高麗芳 張雙慶
摘要:慢性低度炎癥性反應(yīng)是許多慢性疾病的病理特征。甾體和非甾體抗炎藥物是目前僅有的炎癥性疾病治療方法,但長期使用會產(chǎn)生嚴(yán)重不良反應(yīng)。淫羊藿素(ICT)為傳統(tǒng)中藥淫羊藿中黃酮類活性成分的腸內(nèi)代謝物,也是淫羊藿中淫羊藿苷的酶解產(chǎn)物。體內(nèi)外研究均發(fā)現(xiàn)ICT具有良好的抗炎作用。本文綜述了ICT抗炎作用研究進(jìn)展,為ICT抗炎臨床應(yīng)用和藥物研發(fā)提供依據(jù)。
關(guān)鍵詞:淫羊藿素;慢性低度炎癥性反應(yīng);抗炎;天然植物;提取物;類黃酮
中圖分類號:R979.9? ? ? ? ?文獻(xiàn)標(biāo)志碼:A? ? ? ? ?文章編號:1001-8751(2023)01-0026-07
Research Progress on Anti-inflammatory Effects of Icaritin
Gao Li-fang1,? Zhang Shuang-qing2
(1 School of Public Health, Capital Medical University,? ?Beijing? ?100069;
2 National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050)
Abstract: A chronic low-grade inflammatory state is a pathological feature of a wide range of chronic diseases. Steroid and non-steroidal anti-inflammatory drugs are the currently available therapy for inflammatory diseases, which cause serious adverse effects with long-term use. Icaritin (ICT) is an intestinal metabolite of active flavonoids in a traditional Chinese medicine Epimedium, and is also an enzymatic product of Icariin in Epimedium. ICT exhibits an excellent anti-inflammatory activity in both in vitro and in vivo experiments. The review summarizes recent advances in the anti-inflammatory effects of ICT, which provides a basis for the anti-inflammatory clinical application and drug development of ICT.
Key words: icaritin;? ?chronic low-grade inflammatory state;? ?anti-inflammation;? ?natural plant;? ?extract;? ?flavonoid
