先下降再上升的趨勢(shì),而在感病品種紐荷爾臍橙中的表達(dá)呈持續(xù)下降趨勢(shì)。接種5 d時(shí),csi-miR399在四季橘與紐荷爾臍橙中的表達(dá)量分別是健康對(duì)照的4.64倍和7.61%,初步表明csi-miR399與柑橘的潰瘍病抗性相關(guān)。從13個(gè)預(yù)測(cè)靶基因中篩選鑒定了csi-miR399的3個(gè)靶基因Cs2g06030、Cs7g03830、Cs8g18800,分別編碼泛素偶聯(lián)酶PHO2、未知蛋白和漆酶。利用構(gòu)建的病毒表達(dá)載體pCLBV202-MIR399獲得過表達(dá)csi-miR399的檸檬植株(Y37、Y41和Y57),與空載體對(duì)照pCLBV202接種植株(L35)相比,Y37、Y41和Y57中csi-miR399表達(dá)量顯著增加,接種后的潰瘍病病斑面積顯著減小,病情指數(shù)顯著降低(<0.01),表明csi-miR399過表達(dá)顯著提高了檸檬的潰瘍病抗性?!窘Y(jié)論】csi-miR399與柑橘的潰瘍病抗性密切相關(guān),過表達(dá)csi-miR399顯著提高柑橘對(duì)潰瘍病的抗性,可應(yīng)用于柑橘抗?jié)儾〉姆肿佑N。

csi-miR399;柑橘潰瘍?。话谢?;柑橘病毒表達(dá)載體;生物脅迫

0 引言

【研究意義】柑橘潰瘍病(citrus canker)是由柑橘黃單胞桿菌屬柑橘致病變種(subsp,)引起的一種傳播廣泛、危害嚴(yán)重的細(xì)菌性病害[1],造成柑橘果實(shí)、葉片和莖段出現(xiàn)水浸狀膿包樣壞死性病變[2],給世界柑橘產(chǎn)業(yè)造成了巨大的經(jīng)濟(jì)損失。當(dāng)前柑橘潰瘍病主要通過傳統(tǒng)農(nóng)業(yè)措施、銅制劑農(nóng)藥等化學(xué)藥劑及相關(guān)生物治理手段進(jìn)行防治,存在成本高和環(huán)境不友好等系列問題[3-5]。篩選、鑒定優(yōu)質(zhì)的抗性基因或調(diào)控分子,開展抗性品種培育和應(yīng)用成為柑橘潰瘍病防控的最經(jīng)濟(jì)、有效的措施[6-8]?!厩叭搜芯窟M(jìn)展】miRNA是生物體內(nèi)一種長(zhǎng)度約為20—24 nt的小RNA,能夠與AGO1蛋白結(jié)合形成RISC(RNA-induced silencing complex),在植物中主要通過剪切轉(zhuǎn)錄本的方式來抑制靶基因翻譯,發(fā)揮基因轉(zhuǎn)錄后調(diào)控作用[9-10],在植物-病原互作機(jī)制中具有非常重要的調(diào)節(jié)作用[11]。擬南芥miR393是植物中第一個(gè)發(fā)現(xiàn)的具有抗病作用的miRNA分子,被flg22誘導(dǎo)時(shí),可降低生長(zhǎng)素信號(hào)通路中F-box生長(zhǎng)素受體、和的表達(dá),從而抑制丁香假單胞菌()的生長(zhǎng)[12];miR167可以通過降解生長(zhǎng)素響應(yīng)因子和轉(zhuǎn)錄本抑制生長(zhǎng)素信號(hào),影響氣孔的開閉,調(diào)控對(duì)丁香假單胞菌的防御[13];miR160和miR398在水稻中過表達(dá)可增加過氧化氫含量和增強(qiáng)抗性反應(yīng)基因的表達(dá),抑制稻瘟病菌()的生長(zhǎng)[14-15];番茄中過表達(dá)miR172a和miR172b可通過抑制轉(zhuǎn)錄因子增加對(duì)番茄晚疫病的抗性[16];楊樹中miR319a抑制的表達(dá),解除TCP19-RGA復(fù)合物對(duì)的抑制作用,從而促進(jìn)的表達(dá),增加葉片毛狀體數(shù)量,增強(qiáng)楊樹抗蟲性[17];而抑制miR159的作用則提高了煙草對(duì)寄生疫霉()的抗性[18]。另外,還不斷發(fā)現(xiàn)新的miRNA分子參與植物對(duì)生物脅迫的應(yīng)答過程[19-20]。【本研究切入點(diǎn)】miR399是植物中一種保守的miRNA分子,通過降解靶基因泛素偶聯(lián)酶()參與磷的吸收、轉(zhuǎn)運(yùn)和動(dòng)態(tài)平衡[21-22],還參與花粉的雄性不育和果實(shí)品質(zhì)的調(diào)控[23-25]。近期研究發(fā)現(xiàn),miR399在植物抗生物脅迫中具有重要作用,過表達(dá)miR399可增強(qiáng)擬南芥對(duì)病原的抗性[26]。在多年生果樹中也發(fā)現(xiàn)miR399參與生物脅迫應(yīng)答過程,如感染蘋果莖痘病毒(apple stem pitting virus,ASPV)[27]和柑橘黃龍?。℉uanglongbing,HLB)[28]等果樹中miR399表達(dá)量顯著上升。然而miR399與柑橘潰瘍病抗性的相關(guān)研究尚未見報(bào)道。【擬解決的關(guān)鍵問題】通過抗/感柑橘品種csi-miR399響應(yīng)侵染的表達(dá)模式、csi-miR399靶基因篩選及病毒載體過表達(dá)csi-miR399植株的潰瘍病抗性評(píng)價(jià)等研究,明確csi-miR399與柑橘潰瘍病抗性的相關(guān)性,為柑橘潰瘍病抗性育種提供優(yōu)良基因資源。

