趙麗鳳 袁征 李鷹飛
摘要:阿奇霉素是一種在紅霉素化學(xué)結(jié)構(gòu)基礎(chǔ)上修飾而得到的大環(huán)內(nèi)酯類抗生素。作為第二代大環(huán)內(nèi)酯類抗生素,阿奇霉素抗菌譜與紅霉素相仿,具有廣譜抗菌的特點(diǎn),但其抗菌活性明顯改善。近些年研究發(fā)現(xiàn),除基本的抗菌作用外,阿奇霉素還具有抗炎、調(diào)節(jié)免疫、抗病毒以及抗瘧疾等藥理作用,其臨床應(yīng)用范圍不斷擴(kuò)大。本文對(duì)阿奇霉素的藥理作用及相關(guān)作用機(jī)制進(jìn)行了綜述,以期為其臨床應(yīng)用提供科學(xué)指導(dǎo)。
關(guān)鍵詞:阿奇霉素;抗菌;抗炎;免疫調(diào)節(jié);抗病毒;抗瘧
中圖分類號(hào):R978.1? ? ? ? ?文獻(xiàn)標(biāo)志碼:A? ? ? ? ?文章編號(hào):1001-8751(2023)01-0033-06
Azithromycin: A Multifunctional Antibiotic Drug
Zhao Li-feng,? ?Yuan Zheng,? ?Li Ying-fei
(Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences,? ?Beijing? ?100700)
Abstract: Azithromycin is a macrolide antibiotic obtained by modifying the chemical structure of erythromycin. As a second-generation macrolide antibiotic, azithromycin has a similar antibacterial spectrum to erythromycin, so it has the characteristics of broad-spectrum antibacterial, but its antibacterial activity is significantly improved. In recent years, researchers have found that in addition to the basic antibacterial effect, azithromycin has other pharmacological effects, such as anti-inflammatory, immune regulation, antiviral and antimalarial. Therefore, the scope of clinical application of azithromycin continues to expand. This article reviews the pharmacological effects and mechanism of action of azithromycin for its scientific clinical application.
Key words: azithromycin; antibacterial; anti-inflammatory; immune regulation; antiviral; antimalarial
阿奇霉素是一種半合成的十五元環(huán)大環(huán)內(nèi)酯類抗生素,由紅霉素A9-酮基產(chǎn)生肟化作用后經(jīng)貝克曼重排、N-甲基化等一系列反應(yīng)所得[1]。阿奇霉素于1980年由克羅地亞普利瓦制藥公司研制,次年被推出市場(chǎng)[2]。阿奇霉素對(duì)革蘭陰性細(xì)菌、厭氧菌及其他病原體均有很強(qiáng)的活性,尤其對(duì)流感嗜血菌具有明顯的抑制作用。由于用藥安全系數(shù)高,阿奇霉素被世界衛(wèi)生組織列為最安全的藥物之一[3],也被列入基本藥物清單,并在全球大規(guī)模生產(chǎn)[4]。