炎癥是機(jī)體對組織損傷、微生物病原菌感染和化學(xué)刺激的反應(yīng)。根據(jù)不同的炎癥過程和機(jī)制,分為急性和慢性炎癥[1]。研究表明,慢性低度炎癥性反應(yīng)是慢性疾病的病理特征[2],與慢性疾病的發(fā)生發(fā)展密切相關(guān),如類風(fēng)濕關(guān)節(jié)炎[3]、糖尿病[4]、肥胖[4]、心血管疾病[5]、阿爾茨海默病[5-6]、帕金森病[5,7-8]、過敏[9]、哮喘[10]、自身免疫性疾病[11],甚至癌癥[12-13]。目前炎癥性疾病的抗炎治療僅限于甾體[14]和非甾體抗炎藥物[15],但長期使用這些藥物會引起胃腸道、心血管和腎臟異常等組織臟器嚴(yán)重的不良反應(yīng)[15-17]。因此,研發(fā)具有選擇性作用和較低毒性的新型抗炎藥非常緊迫。天然植物和分離產(chǎn)物因為低毒性而成為新抗炎來源[18-20]。類黃酮是自然界中廣泛存在的植物雌激素家族,其官能團(tuán)可與不同的細(xì)胞靶點相互作用,大量研究已證實植物雌激素可通過調(diào)節(jié)促炎和抗炎信號通路,發(fā)揮顯著的抗炎活性[21-24]。
淫羊藿是應(yīng)用最為廣泛的傳統(tǒng)中草藥之一,長期以來單獨或與其他中藥聯(lián)用治療多種疾病,如骨質(zhì)疏松、心血管疾病、性功能障礙和月經(jīng)不規(guī)律[25]。目前從淫羊藿中分離鑒定出260多種化合物,其中黃酮類化合物141種,木質(zhì)素類化合物31種,紫羅酮類化合物12種,酚苷類化合物9種,苯乙醇苷類化合物6種、半萜烯類化合物5種及其他化學(xué)物;黃酮類化合物是關(guān)鍵的藥理活性成分[26]。淫羊藿苷是從淫羊藿中分離提取的黃酮類化合物,其含量最高,但代謝率極低。淫羊藿素(ICT)是淫羊藿苷的酶解產(chǎn)物,也是淫羊藿中7種主要黃酮類化合物在機(jī)體腸道代謝物[27-28]。ICT具有廣泛的治療作用,如骨保護(hù)作用[29-30]、神經(jīng)保護(hù)作用[31]、心血管保護(hù)作用[32]、抗癌作用[33]、抗炎作用[34]、免疫保護(hù)作用[35]。2022年1月10日,中國國家藥品監(jiān)督管理局批準(zhǔn)ICT用于治療晚期肝癌。
近年來,ICT作為一種天然的植物雌激素,其在炎癥反應(yīng)控制方面的積極作用及潛在臨床價值受到關(guān)注。本文闡述ICT抗炎作用及其機(jī)制,為其臨床應(yīng)用及藥物進(jìn)一步研發(fā)提供參考。
1 淫羊藿及其代謝物抗炎機(jī)制
1.1 炎癥相關(guān)生物活性因子
免疫系統(tǒng)的促炎反應(yīng)和抗炎反應(yīng)之間存在動態(tài)平衡,分別由促炎因子如白介素1β(IL-1β)、IL-5、IL-6、IL-8,腫瘤壞死因子α(TNFα),干擾素-γ(IFN-γ),轉(zhuǎn)化生長因子β (TGF-β),和抗炎因子如IL-1Ra、IL-4、IL-10、IL-13介導(dǎo)[36]。機(jī)體損傷后,趨化因子招募免疫細(xì)胞遷移到損傷部位,隨后活性氧(ROS)、活性氮和促炎因子等介質(zhì)釋放,以消除外來病原菌和修復(fù)受損組織。一般來說,正常的炎癥反應(yīng)是快速的、自限性的,但異常的消退和炎癥的延長引起的慢性低度炎癥性反應(yīng),會發(fā)展成各種慢性疾病[37]。在不同細(xì)胞和器官中,慢性炎癥性反應(yīng)的分子機(jī)制和細(xì)胞過程不同。
1.2 淫羊藿及其代謝物抗炎機(jī)制