1 材料與方法

試驗(yàn)于2020年9月至2022年3月在西南大學(xué)柑桔研究所完成。柑橘潰瘍病抗性品種四季橘()和感病品種紐荷爾臍橙()等植物材料保存于國(guó)家柑桔品種改良中心溫網(wǎng)室。

1.1 注射法接種Xcc

在28℃條件下于LB固體培養(yǎng)基中活化。挑選單克隆置于LB液體培養(yǎng)基中,28℃220 r/min過夜培養(yǎng)。第2天稀釋菌液至A600值為0.2,并繼續(xù)在28℃220 r/min條件下復(fù)搖至A600值介于0.5—0.7。隨后將菌液5 000 r/min離心10 min,棄掉上清液,用等量無菌水重懸。選取大小均勻的健康葉片分別注射重懸菌液,對(duì)照葉片注射無菌水。在處理1、3和5 d時(shí)收集葉片,液氮凍存。進(jìn)行3次生物學(xué)重復(fù)。

1.2 總RNA提取和逆轉(zhuǎn)錄

采用北京艾德萊生物科技有限公司(Aidlab)的EASY spin植物RNA快速提取試劑盒,依照說明書方法提取葉片RNA,采用微量高精度核酸蛋白檢測(cè)儀測(cè)定RNA濃度。逆轉(zhuǎn)錄體系:2 μL 5×PrimeScript RT Master Mix(TaKaRa公司),0.5 μL miR399 RT-Primer(10 μmol·L-1)(表1),500 ng RNA,加RNase Free dH2O補(bǔ)足10 μL。反應(yīng)條件:37℃30 min,85℃5 s。cDNA稀釋5倍后直接用于qPCR或保存于-20℃?zhèn)溆谩?/p>

1.3 csi-miR399靶基因預(yù)測(cè)及其qPCR分析

1.4 csi-miR399表達(dá)載體構(gòu)建

根據(jù)miRbase數(shù)據(jù)庫(https://www.mirbase.org/)中csi-miR399(miRbase收錄號(hào):MI0016711)序列,于TaKaRa官網(wǎng)In-Fusion HD Cloning在線引物設(shè)計(jì)工具(https://www.takarabio.com/)設(shè)計(jì)csi-miR399擴(kuò)增引物pLGN-MIR399-F/pLGN-MIR399-R和pCLBV202- MIR399-F/pCLBV202-MIR399-R(表2)。以紐荷爾臍橙葉片cDNA為模板進(jìn)行PCR,膠回收擴(kuò)增產(chǎn)物分別與線性化表達(dá)載體pLGN和病毒表達(dá)載體pCLBV202進(jìn)行同源重組連接,同源重組體系:2 μL 5×In-Fusion Snap Assembly Master Mix(TaKaRa公司),2 μL線性化載體,6 μL插入片段。反應(yīng)條件為50℃ 30 min。連接產(chǎn)物轉(zhuǎn)化大腸桿菌DH5,并篩選單克隆送擎科生物公司測(cè)序,構(gòu)建成功的表達(dá)載體pLGN-MIR399和pCLBV202-MIR399分別轉(zhuǎn)化根癌農(nóng)桿菌EHA105和GV3101。

表1 qPCR相關(guān)引物核苷酸序列

1.5 根癌農(nóng)桿菌介導(dǎo)的柑橘轉(zhuǎn)化

參考Li等[30-31]的離體葉片注射法,在錦橙()上開展pLGN-MIR399的瞬時(shí)表達(dá),并以pLGN作為對(duì)照。注射后22℃暗培養(yǎng)6 d,取注射部位葉片樣品提RNA并反轉(zhuǎn)錄,通過qPCR分析csi-miR399及其靶基因的表達(dá)量。

參考張琦等[32]農(nóng)桿菌介導(dǎo)的真空浸潤(rùn)法,對(duì)尤力克檸檬()實(shí)生苗接種病毒表達(dá)載體pCLBV202-MIR399,空載體 pCLBV202為對(duì)照。接種植株25℃恒溫光照培養(yǎng)箱中16 h光照/8 h黑暗培養(yǎng),8周齡時(shí)提取葉片RNA,以其反轉(zhuǎn)錄產(chǎn)物cDNA為模板,使用引物pClbv-s/r(表2)進(jìn)行陽性植株篩選及csi-miR399的qPCR定量,作為內(nèi)參對(duì)照。

1.6 潰瘍病抗性評(píng)價(jià)