研究表明,作為一種長(zhǎng)效抗生素,阿奇霉素不僅具有較好的抗菌活性,還具有抗炎、調(diào)節(jié)免疫功能、抗病毒、抗瘧疾等作用。此外,在近兩年肆虐全球的新型冠狀病毒肺炎(COVID-19)的治療中,阿奇霉素也表現(xiàn)出較好的抗炎及免疫調(diào)節(jié)作用。因此,阿奇霉素可能會(huì)成為一個(gè)老藥新用的典型范例。本文查找了近二十年來(lái)關(guān)于阿奇霉素的相關(guān)文獻(xiàn)報(bào)道,就阿奇霉素的抗菌、抗炎、調(diào)節(jié)免疫功能、抗病毒、抗瘧疾等藥理作用進(jìn)行了綜述,按照其藥理作用差異將相關(guān)文獻(xiàn)進(jìn)行了分類(詳見(jiàn)表1),并討論了其藥理作用的分子機(jī)制及臨床應(yīng)用,旨在為阿奇霉素的科學(xué)研究及臨床應(yīng)用提供指導(dǎo)。
1 抗菌作用
阿奇霉素具有紅霉素的重組結(jié)構(gòu),對(duì)革蘭陽(yáng)性菌的活性不如紅霉素,但對(duì)流感嗜血桿菌、卡他莫拉菌等革蘭陰性菌的活性要比紅霉素高得多,對(duì)大腸埃希菌、沙門菌和志賀菌等腸桿菌目也有活性。此外,阿奇霉素對(duì)嗜肺軍團(tuán)菌、伯氏疏螺旋體、肺炎支原體等也有抑制作用。已有研究發(fā)現(xiàn),阿奇霉素比紅霉素抗大腸埃希菌、肺炎鏈球菌的能力至少?gòu)?qiáng)5倍,抗流感嗜血桿菌的能力至少?gòu)?qiáng)10倍[5]。更有意義的是,阿奇霉素對(duì)沙眼衣原體和解脲脲原體的抑制能力比紅霉素更強(qiáng)[6]。此外,阿奇霉素對(duì)細(xì)胞內(nèi)鳥(niǎo)分枝桿菌和一些原生動(dòng)物也具有較強(qiáng)活性[2]。
一般來(lái)說(shuō),阿奇霉素的抗菌機(jī)制與紅霉素大致相同,即通過(guò)可逆地結(jié)合敏感微生物的50S核糖體亞基,以阻止新生肽鏈的翻譯與組裝,最終抑制依賴細(xì)胞中心法則的細(xì)菌蛋白質(zhì)的翻譯過(guò)程以抑制細(xì)菌生長(zhǎng),實(shí)現(xiàn)抗菌作用[7-8]。但是,阿奇霉素的酸穩(wěn)定性強(qiáng)于紅霉素,更容易通過(guò)胃腸道吸收。同時(shí),阿奇霉素的細(xì)胞組織分布更加均勻,并且具有持久的高濃度組織,半衰期可長(zhǎng)達(dá)40 h,因而抗菌時(shí)間較紅霉素更長(zhǎng)。
在呼吸道感染、口腔厭氧菌感染、皮膚感染、軟組織感染及泌尿生殖系統(tǒng)感染等臨床疾病的治療中,阿奇霉素發(fā)揮了重要作用。并且,在臨床上由于服用阿奇霉素而引起的不良反應(yīng)發(fā)生率相對(duì)較低,因此阿奇霉素安全性高,可靠性強(qiáng),易于患者接受[9]。此外,因具有廣泛抗菌譜,阿奇霉素也常用于成人肺炎或兒童支原體肺炎的治療[10]。另有研究表明,阿奇霉素可以減少普雷沃菌引起的炎癥,是普雷沃菌感染的可能治療藥物[11]。
2 抗炎作用