淫羊藿及其代謝物抗炎作用機(jī)制體現(xiàn)在:(1)抑制促炎信號通路,如絲裂原活化蛋白激酶(MAPKs)和活化B細(xì)胞核因子-? (NF- ?B);(2)促進(jìn)抗炎信號通路,如糖皮質(zhì)激素受體(GR)、核因子紅細(xì)胞2相關(guān)因子2/抗氧化反應(yīng)元件(Nrf2/ARE)抗氧化通路和磷脂酰肌醇-3-激酶/絲氨酸-蘇氨酸蛋白激酶(PI3K/AKT)經(jīng)典通路[38-39]。
2013年,Lai等[34]通過脂多糖(LPS)誘導(dǎo)的小鼠腹腔巨噬細(xì)胞體外實驗和腹膜炎小鼠模型體內(nèi)實驗,首次證實ICT單體的抗炎作用。研究顯示通過ICT預(yù)處理的巨噬細(xì)胞和模型小鼠,均可調(diào)節(jié)包括IL-6、IL-10、MCP-1、IFN、TNF和IL-12p70在內(nèi)的炎癥相關(guān)活性因子,發(fā)揮抗炎作用。其后,ICT在不同疾病領(lǐng)域的抗炎活性被科研實驗人員逐步驗證。
2 ICT對不同疾病抗炎作用
2.1 ICT對神經(jīng)炎癥的抗炎作用
神經(jīng)炎癥與神經(jīng)退行性疾病的發(fā)生發(fā)展密切相關(guān)[6]。小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)中兩種固有免疫膠質(zhì)細(xì)胞。當(dāng)環(huán)境穩(wěn)態(tài)失衡,慢性炎癥性反應(yīng)會引起神經(jīng)元的缺失、變性,甚至壞死[40]。小膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)的常駐巨噬細(xì)胞,在感染、損傷、神經(jīng)內(nèi)環(huán)境穩(wěn)態(tài)失衡時,其被激活,并對凋亡細(xì)胞進(jìn)行吞噬清除[41]。小膠質(zhì)細(xì)胞還通過分泌促炎細(xì)胞因子、趨化因子和基質(zhì)金屬蛋白酶來調(diào)節(jié)免疫應(yīng)答[42]。
星形膠質(zhì)細(xì)胞在血腦屏障的維持和外周免疫細(xì)胞運輸?shù)目刂浦邪l(fā)揮著重要作用[43]。星形膠質(zhì)細(xì)胞可被激活的小膠質(zhì)細(xì)胞產(chǎn)生的炎癥因子激活,適度活化的星形膠質(zhì)細(xì)胞可分泌多種神經(jīng)營養(yǎng)因子,發(fā)揮保護(hù)神經(jīng)作用;但過度活化的星形膠質(zhì)細(xì)胞會通過釋放其促炎因子來放大炎癥信號,加劇神經(jīng)損傷[44]。
LPS可激活膠質(zhì)細(xì)胞,產(chǎn)生炎癥相關(guān)的活性物質(zhì),包括IL-1、IL-6、TNF和ROS等,致神經(jīng)元損傷,加劇神經(jīng)退行性疾病。環(huán)氧合酶2(COX2)和誘導(dǎo)型一氧化氮合酶(iNOS)分別催化促炎因子前列腺素和NO合成,參與炎癥反應(yīng)。陳文芳課題組系列研究表明ICT可顯著下調(diào)LPS誘導(dǎo)的BV2小膠質(zhì)細(xì)胞神經(jīng)炎癥模型中COX2和iNOS mRNA的表達(dá)[45];ICT能夠抑制LPS誘導(dǎo)的原代大鼠中腦星形膠質(zhì)細(xì)胞COX2和誘iNOS基因的表達(dá)[46];給予 LPS誘導(dǎo)的阿爾茨海默病模型小鼠連續(xù)12 d灌胃ICT,發(fā)現(xiàn)ICT組模型小鼠大腦的海馬區(qū)炎癥反應(yīng)減弱[47];ICT能抑制LPS誘導(dǎo)的大鼠原代大腦皮質(zhì)星形膠質(zhì)細(xì)胞TNFα和iNOS基因表達(dá)[48]。以上實驗均證實了ICT可抑制LPS激活的MAPKs和NF-?B信號通路介導(dǎo)的炎癥反應(yīng);同時以上實驗結(jié)果表明ICT對LPS誘導(dǎo)的小膠質(zhì)細(xì)胞或星形膠質(zhì)細(xì)胞的抗炎作用均可被胰島素樣生長因子1受體(IGF-1R)阻斷劑阻斷,故推測ICT的抗炎機(jī)制可能與IGF-1R途徑的激活也相關(guān)[45-49]。