潰瘍病抗性評(píng)價(jià)參考Peng等[8]的離體葉片針刺接種法并略做修改。挑選健康葉片用75%酒精消毒,無菌水清洗干凈后分裝至150 mm大培養(yǎng)皿中(3個(gè)生物學(xué)重復(fù)),葉柄處包裹充分濕潤(rùn)的脫脂棉,對(duì)葉脈兩側(cè)區(qū)域進(jìn)行針刺注射,每一邊針孔大小和數(shù)目相同,每個(gè)針孔均使用移液槍接種1 μL重懸菌液。使用石蠟帶封口培養(yǎng)皿,置于28℃恒溫光照培養(yǎng)箱(16 h光照/8 h黑暗)中培養(yǎng)。每日觀察葉片發(fā)病情況并進(jìn)行記錄,接種7和10 d進(jìn)行拍照,Image J軟件統(tǒng)計(jì)葉片潰瘍病斑面積(lesion area,LA,mm2)。病情分級(jí)標(biāo)準(zhǔn)總共7級(jí),分別為0級(jí)(LA≤0.25 mm2),1級(jí)(0.25 mm2<LA≤0.5 mm2),2級(jí)(0.5 mm2<LA≤0.75 mm2),3級(jí)(0.75 mm2<LA≤1 mm2),4級(jí)(1 mm2<LA≤1.25 mm2),5級(jí)(1.25 mm2<LA ≤1.5 mm2),6級(jí)(1.5 mm2<LA≤1.75 mm2),7級(jí)(LA>1.75 mm2)。根據(jù)以下公式計(jì)算病情指數(shù)(disease index,DI):DI=100×Σ(各級(jí)病斑數(shù)×相應(yīng)級(jí)數(shù)值)/(病斑總數(shù)×最大級(jí)數(shù))。

表2 載體構(gòu)建相關(guān)引物核苷酸序列

2 結(jié)果

2.1 柑橘潰瘍病脅迫下csi-miR399的表達(dá)模式

柑橘不同品種對(duì)潰瘍病的敏感性存在差異,四季橘是柑橘潰瘍病抗性品種,而紐荷爾臍橙屬于潰瘍病敏感品種。在接種1 d時(shí),四季橘和紐荷爾臍橙csi-miR399的表達(dá)量與水處理對(duì)照組相比均出現(xiàn)下降,分別為對(duì)照的36.44%和86.91%。在接種3 d 時(shí),四季橘葉片與對(duì)照組沒有觀測(cè)到區(qū)別,csi-miR399表達(dá)量為對(duì)照的81.09%;紐荷爾臍橙葉片出現(xiàn)水漬狀突起邊緣,csi-miR399表達(dá)下調(diào)為對(duì)照的15.95%。在接種5 d 時(shí),四季橘葉片接種部位發(fā)生褐變,csi-miR399表達(dá)上調(diào)為對(duì)照組的4.64倍;而紐荷爾臍橙葉片水漬狀突起更為明顯,csi-miR399表達(dá)量為對(duì)照組的7.61%(圖1)。以上結(jié)果顯示,csi-miR399在四季橘和紐荷爾臍橙感病初期下調(diào),但隨著感染時(shí)間延長(zhǎng),csi-miR399在四季橘中表達(dá)上調(diào),而在紐荷爾臍橙中表達(dá)持續(xù)下調(diào)。表明csi-miR399在柑橘抗性品種和敏感品種中對(duì)的應(yīng)答反應(yīng)不同,可能與柑橘的潰瘍病抗性相關(guān)。

2.2 csi-miR399候選靶基因的篩選

利用psRNATarget軟件預(yù)測(cè)到csi-miR399的13個(gè)候選靶基因,定量PCR檢測(cè)這些基因在經(jīng)處理5 d 時(shí)葉片的表達(dá)情況(圖2)。結(jié)果發(fā)現(xiàn),Cs7g03830(未知蛋白)在四季橘中下調(diào)表達(dá),在紐荷爾臍橙中上調(diào)表達(dá),與csi-miR399的表達(dá)趨勢(shì)相反,推測(cè)其可能是csi-miR399的作用靶標(biāo)。Cs2g06030(泛素偶聯(lián)酶)和Cs8g18800(漆酶)在四季橘中下調(diào)表達(dá),與csi-miR399的表達(dá)趨勢(shì)相反,在紐荷爾臍橙中無差異,推測(cè)其也可能是csi-miR399的作用靶標(biāo)。其他10個(gè)預(yù)測(cè)靶基因Cs2g02870、Cs8g05410、Cs2g14510、orange1.1t02010、Cs3g09820、Cs7g08000、Cs7g22930、orange1.1g025013m、Cs4g04510和orange1.1t01536在四季橘和紐荷爾臍橙中或無表達(dá)差異、或表達(dá)趨勢(shì)均上調(diào)或均下調(diào)、或與csi-miR399的表達(dá)趨勢(shì)一致,不是csi-miR399的直接靶標(biāo)。

A:接種潰瘍病菌5 d時(shí)柑橘葉片癥狀,NH5X和SJ5X分別為紐荷爾臍橙和四季橘Symptoms of citrus leaves inoculated with Xcc at 5 d, NH5X and SJ5X are C. sinensis and C. microcarpa, respectively;B:csi-miR399在紐荷爾臍橙和四季橘中的表達(dá)差異The differential expression of csi-miR399 in C. sinensis and C. microcarpa

1: csi-miR399; 2: Cs2g02870; 3: Cs2g06030; 4: Cs2g14510; 5: Cs3g09820; 6: Cs4g04510; 7: Cs7g03830; 8: Cs7g08000; 9: Cs7g22930; 10: Cs8g05410; 11: Cs8g18800; 12: orange1.1g025013m; 13: orange1.1t01536; 14: orange1.1t02010