阿奇霉素具有顯著的抗炎活性[12-13]。研究表明,阿奇霉素能夠降低多種炎癥細(xì)胞因子的水平,包括白細(xì)胞介素(IL)-1β、IL-2、腫瘤壞死因子(TNF)和粒細(xì)胞—巨噬細(xì)胞集落刺激因子(GM-CSF)等[14]。阿奇霉素也被認(rèn)為能夠抑制IL-6和IL-12,并促進(jìn)活化的小鼠巨噬細(xì)胞產(chǎn)生IL-10。有證據(jù)表明,這些抗炎作用是通過(guò)抑制核因子-κB(NF-κB)的激活來(lái)實(shí)現(xiàn)的。此外,阿奇霉素還可以抑制轉(zhuǎn)錄因子激活蛋白-1(AP-1)的活化,而這些激活因子能夠調(diào)節(jié)IL-8、IL-6、TNF-α和IL-1β等促炎細(xì)胞因子的表達(dá)[15]。因此,阿奇霉素降低IL-8產(chǎn)生也可能是通過(guò)其抑制絲裂原活化蛋白激酶和細(xì)胞外調(diào)節(jié)激酶。
阿奇霉素的抗炎作用主要表現(xiàn)在免疫細(xì)胞和上皮細(xì)胞中。一些研究發(fā)現(xiàn),阿奇霉素對(duì)免疫細(xì)胞和上皮細(xì)胞具有刺激作用,并通過(guò)刺激中性粒細(xì)胞脫粒和吞噬作用相關(guān)的氧化暴發(fā)來(lái)調(diào)節(jié)細(xì)胞外信號(hào)調(diào)節(jié)激酶1/2(ERK1/2)信號(hào)傳導(dǎo)[16]。這些初始刺激作用之后,AP-1、NF-κB、炎癥細(xì)胞因子和黏蛋白得到釋放,從而發(fā)揮阿奇霉素整體的抗炎作用。在巨噬細(xì)胞中,阿奇霉素通過(guò)抑制AP-1靶點(diǎn)來(lái)減少脂多糖誘導(dǎo)的促炎細(xì)胞因子,增加細(xì)胞吞噬作用,實(shí)現(xiàn)溶酶體對(duì)氧化應(yīng)激抵抗能力的增強(qiáng)以及巨噬細(xì)胞M2極化的促進(jìn)[17-18]。阿奇霉素還可以通過(guò)抑制鈣調(diào)神經(jīng)磷酸酶信號(hào)通路、哺乳動(dòng)物雷帕霉素活性靶點(diǎn)和NF-κB活化來(lái)抑制T細(xì)胞[19]。此外,在體外呼吸道上皮細(xì)胞模型中,阿奇霉素能夠減少黏液生成并增強(qiáng)上皮屏障厚度,還可以降低細(xì)菌脂多糖攻擊后基質(zhì)金屬蛋白酶(MMP)的活性,從而降低炎癥信號(hào),這有助于保持細(xì)胞的完整性和上皮屏障的功能性[20]。已有研究證實(shí),阿奇霉素可以改善二氧化硫誘導(dǎo)的氣道上皮損傷和炎癥反應(yīng)[21]。
阿奇霉素以粒細(xì)胞為靶點(diǎn)具有一定程度的特異性,富集于粒細(xì)胞溶酶體中,影響中性粒細(xì)胞的積聚、黏附、脫粒和凋亡[19]。Gibson等[22]的體外研究證實(shí),8 μg/mL濃度的阿奇霉素可以持續(xù)抑制中性粒細(xì)胞中IL-1β mRNA的表達(dá)。阿奇霉素易集中于中性粒細(xì)胞浸潤(rùn)增加的感染和炎癥部位,可能與中性粒細(xì)胞攝取阿奇霉素和其在感染部位釋放緩慢有關(guān),延長(zhǎng)了其作用時(shí)間。此外,阿奇霉素通過(guò)影響?zhàn)じ降鞍椎谋磉_(dá)、降低趨化性和氧化暴發(fā)來(lái)調(diào)節(jié)多形核中性白細(xì)胞的功能。因此,阿奇霉素通過(guò)多種機(jī)制抑制中性粒細(xì)胞對(duì)細(xì)胞因子和趨化因子基因的表達(dá)。
3 免疫調(diào)節(jié)作用
阿奇霉素具有多種免疫調(diào)節(jié)作用,其免疫調(diào)節(jié)作用與抗炎作用是密切聯(lián)系的。在銅綠假單胞菌肺部感染和脂多糖誘導(dǎo)炎癥的小鼠實(shí)驗(yàn)?zāi)P椭?,阿奇霉素能夠明顯降低巨噬細(xì)胞炎癥因子、髓過(guò)氧化物酶、TNF-α和IL-1β的水平,進(jìn)而改變巨噬細(xì)胞的活性[23]。