高遷移率族蛋白盒1(HMGB1)已被證明是一種促炎細(xì)胞因子,跨膜蛋白晚期糖基化終末產(chǎn)物受體(RAGE)是HMGB1明確的高親和力受體。HMGB1從細(xì)胞核轉(zhuǎn)移到細(xì)胞質(zhì),HMGB1/RAGE信號通路激活在神經(jīng)炎癥過程中發(fā)揮重要作用[50-51]。研究發(fā)現(xiàn)LPS誘導(dǎo)急性炎癥模型小鼠的海馬區(qū)HMGB1高表達(dá),血清IL-10升高,同時海馬區(qū)TNFɑ、IL-1β和IL-6炎癥相關(guān)因子mRNA表達(dá)增加;伴隨細(xì)胞質(zhì)中HMGB1和RAGE高表達(dá)。給予LPS誘導(dǎo)炎癥模型小鼠連續(xù)灌胃ICT(20 mg/kg)28 d后,測定血清相關(guān)炎癥因子及海馬區(qū)相關(guān)蛋白表達(dá)[52]。結(jié)果提示與模型對照組比較,ICT組海馬區(qū)HMGB1、RAGE蛋白表達(dá)量顯著降低,血清中IL-10和TNFɑ降低;降低TNFɑ、IL-1β和IL-6炎癥相關(guān)因子mRNA在海馬中的表達(dá);抑制小膠質(zhì)細(xì)胞活性。提示ICT可通過抑制HMGB1-RAGE信號改善海馬神經(jīng)炎癥反應(yīng)。
轉(zhuǎn)化生長因子-β1(TGF-β1)是一種免疫調(diào)節(jié)劑,參與神經(jīng)炎癥反應(yīng),能促進(jìn)膠質(zhì)細(xì)胞活化,加重腦組織、神經(jīng)炎癥反應(yīng)。研究發(fā)現(xiàn)淫羊藿及其提取物能抑制TGF-β1的表達(dá),抑制星形膠質(zhì)細(xì)胞的炎癥反應(yīng),有助于改善星形膠質(zhì)細(xì)胞、神經(jīng)元的功能,發(fā)揮其抗炎及神經(jīng)保護(hù)作用[53]。
NLRP3炎癥小體是一種多聚體的胞質(zhì)蛋白復(fù)合物。炎癥細(xì)胞因子參與全身低級別炎癥的發(fā)生,NLRP3的異常激活可驅(qū)動體內(nèi)慢性炎癥狀態(tài),調(diào)節(jié)炎癥相關(guān)疾病的發(fā)病機(jī)制[54]。1-甲基-4-苯基-1,2,3,6四氫吡啶(MPTP)可誘導(dǎo)黑質(zhì)紋狀體神經(jīng)元選擇性變性。Wu等[55]利用MPTP誘導(dǎo)帕金森病模型小鼠,運用基質(zhì)輔助激光解吸/電離質(zhì)譜成像,結(jié)合生化分析和行為測試,發(fā)現(xiàn)ICT能夠減弱NLRP3炎癥小體的活性,降低多巴胺神經(jīng)元損傷,減少IL-1β和TNFɑ的分泌。該研究闡明了ICT通過調(diào)控NLRP3炎癥小體,降低MPTP誘導(dǎo)的帕金森病模型小鼠神經(jīng)炎癥反應(yīng)。
2.2 ICT對骨質(zhì)疏松癥的抗炎作用