為進(jìn)一步驗(yàn)證csi-miR399的候選靶基因,在柑橘葉片中利用根癌農(nóng)桿菌瞬時(shí)轉(zhuǎn)化pLGN-MIR399,檢測(cè)csi-miR399及其候選靶基因Cs2g06030、Cs7g03830和Cs8g18800的表達(dá)量。結(jié)果顯示,與瞬時(shí)轉(zhuǎn)化pLGN空載的葉片相比,瞬時(shí)過表達(dá)csi-miR399的葉片中csi-miR399的表達(dá)量上調(diào)1.34倍,而Cs2g06030、Cs7g03830、Cs8g18800的表達(dá)量則分別下降了12.25%、16.84%和53.29%(圖3)。該結(jié)果進(jìn)一步確定csi-miR399可調(diào)控候選靶基因Cs2g06030、Cs7g03830、Cs8g18800的表達(dá),證實(shí)了csi-miR399與3個(gè)候選基因之間的靶向關(guān)系。

2.3 csi-miR399過表達(dá)植株的柑橘潰瘍病抗性評(píng)價(jià)

以柑橘cDNA為模板,pCLBV202-MIR399-F和pCLBV202-MIR399-R為引物擴(kuò)增csi-miR399前體基因序列,電泳結(jié)果表明PCR產(chǎn)物符合預(yù)期,大小為130 bp(圖4-A)。回收擴(kuò)增產(chǎn)物,與基于柑橘葉斑駁病毒(citrus leaf blotch virus,CLBV)的表達(dá)載體pCLBV202[32]連接,獲得重組植物病毒表達(dá)載體pCLBV202-MIR399(圖4-B)。

圖3 pLGN-MIR399瞬時(shí)過表達(dá)柑橘葉片中csi-miR399及其靶基因的相對(duì)表達(dá)量

A:csi-miR399的PCR擴(kuò)增條帶Amplification of csi-miR399 by PCR;B:表達(dá)載體構(gòu)建示意圖Schematic diagram of expression vectors of csi-miR399

利用根癌農(nóng)桿菌介導(dǎo)的真空浸潤(rùn)法[33]將pCLBV202-MIR399及空載體pCLBV202接種至尤力克檸檬,用引物對(duì)pClbv-s/r(表2)進(jìn)行RT-PCR檢測(cè)。結(jié)果表明獲得pCLBV202-MIR399陽性植株3株(Y37、Y41和Y57),空載對(duì)照pCLBV202陽性植株一株(L35)(圖5-A)。對(duì)4個(gè)株系中csi-miR399的表達(dá)情況進(jìn)行qPCR分析。結(jié)果表明,3個(gè)過表達(dá)株系csi-miR399表達(dá)量均有上調(diào),其中Y37株系的csi-miR399表達(dá)量為對(duì)照的1.72倍(圖5-B)。

通過離體葉片針刺法接種,觀察過表達(dá)植株(Y37、Y41和Y57)及對(duì)照植株(L35)的葉片發(fā)病情況。結(jié)果發(fā)現(xiàn),在接種1 d時(shí),全部葉片除針孔損傷外無其他明顯病變特征;接種3 d時(shí),全部葉片的針孔處損傷加重,且在針孔周圍出現(xiàn)淡黃色和白色暈圈,不同植株間程度輕重不一;接種5 d時(shí),大部分植株的葉片潰瘍病癥狀加劇,在接種針孔部位開始出現(xiàn)明顯膿包,且呈擴(kuò)增趨勢(shì),但過表達(dá)植株病斑顯著小于對(duì)照植株;接種7 d時(shí),過表達(dá)植株的菌斑面積已基本達(dá)到穩(wěn)定狀態(tài),與接種10 d時(shí)的病斑點(diǎn)面積無明顯差別,對(duì)照L35植株在10 d時(shí)的病斑面積則進(jìn)一步顯著增加(圖6-A)。統(tǒng)計(jì)病斑面積計(jì)算病情指數(shù),結(jié)果顯示過表達(dá)植株在7和10 d時(shí)的病情指數(shù)顯著低于對(duì)照植株(圖6-B)。上述結(jié)果說明過表達(dá)csi-miR399能夠提高植株的潰瘍病抗性,顯著減輕侵染的癥狀。

A:pCLBV202-MIR399接種尤力克檸檬植株的RT-PCR檢測(cè)RT-PCR detection of lemon plants inoculated with pCLBV202-MIR399;B:pCLBV202-MIR399接種檸檬植株內(nèi)csi-miR399的相對(duì)表達(dá)量Relative expression of csi-miR399 in lemon plants inoculated with pCLBV202-MIR399

圖6 過表達(dá)csi-miR399檸檬葉片接種 Xcc的癥狀(A)及病情指數(shù)(B)

3 討論

3.1 csi-miR399與柑橘潰瘍病的抗性密切相關(guān)

近期研究表明,miR399參與植物的生物脅迫反應(yīng)。果樹受蘋果莖痘病毒和黃龍病菌感染后miR399表達(dá)上調(diào)[27-28]。本研究發(fā)現(xiàn)在感染5 d 時(shí),抗性品種中csi-miR399表達(dá)量顯著增加,而敏感品種中則顯著下降(圖1)。利用病毒載體在柑橘中過表達(dá)csi-miR399可使?jié)儾〔“呙娣e顯著減小,病情指數(shù)顯著降低(圖6),這表明csi-miR399與柑橘的潰瘍病抗性密切相關(guān)。不過,本研究未開展寄主csi-miR399前體的干擾試驗(yàn)及干擾植株的潰瘍病抗性評(píng)價(jià),有待于進(jìn)一步完善。