以阿奇霉素為代表的大環(huán)內(nèi)酯進(jìn)行免疫調(diào)節(jié)的主要途徑包括:大環(huán)內(nèi)酯與抑制鈣調(diào)的神經(jīng)磷酸酶結(jié)合,從而激活T細(xì)胞,隨后嗜酸性粒細(xì)胞和嗜堿性細(xì)胞等許多免疫細(xì)胞被抑制[24]。此外,阿奇霉素能夠以p65為作用靶點(diǎn)減弱其下游成分肺上皮細(xì)胞NF-κB的活化作用,從而降低上皮細(xì)胞IL-8的產(chǎn)生[25-27]。另外,在哺乳動(dòng)物細(xì)胞中,阿奇霉素能夠以細(xì)胞內(nèi)絲裂原活化蛋白激酶(MAPK)為靶點(diǎn),影響ERK1/2和ERK下游的NF-κB通路。ERK1/2和NF-κB通路涉及炎癥細(xì)胞因子表達(dá)、細(xì)胞增殖和黏蛋白分泌等細(xì)胞功能,因而阿奇霉素的免疫調(diào)節(jié)功能可通過(guò)此通路進(jìn)行解釋。值得關(guān)注的是,COVID-19對(duì)人體免疫系統(tǒng)的影響也與ERK1/2和NF-κB通路有關(guān),因此阿奇霉素在COVID-19患者中的免疫調(diào)節(jié)作用也可用此機(jī)理進(jìn)行解釋[28]。
由于具有免疫調(diào)節(jié)作用,阿奇霉素可以有效治療囊性纖維化(CF)、非CF型支氣管擴(kuò)張、慢性阻塞性肺病、慢性鼻竇炎、敗血癥和彌漫性全細(xì)支氣管炎等多種慢性肺部疾病[29]。
4 抗病毒作用
阿奇霉素具有抗病毒特性,可以與其他抗病毒藥物協(xié)同工作。大量病毒臨床用藥和科學(xué)實(shí)驗(yàn)證實(shí)了阿奇霉素的抗病毒活性,這些病毒種類包括呼吸道合胞病毒[30]、埃博拉病毒[31-32]、寨卡病毒[33]、H1N1流感病毒[34]、腸道病毒[35]和鼻病毒[36]。體外抗病毒活性研究顯示,除H1N1流感病毒外,阿奇霉素對(duì)上述病毒的50%抑制濃度范圍為1~6 μmol/L[37]。在治療寨卡病毒的2 177種藥物篩選實(shí)驗(yàn)中,阿奇霉素被證實(shí)能夠減少神經(jīng)膠質(zhì)細(xì)胞系和人類星形膠質(zhì)細(xì)胞中的病毒增殖和病毒誘導(dǎo)所致的細(xì)胞病變效應(yīng)[38]。此外,阿奇霉素對(duì)呼吸道合胞病毒的抑制活性在嬰兒的隨機(jī)研究中亦得到了證實(shí)[39]。另外,阿奇霉素對(duì)埃博拉病毒的有效預(yù)防也在小動(dòng)物模型實(shí)驗(yàn)中得以驗(yàn)證[32]。更具有現(xiàn)實(shí)意義的是,阿奇霉素抑制COVID-19病毒活性,且能夠與其他藥物協(xié)同抵抗COVID-19病毒循環(huán)[40]。Andreani等[41]報(bào)道了阿奇霉素單獨(dú)用藥也具有顯著抗COVID-19病毒的作用。
阿奇霉素抵抗不同病毒的具體作用機(jī)制不同。阿奇霉素能減少病毒進(jìn)入細(xì)胞,并通過(guò)多種作用增強(qiáng)機(jī)體對(duì)病毒的免疫應(yīng)答[34,42]。數(shù)據(jù)表明,阿奇霉素具有誘導(dǎo)模式識(shí)別受體、干擾素(IFN)和IFN刺激基因的能力以使病毒復(fù)制減少。阿奇霉素還能夠直接作用于支氣管上皮細(xì)胞,維持其功能,以減少黏液分泌,促進(jìn)肺功能[28]。在病毒感染的宿主細(xì)胞中,阿奇霉素誘導(dǎo)細(xì)胞內(nèi)抗病毒基因的mRNA和IFN刺激基因的表達(dá),最終通過(guò)增加IFN通路介導(dǎo)的抗病毒反應(yīng)實(shí)現(xiàn)抗病毒功能[43]。阿奇霉素還可通過(guò)上調(diào)I型、Ⅲ型干擾素(尤其是干擾素-β和干擾素-λ)[44-45]、病毒識(shí)別的基因如MDA5和RIG-I的表達(dá)實(shí)現(xiàn)抗病毒功能[46-47]。