骨質(zhì)疏松癥是一種全身性骨骼疾病,其發(fā)生發(fā)展的根本原因是成骨細(xì)胞和破骨細(xì)胞之間的失衡,包括:成骨細(xì)胞分化和活性降低導(dǎo)致骨沉積減少;破骨細(xì)胞分化和活性增加導(dǎo)致骨吸收過度[56]。近年來,炎癥與骨質(zhì)疏松的關(guān)系越來越受到人們的關(guān)注。激素缺乏誘導(dǎo)的大鼠骨質(zhì)疏松模型證實,炎性細(xì)胞因子在骨質(zhì)疏松發(fā)展過程中發(fā)揮重要作用[57-58]。有證據(jù)表明,促炎性細(xì)胞因子,如IL-6、TNFɑ、趨化因子、INF等可誘導(dǎo)破骨性骨吸收[59-60]。研究表明ICT降低促炎因子水平,抑制破骨細(xì)胞異常骨吸收,調(diào)節(jié)破骨細(xì)胞骨吸收與成骨細(xì)胞骨形成之間平衡,抗骨質(zhì)疏松癥[61]。
2.3 ICT對皮膚炎癥的抗炎作用
皮膚老化是由各種外部暴露因素引起,其中紫外線B(UVB)照射誘導(dǎo)皮膚細(xì)胞氧化應(yīng)激、光老化和炎癥的產(chǎn)生[62]。皮膚中的基質(zhì)金屬蛋白酶(MMPs)具有膠原溶解活性,可降解細(xì)胞外基質(zhì)(ECM)蛋白,如膠原蛋白、纖維連接蛋白、彈性蛋白和蛋白聚糖,從而促進(jìn)光老化。有文獻(xiàn)報道ICT可通過抑制皮膚炎癥和誘導(dǎo)膠原蛋白的生物合成來防止UVB誘導(dǎo)的光老化[63]。該項研究中Hwang等[63]學(xué)者利用UVB照射人角質(zhì)形成細(xì)胞研究ICT對皮膚的抗炎作用。實驗結(jié)果表明,ICT激活Nrf2,提高抗氧化應(yīng)激能力,提高ROS清除能力;同時ICT抑制NF- ?B的激活,降低血管內(nèi)皮生長因子以及炎癥因子(IL-6、COX2、TNFα);此外,ICT顯著抑制MAPKs信號通路,降低MMPs,增加EMC蛋白分泌;ICT通過TGF-β1調(diào)控膠原蛋白合成相關(guān)基因的表達(dá),增加I型前膠原的表達(dá),促進(jìn)膠原蛋白合成。
放射性皮炎是接受放射治療的腫瘤患者常見并發(fā)癥。有研究證實了ICT具有抗放射性軟組織損傷的作用[64]。該研究中C57BL/6實驗小鼠接受右后肢單次照射30Gy劑量的射線后,連續(xù)給予ICT (5 mg/kg)灌胃28 d,與模型對照組比較,放射性皮炎及軟組織纖維化顯著減輕。進(jìn)一步通過小鼠RAW264.7細(xì)胞株體外培養(yǎng)實驗,結(jié)果發(fā)現(xiàn)ICT(10 μg/mL)減少RAW264.7細(xì)胞照射后炎性因子IL-1β、IL-6、TNF-ɑ、TGF-β和ROS的分泌。提示ICT可通過抑制纖維化前的炎癥階段炎癥因子的分泌,改善實驗小鼠放射性皮炎和軟組織纖維化。
2.4 ICT對心肌缺血再灌注損傷的保護(hù)作用
由心肌缺血再灌注損傷(MIRI)引發(fā)的急性心肌梗死是一種發(fā)病率和死亡率較高的疾病[65]。MIRI機(jī)制復(fù)雜,包括ROS過度生成、炎癥反應(yīng)等。越來越多的證據(jù)表明,氧化應(yīng)激是導(dǎo)致再灌注后心肌損傷的主要病理過程[65]。Zhang等[66]的研究證明ICT通過抗炎和抗氧化應(yīng)激作用減輕大鼠MIRI。該研究利用大鼠心肌缺血損傷30 min,再灌注3 h,建立MIRI動物模型。結(jié)果顯示在灌注前10 min腹腔注射ICT (10 mg/kg及30 mg/kg)兩個劑量組的實驗大鼠與灌注前比較,心肌梗死后的心功能得到改善,梗死面積縮小。ICT預(yù)處理抑制了心肌中促炎細(xì)胞因子TNFα的產(chǎn)生,增加了抗炎細(xì)胞因子IL-10的水平。同時,實驗發(fā)現(xiàn)ICT預(yù)處理組MI/R大鼠心臟中AKT磷酸化增加,PTEN表達(dá)抑制;該作用可被PI3K抑制劑減弱。提示ICT減輕大鼠炎癥反應(yīng),保護(hù)其免受MIRI,其作用可能通過PI3K/AKT磷酸化,激活Nrf2/ARE信號通路,發(fā)揮抗炎和抗氧化作用。