擬南芥中過表達(dá)miR399可提高植物對(duì)真菌病原()和半活體寄生真菌()的抗性[26],但在水稻中miR399的過表達(dá)則會(huì)使得植株對(duì)稻瘟病菌的敏感性增強(qiáng)[34]。這種抗性的差異可能與轉(zhuǎn)基因植物體內(nèi)磷含量的變化相關(guān),但具體原因未知。miR399/PHO2是一組公認(rèn)的miRNA-靶基因組合,在植物中PHO2負(fù)責(zé)編碼泛素偶聯(lián)酶,與磷穩(wěn)態(tài)平衡有密切聯(lián)系[35-36]。在柑橘中miR399通過調(diào)控靶基因的翻譯,作用于轉(zhuǎn)錄因子和,影響花器官的發(fā)育[23];miR399-模塊同樣在冬小麥中作用于正調(diào)控植物的抗凍性[37]。在本試驗(yàn)中,柑橘Cs2g06030()確認(rèn)為潰瘍病脅迫下csi-miR399作用的靶基因(圖2、圖3),可能通過轉(zhuǎn)錄因子和抗性基因的泛素化過程參與csi-miR399對(duì)柑橘潰瘍病的抗性作用。

除外,有報(bào)道堿性/中性轉(zhuǎn)化酶基因[25,38]、轉(zhuǎn)錄因子和[39]也是miR399的靶基因。本研究發(fā)現(xiàn)漆酶(Cs8g18800)是csi-miR399潛在的靶基因。漆酶是參與木質(zhì)素合成的多基因蛋白家族,在生物脅迫下,不同成員呈現(xiàn)上調(diào)或下調(diào)表達(dá);過表達(dá)漆酶基因增強(qiáng)植物對(duì)生物脅迫的抗性,而干擾漆酶的表達(dá)也存在抗性增強(qiáng)現(xiàn)象[40]。miR399-漆酶模塊在柑橘潰瘍病抗性中的調(diào)控作用需要進(jìn)行深入研究。

3.2 利用基于CLBV的病毒載體表達(dá)miRNA可用于柑橘病害防控

植物病毒載體已用于外源基因的表達(dá),該方法不需轉(zhuǎn)化和再生,比傳統(tǒng)的根癌農(nóng)桿菌轉(zhuǎn)化方法操作簡(jiǎn)便、耗時(shí)短且可通過嫁接接種至多個(gè)寄主品種。柑橘葉斑駁病毒(CLBV)在多數(shù)柑橘品種中不顯示癥狀,且目前尚未發(fā)現(xiàn)傳播蟲媒,因此基于該病毒的載體具有較高的安全性,已成功用于開花基因和抗菌肽等已知功能基因的表達(dá),可如同植物雙元表達(dá)載體一樣實(shí)現(xiàn)外源基因的過表達(dá)和發(fā)揮生物學(xué)功能[32,41]。本試驗(yàn)在上述研究基礎(chǔ)上推進(jìn)一步,利用基于CLBV的病毒表達(dá)載體實(shí)現(xiàn)csi-miR399在柑橘中的過表達(dá),并證明該基因的過表達(dá)可提高柑橘對(duì)潰瘍病的抗性。并且,轉(zhuǎn)pCLBV202-MIR399的柑橘實(shí)生苗嫁接到枳砧,4年后仍可檢測(cè)到CLBV病毒和csi-miR399表達(dá),顯示該病毒載體在柑橘體內(nèi)具有較強(qiáng)的穩(wěn)定性。因此,利用基于CLBV的病毒載體過表達(dá)miRNA為柑橘潰瘍病提供了一種新型防控技術(shù)。

4 結(jié)論

csi-miR399與柑橘的潰瘍病抗性密切相關(guān),過表達(dá)csi-miR399顯著提高柑橘對(duì)潰瘍病的抗性,可應(yīng)用于柑橘抗?jié)儾〉姆肿佑N或病害防控。

致謝:西南大學(xué)宋震教授惠贈(zèng)病毒表達(dá)載體pCLBV202,胡軍華副研究員惠贈(zèng)柑橘潰瘍病菌。在此表示感謝!

[1] AL-SAADI A, REDDY J D, DUAN Y P, BRUNINGS A M, YUAN Q, GABRIEL D W. All five host-range variants ofcarry onehomolog with 17.5 repeats that determines pathogenicity on citrus, but none determine host-range variation. Molecular Plant-Microbe Interactions,2007, 20(8): 934-943. doi: 10.1094/mpmi- 20-8-0934.

[2] PITINO M, ARMSTRONG C M, DUAN Y P. Rapid screening for citrus canker resistance employing pathogen-associated molecular pattern-triggered immunity responses. Horticulture Research,2015, 2: 15042. doi: 10.1038/hortres.2015.42.

[3] 王曉宇, 彭埃天, 宋曉兵, 黃峰, 崔一平. 柑橘潰瘍病綜合防控技術(shù)研究進(jìn)展. 中國(guó)農(nóng)學(xué)通報(bào),2021, 37(31): 106-111.

WANG X Y, PENG A T, SONG X B, HUANG F, CUI Y P. Comprehensive control technology of citrus bacterial canker disease: a review. Chinese Agricultural Science Bulletin, 2021, 37(31): 106-111. (in Chinese)

[4] ISLAM M N, ALI M S, CHOI S J, HYUN J W, BAEK K H. Biocontrol of citrus canker disease caused bysubsp.using an endophytic. Plant Pathology Journal,2019, 35(5): 486-497. doi: 10.5423/ppj.Oa.03.2019.0060.