阿奇霉素可以減少原代人支氣管上皮細(xì)胞體外感染期間鼻病毒的復(fù)制和釋放,這一發(fā)現(xiàn)也在囊性纖維化患者中得到證實(shí),阿奇霉素再次治療可使病毒脫落大幅減少[48]。最近的研究數(shù)據(jù)也顯示阿奇霉素可以使A549細(xì)胞中的H1N1病毒復(fù)制減少,半抑制濃度(IC50值)為68 μmol/L[34,49]。阿奇霉素可以有效地抑制寨卡病毒感染,在病毒感染后期,阿奇霉素還能上調(diào)I型和Ⅲ型的IFNs及其下游ISGs表達(dá)。阿奇霉素還能誘導(dǎo)抗病毒模式識(shí)別受體(PRRs)MDA5和RIG-1的表達(dá)并提升TBK1和IRF3的磷酸化水平實(shí)現(xiàn)抗病毒作用[44]。
值得注意的是,因其有抗COVID-19病毒的作用[40-41],阿奇霉素在臨床上曾被納為治療COVID-19的處方之一,但經(jīng)Molina等[50]和Hraiech等[51]研究,發(fā)現(xiàn)阿奇霉素單獨(dú)以及聯(lián)合用藥并未展現(xiàn)出降低死亡率或消除病毒方面的作用,因而阿奇霉素僅適用于與該疾病相關(guān)的細(xì)菌合并感染的治療,世界衛(wèi)生組織不再建議在新冠肺炎的治療中使用阿奇霉素[52-53]。因此,阿奇霉素對(duì)于新冠肺炎的有效性有待深入研究。
5 抗瘧作用
阿奇霉素聯(lián)合青蒿琥酯或奎寧應(yīng)用對(duì)瘧疾有效。阿奇霉素—青蒿琥酯和阿奇霉素—奎寧是治療無(wú)并發(fā)癥惡性瘧疾安全有效的聯(lián)合途徑,值得在特殊患者人群中進(jìn)一步研究。Dahl等[54]也通過(guò)實(shí)驗(yàn)證明了阿奇霉素的抗瘧作用,發(fā)現(xiàn)阿奇霉素可以作用于寄生蟲(chóng)的頂質(zhì)體,延遲其死亡,但其確切機(jī)制有待研究。
6 其他作用
阿奇霉素具有抑制細(xì)胞凋亡的功能。有學(xué)者將阿奇霉素作用于高糖誘導(dǎo)的足細(xì)胞,發(fā)現(xiàn)細(xì)胞凋亡明顯減少,這可能與阿奇霉素能夠通過(guò)抑制STAT1信號(hào)通路抑制細(xì)胞凋亡有關(guān)[55]。此外,阿奇霉素還具有某些抗感染功效,可能對(duì)遲發(fā)性哮喘有效。另外,在早期給藥時(shí),阿奇霉素可改善環(huán)孢素相關(guān)的牙齦增生[56]。目前研究發(fā)現(xiàn),阿奇霉素在治療胃輕癱和胃腸運(yùn)動(dòng)障礙方面也具有廣闊的應(yīng)用前景[57-58]。
7 結(jié)語(yǔ)
因其多種藥理作用,阿奇霉素的臨床應(yīng)用越來(lái)越廣泛。但阿奇霉素作為一種抗生素藥物,其耐藥性仍然是一個(gè)世界范圍內(nèi)的健康問(wèn)題,可能導(dǎo)致阿奇霉素治療失敗。據(jù)估計(jì),12%使用1 g阿奇霉素治療的感染患者在治療后會(huì)產(chǎn)生大環(huán)內(nèi)酯耐藥。因此,亟需有更多阿奇霉素耐藥性的相關(guān)研究,以對(duì)阿奇霉素耐藥性的發(fā)展進(jìn)行監(jiān)測(cè),從而建立阿奇霉素耐藥性的分子機(jī)制,使其發(fā)揮更安全、更有效的臨床作用。此外,阿奇霉素雖然被世界衛(wèi)生組織列為最安全的藥物之一,但在實(shí)際應(yīng)用中仍然具有厭食、消化不良、脹氣、頭暈、頭痛等潛在的副作用,因此在臨床應(yīng)用中,開(kāi)具阿奇霉素處方時(shí)需加以謹(jǐn)慎,以使其更好地發(fā)揮臨床價(jià)值。
參 考 文 獻(xiàn)
Kirst H A. Recent progress in the chemical synthesis of antibiotics[M]. Springer-Verlag, 1990:44-45.