2.5 ICT對肺部損傷的保護(hù)作用
急性肺損傷(ALI)是指除心源性因素外,由內(nèi)外多種致病因素導(dǎo)致的急性進(jìn)行性低氧性呼吸衰竭,ALI的各種急性或慢性進(jìn)展性疾病都與炎癥有關(guān)[67]。實驗小鼠腹腔注射ICT 1 h后,LPS肺灌注建立ALI模型小鼠;LPS處理12 h后,收集肺泡灌洗液(BALF)等標(biāo)本,測定炎癥反應(yīng)相關(guān)指標(biāo);結(jié)果發(fā)現(xiàn),與模型對照組比較,ICT預(yù)處理組實驗小鼠BALF中白細(xì)胞數(shù)量較少,且有劑量—反應(yīng)關(guān)系[68]。提示ICT對肺組織中炎性細(xì)胞浸潤有明顯抑制作用,從而減輕肺組織的炎癥損傷。
慢性阻塞性肺疾?。–OPD)是一種具有氣流阻塞特征的慢性支氣管炎和/或肺氣腫,與有害氣體及有害顆粒的異常炎癥反應(yīng)有關(guān)[69]。肺泡結(jié)構(gòu)的上皮細(xì)胞是氧化劑主要損傷靶點;香煙煙霧(CS)含有高濃度氧化劑,會引起肺部損傷,進(jìn)一步發(fā)展為COPD[70]。Wu等[71]通過體外細(xì)胞實驗驗證了ICT對香煙煙霧提取物(CSE)誘導(dǎo)的人肺上皮A549細(xì)胞氧化應(yīng)激的保護(hù)作用。實驗表明,CSE(2.5%、5%和10%)以劑量依賴的方式降低A549細(xì)胞的活力(84%、64%和53%),ICT 10 μmol/L處理顯著減弱CSE誘導(dǎo)的細(xì)胞毒性(73%和64%);CSE通過產(chǎn)生ROS誘導(dǎo)氧化應(yīng)激,10 μmol/L ICT預(yù)處理減弱了ROS產(chǎn)生。與空白對照組比較,10 μmol/L ICT預(yù)處理顯著激活A(yù)KT、Nrf2核轉(zhuǎn)位;PI3K/AKT磷酸化抑制劑可部分阻止ICT誘導(dǎo)的Nrf2核轉(zhuǎn)位。這些結(jié)果表明,ICT通過猝滅ROS以及通過PI3K-AKT-Nrf2信號通路上調(diào),減弱CS誘導(dǎo)的氧化應(yīng)激。但尚未見文獻(xiàn)報道體內(nèi)CS暴露時,ICT在肺中是否有類似保護(hù)作用。
2.6 ICT延緩前列腺癌的發(fā)生發(fā)展
目前尚無有效治療去勢抵抗性前列腺癌(CRPC)的方法,CRPC多發(fā)生在激素剝奪/消融治療后。ICT作為植物雌激素被用于驗證是否能作為CRPC的有效治療手段。Hu等[72]通過給予正常飲食和高脂飲食(HFD)的轉(zhuǎn)基因腺癌小鼠前列腺癌(TRAMP)小鼠,腹腔注射ICT(30 mg/kg),每周5次,探討ICT是否能抑制血清促炎細(xì)胞因子產(chǎn)生,延緩前列腺癌(PCa)的發(fā)生和發(fā)展。結(jié)果顯示,與正常飲食組和HFD組相比,ICT治療均可顯著延長TRAMP小鼠的生存期。在ICT處理的TRAMP小鼠中,IL-la、IL-1β、IL-6和TNF-a等促炎因子水平降低。同時,2個ICT治療組高分化腫瘤組織發(fā)生率(39.13 %和31.82%)均高于對照組(29.41%和20.00%),但差異無統(tǒng)計學(xué)意義。研究表明ICT通過抑制炎癥因子抑制了TRAMP小鼠PCa的發(fā)生和發(fā)展?;谶@項研究,ICT可能可以預(yù)防或減緩人類PCa的進(jìn)展。