[5] VILLAMIZAR S, FERRO J A, CAICEDO J C, ALVES L M C. Bactericidal effect of entomopathogenic bacteriumagainstreduces citrus canker disease severity. Frontiers in Microbiology,2020, 11: 1431. doi: 10.3389/ fmicb.2020.01431.

[6] CONTI G, XOCONOSTLE-CAZARES B, MARCELINO-PEREZ G, HOPP H E, REYES C A. Citrus genetic transformation: an overview of the current strategies and insights on the new emerging technologies. Frontiers in Plant Science,2021, 12: 768197. doi: 10.3389/fpls.2021.768197.

[7] 姚利曉, 范海芳, 張慶雯, 何永睿, 許蘭珍, 雷天剛, 彭愛紅, 李強(qiáng), 鄒修平, 陳善春. 柑橘潰瘍病抗性相關(guān)轉(zhuǎn)錄因子CitMYB20的功能. 中國(guó)農(nóng)業(yè)科學(xué),2020, 53(10): 1997-2008. doi: 10.3864/j.issn.0578- 1752.2020.10.007.

YAO L X, FAN H F, ZHANG Q W, HE Y R, XU L Z, LEI T G, PENG A H, LI Q, ZOU X P, CHEN S C. Function of citrus bacterial canker resistance-related transcription factor CitMYB20. Scientia Agricultura Sinica, 2020, 53(10): 1997-2008. doi: 10.3864/j.issn.0578-1752.2020. 10.007. (in Chinese)

[8] PENG A H, CHEN S C, LEI T G, XU L Z, HE Y R, WU L, YAO L X, ZOU X P. Engineering canker-resistant plants through CRISPR/Cas9- targeted editing of the susceptibility genepromoter in citrus. Plant Biotechnology Journal,2017, 15(12): 1509-1519. doi: 10.1111/ pbi.12733.

[9] CHEN X M. Small RNAs and their roles in plant development. Annual Review of Cell and developmental Biology,2009, 25: 21-44. doi: 10.1146/annurev.cellbio.042308.113417.

[10] VAUCHERET H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes & Development,2006, 20(7): 759-771. doi: 10.1101/gad.1410506.

[11] YANG X, ZHANG L, YANG Y, SCHMID M, WANG Y. miRNA mediated regulation and interaction between plants and pathogens. International Journal of Molecular Sciences,2021, 22(6): 2913. doi: 10.3390/ijms22062913.

[12] NAVARRO L, DUNOYER P, JAY F, ARNOLD B, DHARMASIRI N, ESTELLE M, VOINNET O, JONES J D. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science,2006, 312(5772): 436-439. doi: 10.1126/science.1126088.

[13] CARUANA J C, DHAR N, RAINA R. Overexpression ofinduces salicylic acid-dependent defense againstthrough the regulation of its targetsand. Plant Direct,2020, 4(9): e00270. doi: 10.1002/pld3.270.

[14] LI Y, LU Y G, SHI Y, WU L, XU Y J, HUANG F, GUO X Y, ZHANG Y, FAN J, ZHAO J Q,. Multiple rice microRNAs are involved in immunity against the blast fungus. Plant Physiology,2014, 164(2): 1077-1092. doi: 10.1104/pp.113.230052.

[15] LI Y, CAO X L, ZHU Y, YANG X M, ZHANG K N, XIAO Z Y, WANG H, ZHAO J H, ZHANG L L, LI G B,. Osa-miR398b boosts H2O2production and rice blast disease-resistance via multiple superoxide dismutases. New Phytologist,2019, 222(3): 1507-1522. doi: 10.1111/nph.15678.

[16] LUAN Y S, CUI J, LI J, JIANG N, LIU P, MENG J. Effective enhancement of resistance toby overexpression of miR172a and b in. Planta,2018, 247(1): 127-138. doi: 10.1007/s00425-017-2773-x.

[17] FAN D, RAN L Y, HU J, YE X, XU D, LI J Q, SU H L, WANG X Q, REN S, LUO K M. miR319a/TCP module and DELLA protein regulate trichome initiation synergistically and improve insect defenses in. New Phytologist,2020, 227(3): 867-883. doi: 10.1111/nph.16585.

[18] ZHENG Z, WANG N, JALAJAKUMARI M, BLACKMAN L, SHEN E, VERMA S, WANG M B, MILLAR A A. miR159 represses a constitutive pathogen defense response in tobacco. Plant Physiology,2020, 182(4): 2182-2198. doi: 10.1104/pp.19.00786.

[19] MISHRA R, MOHANTY J N, CHAND S K, JOSHI R K. Can-miRn37a mediated suppression of ethylene response factors enhances the resistance of chilli against anthracnose pathogenL. Plant Science,2018, 267: 135-147. doi: 10.1016/j.plantsci.2017.12.001.

[20] XU Y, WANG R, MA P, CAO J, CAO Y, ZHOU Z, LI T, WU J, ZHANG H. A novel maize microRNA negatively regulates resistance to. Molecular Plant Pathology,2022, 23(10): 1446-1460. doi: 10.1111/mpp.13240.

[21] BARI R, PANT B D, STITT M, SCHEIBLE W R. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiology,2006, 141(3): 988-999. doi: 10.1104/pp.106. 079707.