Bakheit A H, Al-Hadiya B M, Abd-Elgalil A A. Azithromycin[J].? Profiles Drug Subst Excip Relat Methodol, 2014, 39:21-40.
World Health Organization Model List of Essential Medicines: 21st List[Z]. World Health Organization, Geneva, 2019, 7:10.
Laopaiboon M, Panpanich R, Swa Mya K. Azithromycin for acute lower respiratory tract infections[J].? Cochrane Database Syst Rev, 2015, (3):CD001954.
吳超男, 陳娜娜, 李玉琴. 阿奇霉素研究進(jìn)展[J]. 泰山醫(yī)學(xué)院學(xué)報(bào), 2016, 37(11): 1317-1320.
Kuehne J J, Yu A L, Holland G N, et al. Corneal pharmacokinetics of topically applied azithromycin and clarithromycin[J]. Am J Ophthalmol, 2004, 138(4): 547-553.
Shi J, Liu Y, Zhang Y, et al. PA5470 counteracts antimicrobial effect of azithromycin by releasing stalled ribosome in Pseudomonas aeruginosa [J]. Antimicrob Agents Chemother, 2018, 62(2): 1867-1877.
Lin L, Lu L, Cao W, et al. Hypothesis for potential pathogenesis of SARS-CoV-2 infection—a review of immune changes in patients with viral pneumonia[J]. Emerg Microbes Infect, 2020, (9): 727-732.
紀(jì)慧. 阿奇霉素的藥理作用和臨床應(yīng)用研究[J]. 中國(guó)現(xiàn)代藥物應(yīng)用, 2019, 13(01): 129-131.
林銀英, 黃燦坤, 李莉. 阿奇霉素藥理作用和臨床應(yīng)用效果研究[J]. 海峽藥學(xué), 2019, 31(06): 219-220
Choi E Y, Jin J Y, Choi J I, et al. Effect of azithromycin on Prevotella intermedia lipopolysaccharide-induced production of interleukin-6 in murine macrophages[J]. Eur J Pharmacol, 2014, (729): 10-16.
Jaffé A, Bush A. Anti-inflammatory effects of macrolides in lung disease[J]. Pediatr? Pulmonol, 2001, (31): 464-473 .
Gibson P G, Yang I A, Upham J W, et al. Effect of azithromycin on asthma exacerbations and quality of life in adults with persistent uncontrolled asthma (AMAZES): a randomised, double-blind, placebo-controlled trial[J].? Lancet, 2017, 390(10095): 659-668.
Cigana C, Assael B M, Melotti P. Azithromycin selectively reduces tumor necrosis factor alpha levels in cystic fibrosis airway epithelial cells[J]. Antimicrob Agents Chemother, 2007, 51(3): 975-981.
Desaki M, Takizawa H, Ohtoshi T, et al.Erythromycin suppresses nuclear factor-kappa B and activator protein-1 activation in human bronchial epithelial cells[J]. Biochem Biophys Res, 2000, (267): 124-128
Ishimoto H, Mukae H, Sakamoto N, et al. Different effects of telithromycin on MUC5AC production induced by human neutrophil peptide-1 or lipopolysaccharide in NCI-H292 cells compared with azithromycin and clarithromycin[J]. J Antimicrob Chemother, 2009, 63(1): 109-114.
Hodge S, Hodge G, Jersmann H, et al. Azithromycin improves macrophage phagocytic function and expression of mannose receptor in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2008, 178(2): 139-148.
Hodge S, Hodge G, Brozyna S, et al. Azithromycin increases phagocytosis of apoptotic bronchial epithelial cells by alveolar macrophages[J]. Eur Respir J, 2006, 28(3): 486-495.
Oliver M E, Hinks T S C. Azithromycin in viral infections[J]. Rev Med Virol, 2021, 31(2): 2163.
Nuji?c K, Banjanac M, Muni?c V, et al. Impairment of lysosomal functions by azithromycin and chloroquine contributes to anti-inflammatory phenotype[J]. Cell Immunol, 2012, 279 (1):78-86.
Joelsson J P, Kricker J A, Arason A J, et al. Azithromycin ameliorates sulfur dioxide-induced airway epithelial damage and inflammatory responses[J]. Respir Res, 2020, 21(1): 233.
Gibson M P, Walters J D. Inhibition of neutrophil inflammatory mediator expressiony bazithromycin[J]. Clin Oral Investig, 2020, 24(12): 4493-4500.
Parnham M J, Haber V E, Giamarellos-Bourboulis E J, et al. Azithromycin: mechanisms of action and their relevance for clinical applications[J]. Pharmacol Ther, 2014, (143): 225-245.
Rolfe F G, Valentine J E, Sewell W A. Cyclosporin A and FK506 reduce interleukin-5 mRNA abundance by inhibiting gene transcription[J]. Am J Respir Cell Mol Biol, 1997, 17(2): 243-250.
Lendermon E A, Coon T A, Bednash J S, et al. Azithromycin decreases NALP3 mRNA stability in monocytes to limit inflammasome-dependent inflammation[J]. Respir Res, 2017, 18(1): 131.
Yamauchi K, Shibata Y, Kimura T, et al. Azithromycin suppresses interleukin-12p40 expression in lipopolysaccharide and interferon-gamma stimulated macrophages[J]. Int J Biol Sci, 2009, 5(7): 667-678.
Desaki M, Okazaki H, Sunazuka T, et al. Molecular mechanisms of anti-inflammatory action of erythromycin in human bronchial epithelial cells: possible role in the signaling pathway that regulates nuclear factor-κB activation[J]. Antimicrob Agents Chemother, 2004, 48(5): 1581-1585.
Kanoh S, Rubin B K. Mechanisms of action and clinical application of macrolides as immunomodulatory medications[J]. Clin Microbiol Rev, 2010, 23(3): 590-615.
Cramer C L, Patterson A, Alchakaki A, et al. Immunomodulatory indications of azithromycin in respiratory disease: a concise review for the clinician[J]. Postgrad Med, 2017, 129(5): 493-499.
Srinivasan M, Bacharier L B, Goss C W, et al. The azithromycin to prevent wheezing following severe RSV bronchiolitis-Ⅱ clinical trial: rationale, study design, methods, and characteristics of study population[J]. Contemp Clin Trials Commun, 2021, 22: 100798.
Du X, Zuo X, Meng F, et al. Combinatorial screening of a panel of FDA-approved drugs identi es several candidates with anti-Ebola activities[J]. Biochem Biophys Res Commun,? 2020, 522: 862-868.
Madrid P B, Panchal R G, Warren T K, et al. Evaluation of ebola virus inhibitors for drug repurposing[J].? ACS Infect Dis, 2015, 1(7): 317-326.
Wu Y H, Tseng C K, Lin C K, et al. ICR suckling mouse model of Zika virus infection for disease mode- ling and drug validation[J]. PLoS Neglected Trop Dis, 2018, 12: 6848.
Tran D H, Sugamata R, Hirose T, et al. Azithromycin, a 15-membered macrolide antibi- otic, inhibits in uenza (H1N1)pdm09 virus infection by inter- fering with virus internalization process[J]. J Antibiot, 2019, 72: 759-768.
Zeng S, Meng X, Huang Q, et al. Spiramycin and azithromycin, safe for administration to children, exert antiviral activity against enterovirus A71 In vitro and in vivo[J]. Int J Antimicrob Agents, 2019, 53: 362-369.
Mosquera RA, De Jesus-Rojas W, Stark JM, et al. Role of prophylactic azithromycin to reduce air- way in ammation and mortality in a RSV mouse infection model[J]. Pediatr Pulmonol, 2018, 53: 567-574.
Damle B, Vourvahis M, Wang E, et al. Clinical pharmacology perspectives on the antiviral activity of azithromycin and use in COVID-19[J]. Clin Pharmacol Ther, 2020, 108(2): 201-211.