[22] PANT B D, BUHTZ A, KEHR J, SCHEIBLE W R. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. The Plant Journal,2008, 53(5): 731-738. doi: 10.1111/j. 1365-313X.2007.03363.x.

[23] WANG R, FANG Y N, WU X M, QING M, LI C C, XIE K D, DENG X X, GUO W W. The miR399-module regulates reproductive development and male fertility in citrus. Plant Physiology,2020, 183(4): 1681-1695. doi: 10.1104/pp.20.00129.

[24] WANG Y, ZHANG J, CUI W, GUAN C, MAO W, ZHANG Z. Improvement in fruit quality by overexpressing miR399a in woodland strawberry. Journal of Agricultural and Food Chemistry,2017, 65(34): 7361-7370. doi: 10.1021/acs.jafc.7b01687.

[25] HU Z, WANG F S, YU H, ZHANG M M, JIANG D, HUANG T J, XIANG J S, ZHU S P, ZHAO X C. Effects of scion-rootstock interaction on citrus fruit quality related to differentially expressed small RNAs. Scientia Horticulturae,2022, 298: 110974. doi: 10.1016/ j.scienta.2022.110974.

[26] VAL-TORREGROSA B, BUNDO M, MARTIN-CARDOSO H, BACH-PAGES M, CHIOU T J, FLORS V, SEGUNDO B S. Phosphate-induced resistance to pathogen infection in. The Plant Journal,2022, 110(2): 452-469. doi: 10.1111/tpj.15680.

[27] ZHANG Q, ZHANG Y, WANG S, HAO L, WANG S, XU C, JIANG F, LI T. Characterization of genome-wide microRNAs and their roles in development and biotic stress in pear. Planta,2019, 249(3): 693-707. doi: 10.1007/s00425-018-3027-2.

[28] ZHAO H W, SUN R B, ALBRECHT U, PADMANABHAN C, WANG A R, COFFEY M D, GIRKE T, WANG Z H, CLOSE T J, ROOSE M,. Small RNA profiling reveals phosphorus deficiency as a contributing factor in symptom expression for citrus Huanglongbing disease. Molecular Plant,2013, 6(2): 301-310. doi: 10.1093/mp/sst002.

[29] DAI X, ZHUANG Z, ZHAO P X. psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Research,2018, 46(W1): W49-w54. doi: 10.1093/nar/gky316.

[30] LI F, DAI S, DENG Z, LI D, LONG G, LI N, LI Y, GENTILE A. Evaluation of parameters affecting-mediated transient expression in citrus. Journal of Integrative Agriculture,2017, 16(3): 572-579. doi: 10.1016/S2095-3119(16)61460-0.

[31] ACANDA Y, WELKER S, ORBOVI? V, LEVY A. A simple and efficient agroinfiltration method for transient gene expression in citrus. Plant Cell Reports,2021, 40(7): 1171-1179. doi: 10.1007/s00299-021- 02700-w.

[32] 張琦, 段玉, 蘇越, 蔣琪琪, 王春慶, 賓羽, 宋震. 基于柑橘葉斑駁病毒的表達(dá)載體構(gòu)建及應(yīng)用. 中國(guó)農(nóng)業(yè)科學(xué),2022, 55(22): 4398-4407. doi: 10.3864/j.issn.0578-1752.2022.22.006.

ZHANG Q, DUAN Y, SU Y, JIANG Q Q, WANG C Q, BIN Y, SONG Z. Construction and application of expression vector based on citrus leaf blotch virus. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407. doi: 10.3864/j.issn.0578-1752.2022.22.006. (in Chinese)

[33] SIMMONS C W, VANDERGHEYNST J S, UPADHYAYA S K. A model ofvacuum infiltration into harvested leaf tissue and subsequenttransgene transient expression. Biotechnology and Bioengineering,2009, 102(3): 965-970. doi: 10.1002/bit.22118.

[34] CAMPOS-SORIANO L, BUNDO M, BACH-PAGES M, CHIANG S F, CHIOU T J, SEGUNDO B S. Phosphate excess increases susceptibility to pathogen infection in rice. Molecular Plant Pathology,2020, 21(4): 555-570. doi: 10.1111/mpp.12916.

[35] PEGLER J L, NGUYEN D Q, OULTRAM J M J, GROF C P L, EAMENS A L. Molecular manipulation of the miR396 and miR399 expression modules alters the response ofto phosphate stress. Plants,2021, 10(12): 2570. doi: 10.3390/plants10122570.

[36] LIN S I, CHIANG S F, LIN W Y, CHEN J W, TSENG C Y, WU P C, CHIOU T J. Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiology,2008, 147(2): 732-746. doi: 10.1104/pp.108.116269.

[37] PENG K K, TIAN Y, SUN X Z, SONG C H, REN Z P, BAO Y Z, XING J P, LI Y S, XU Q H, YU J, ZHANG D, CANG J. tae-miR399-module enhances freezing tolerance in winter wheat via a CBF signaling pathway. Journal of Agricultural and Food Chemistry,2021, 69(45): 13398-13415. doi: 10.1021/acs.jafc.1c04316.

[38] ZHOU H, LI C, QIU X, LU S. Systematic analysis of alkaline/neutral invertase genes reveals the involvement of Smi-miR399 in regulation ofand. Plants,2019, 8(11): 490. doi: 10.3390/plants8110490.