Retallack H, Di Lullo E, Arias C, et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin[J]. Proc Natl Acad, 2016, 113(50): 14408-14413.
Beigelman A, Isaacson-Schmid M, Sajol G, et al. Randomized trial to evaluate azithromycins effects on serum and upper airway IL-8 levels and recurrent wheezing in infants with respiratory syncytial virus bronchiolitis[J]. J Allergy Clin Immunol, 2015, 135: 1171-1178.
Echeverría-Esnal D, Martin-Ontiyuelo C, Navarrete-Rouco M E, et al. Azithromycin in the treatment of COVID-19: a review[J]. Expert Rev Anti Infect Ther, 2021,19 (2): 147-163.
Andreani J, Le Bideau M, Duflot I, et al. In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect[J].? Microb Pathog, 2020, 145: 104228.
Yao X, Ye F, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)[J].? Clin Infect Dis, 2020, 71(15): 732-739.
Cure M C, Kucuk A, Cure E. Colchicine may not be effective in COVID-19 infection; it may even be harmful[J]. Clin Rheumatol, 2020, 39 (7): 2101-2102.
Li C, Zu S, Deng Y Q, et al. Azithromycin protects against zika virus infection by upregulating virus-induced type I and Ⅲ interferon responses[J].? Antimicrob Agents Chemother, 2019, 63(12): 394-419.
Menzel M, Akbarshahi H, Bjermer L, et al. Azithromycin induces anti-viral effects in cultured bronchial epithelial cells from COPD patients[J]. Sci Rep, 2016, 6: 28698.
Gautret P, Lagier J C, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial[J].? Int J Antimicrob Agents, 2020, 56(1): 105949.
Sch?gler A, Kopf B S, Edwards M R, et al. Novel antiviral properties of azithromycin in cystic fibrosis airway epithelial cells[J]. Eur Respir J, 2015, 45: 428-439.
Gielen V, Johnston S L, Edwards M R. Azithromycin induces anti-viral responses in bronchial epithelial cells[J]. Eur Respir J, 2010, 36(3): 646-654.
Du X, Zuo X, Meng F, et al. Direct inhibitory effect on viral entry of influenza A and SARS-CoV-2 viruses by azithromycin[J]. Cell Prolif, 2021, 54 (1): 12953.
Molina J M, Delaugerre C, Le Goff J, et al. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection[J]. Med Mal Infect, 2020, 50(4): 384.
Hraiech S, Bourenne J, Kuteifan K, et al. Lack of viral clearance by the combination of hydroxychloroquine and azithromycin or lopinavir and ritonavir in SARS-CoV-2-related acute respiratory distress syndrome[J]. Ann Intensive Care, 2020,10(1):63.
Rosenberg E S, Dufort E M, Udo T, et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York State[J]. JAMA, 2020, 323: 2493-2502.
Kim D, Lee J Y, Yang J S, et al. The architecture of SARS-CoV-2 transcriptome[J]. Cell, 2020, 181: 914-921.
Dahl E L, Rosenthal P J. Multiple antibiotics exert delayed effects against the plasmodium falciparum apicoplast[J]. Antimicrob Agents Chemother, 2007, 51: 3485-3490.
Xing Y W, Liu K Z. Azithromycin inhibited oxidative stress and apoptosis of high glucose-induced podocytes by inhibiting STAT1 pathway[J]. Drug Dev Res, 2021, 82(7): 990-998.
Gomez E, Sanchez-Nunez M, Sanchez J E, et al. Treatment of cyclosporin-induced gingival hyperplasia with azithromycin[J]. Nephrol Dial Transplant, 1997, 12 (12): 2694-2697.
Chini P, Toskes P P, Waseem S, et al. Mcdonald, B. moshiree, effect of azithromycin on small bowel motility in patients with gastrointestinal dysmotility[J]. Scand J Gastroenterol, 2012, 47(4): 422-427.
Moshiree B, Mcdonald R, Hou W, et al. Comparison of the effect of azithromycin versus erythromycin on antroduodenal pressure profiles of patients with chronic functional gastrointestinal pain and gastroparesis[J]. Dig Dis Sci, 2010, 55 (3): 675-683.