[39] BAEK D, CHUN H J, KANG S, SHIN G, PARK S J, HONG H, KIM C, KIM D H, LEE S Y, KIM M C, YUN D J. A role formiR399f in salt, drought, and ABA signaling. Molecules and Cells,2016, 39(2): 111-118. doi: 10.14348/molcells.2016.2188.

[40] BAI Y, ALI S, LIU S, ZHOU J, TANG Y. Characterization of plant laccase genes and their functions. Gene,2023, 852: 147060. doi: 10.1016/j.gene.2022.147060.

[41] VELAZQUEZ K, AGUERO J, VIVES M C, ALEZA P, PINA J A, MORENO P, NAVARRO L, GUERRI J. Precocious flowering of juvenile citrus induced by a viral vector based oncitrus leaf blotch virus: a new tool for genetics and breeding. Plant Biotechnology Journal,2016, 14(10): 1976-1985. doi: 10.1111/pbi.12555.

Expression pattern of csi-miR399 in response tosubsp.infection and its disease resistance analysis

Citrus Research Institute, Southwest University/National Citrus Engineering Technology Research Center/National Center for Citrus Varieties Improvement, Chongqing 400712

【Objective】The objective of this study is to identify the expression pattern of csi-miR399 in response to the infection of citrus canker bacteria (subsp.,), screen its target genes, analyze the correlation between csi-miR399 andresistance in host plants, and to lay a foundation for the creation of citrus canker resistant germplasms.【Method】In order to clarify the expression pattern of csi-miR399 in response toinfection,-resistantvariety Calamondin ()-sensitive variety Newhall Navel Orange () were used as materials, and changes in the relative expression of csi-miR399 were analyzed by stem-loop qPCR after their leaves were injected withat 1, 3 and 5 d. The online software psRNATarget was used to predict the target genes of csi-miR399, which were further confirmed by qPCR in citrus leaves infected withand transiently over-expressed with csi-miR399. The viral expression vector pCLBV202-MIR399 was constructed by in-fusion cloning through csi-miR399 precursor sequence being inserted into pCLBV202, and transferred into Eureka Lemon () by-mediated vacuum infiltration. The lemon over-expressed with csi-miR399 was evaluated for resistance againstthrough being stab-inoculated with the pathogen and investigated disease index.【Result】After inoculation with, the expression of csi-miR399 in Calamondin showed a downward trend and then an upward trend, while that in Newhall Navel Orange continued to decrease. At 5 d, the expression of csi-miR399 in Calamondin and Newhall Navel Orange was 4.64 times and 7.61% as its expression in healthy leaves, respectively, preliminary indicating that csi-miR399 was related to citrus canker resistance. Thirteen predicted target genes were screened from citrus genome. Three of them were confirmed because of the opposite expression trends with csi-miR399, which were Cs2g06030 (), Cs7g03830 (unknown protein), and Cs8g18800 (laccase). Three lemon strains (Y37, Y41 and Y57) with over-expressed csi-miR399 were obtained. Comparing with L35 (empty vector pCLBV202), csi-miR399 was significantly up-regulated in the Y37, Y41 and Y57 strains. The area of canker lesions in Y37, Y41 and Y57 was also significantly reduced, and the disease index was significantly decreased after inoculation with(<0.01). It indicated that overexpression of csi-miR399 significantly enhanced the resistance to citrus canker.【Conclusion】csi-miR399 is closely related to the resistance of citrus to canker disease. Overexpression of csi-miR399 significantly improves the resistance, which can be applied to the molecular breeding of citrus against canker disease.

csi-miR399; citrus canker; target gene; over-expression vector based on citrus virus; biotic stress

10.3864/j.issn.0578-1752.2023.08.005

2023-01-20;

2023-01-31

國(guó)家重點(diǎn)研發(fā)計(jì)劃(2021YFD1400800,2021YFD1600800)、國(guó)家現(xiàn)代農(nóng)業(yè)(柑橘)產(chǎn)業(yè)技術(shù)體系(CARS-26)

王兆昊,E-mail:wangzh0614@163.com。通信作者姚利曉,E-mail:yaolixiao@cric.cn

(責(zé)任編輯 岳梅)

猜你喜歡
荷爾潰瘍病臍橙
臍橙連上物聯(lián)網(wǎng) 掃碼便知“前世今生”
冬季潰瘍病高發(fā) 防治須加強(qiáng)
葡萄轉(zhuǎn)色期干梗掉粒 多是潰瘍病
獼猴桃潰瘍病致病根源及防控對(duì)策
贛南早臍橙在幾種中間砧木上高接換種的表現(xiàn)
奉節(jié)臍橙
天津詩人(2017年2期)2017-03-16 03:09:39
湘西自治州獼猴桃潰瘍病發(fā)生情況及防治措施探討
臍橙豐產(chǎn)栽培技術(shù)
紐荷爾臍橙揮發(fā)性風(fēng)味成分分析
缺硼條件下兩種不同砧木“紐荷爾”臍橙礦質(zhì)元素含量變化的比較
五台县| 平湖市| 陆良县| 留坝县| 金坛市| 石渠县| 藁城市| 泰州市| 子长县| 连山| 鄂托克旗| 南安市| 富民县| 伊宁市| 台东市| 连山| 车致| 察雅县| 汨罗市| 云梦县| 黄石市| 兴隆县| 宜良县| 桦甸市| 定边县| 凤台县| 台北市| 溆浦县| 徐水县| 西畴县| 广宗县| 石门县| 黄平县| 曲周县| 松江区| 郯城县| 新营市| 错那县| 平果县| 宣汉县| 抚州市|