2.7 ICT對非酒精性脂肪肝的作用
非酒精性脂肪肝(NAFLD)是指除外長期大量飲酒和其他明確的肝損因素引起的,以甘油三酯(TG)為主的脂質(zhì)在肝細(xì)胞中蓄積為病理改變的肝臟代謝性疾病[73]。研究表明,在肥胖、胰島素抵抗以及代謝綜合征時,機(jī)體的脂肪組織可發(fā)生慢性炎癥, 分泌的IL-1β、TNFα、IL-6等炎癥因子水平增加并通過體循環(huán)作用于肝臟, 促進(jìn)肝臟的炎癥和糖脂代謝紊亂[73]。Wu等[74]用ICT(0.7、2.2、6.7和20 μmol/L)作用體外培養(yǎng)細(xì)胞24 h,結(jié)果顯示ICT均可顯著降低肝細(xì)胞(L02和Huh-7細(xì)胞)內(nèi)脂質(zhì)積累,促進(jìn)L02細(xì)胞線粒體生物發(fā)生;增強(qiáng)3T3-L1脂肪細(xì)胞和C2C12小鼠成肌細(xì)胞肌管中葡萄糖攝取,降低三磷酸腺苷含量,激活A(yù)MPK信號通路;促進(jìn)3T3-L1前脂肪細(xì)胞和C2C12成肌細(xì)胞的自噬,自噬刺激膽固醇外排,從而抑制脂質(zhì)積聚,ICT同時增強(qiáng)自噬通量的啟動。結(jié)果提示ICT通過增加能量消耗來減輕脂質(zhì)積累,并通過激活A(yù)MPK通路來調(diào)節(jié)自噬。
Xiong等[75]應(yīng)用棕櫚酸酯(PA)誘導(dǎo)的小鼠原代肝細(xì)胞和人肝癌Huh-7細(xì)胞體外脂肪毒性實驗,及高脂飼料(HFD)建立的肥胖模型小鼠體內(nèi)實驗,評估ICT對肝臟細(xì)胞脂肪毒性和肥胖引起的胰島素抵抗的影響。體外細(xì)胞實驗結(jié)果發(fā)現(xiàn)4個劑量ICT(5, 10, 20和50 μmol/L)與PA共培養(yǎng)組,小鼠原代肝細(xì)胞和Huh-7細(xì)胞中的TG含量和ROS水平降低;肝細(xì)胞線粒體β-氧化和ATP產(chǎn)生增加;增加脂肪酸β-氧化和AKT/GSK3β通路抑制PA誘導(dǎo)的肝細(xì)胞脂肪毒性作用。體內(nèi)實驗結(jié)果發(fā)現(xiàn),連續(xù)經(jīng)口服給予造模成功肥胖小鼠ICT(60 mg/kg)8周可改善HFD誘導(dǎo)的C57BL/6 J小鼠超重和胰島素抵抗;ICT(20和60 mg/kg)兩個組別均能降低肝組織脂肪含量;與HFD模型小鼠比較,ICT組小鼠血清谷丙轉(zhuǎn)氨酶、天門冬氨酸轉(zhuǎn)氨酶、C肽、高密度脂蛋白膽固醇、低密度脂蛋白膽固醇、TG和總膽固醇顯著降低;肝組織病理切片提示ICT減輕HFD誘導(dǎo)的小鼠肝臟脂肪變性;CT掃描結(jié)果顯示ICT組小鼠體脂含量顯著降低。乙酰輔酶A羧化酶(ACC)作為脂肪酸合成代謝第一步反應(yīng)的限速酶和關(guān)鍵酶,在非酒精性脂肪肝病的發(fā)生、發(fā)展等方面起著至關(guān)重要的作用。研究表明,HFD可以促進(jìn)ACC的表達(dá)。提示分子生物學(xué)實驗結(jié)果ICT降低了HFD誘導(dǎo)肥胖小鼠ACC基因表達(dá)。
ICT是否通過增加脂肪組織能量消耗、增強(qiáng)脂肪細(xì)胞自噬促進(jìn)脂質(zhì)外排、改善脂肪細(xì)胞病理狀態(tài)的途徑,降低脂肪細(xì)胞的慢性炎癥反應(yīng),改善脂肪變性引起的線粒體功能障礙,減輕非酒精性脂肪性肝炎,進(jìn)而逆轉(zhuǎn)NAFLD,需要進(jìn)一步通過臨床實驗驗證。
3 ICT藥代動力學(xué)
Zhang等[28]對ICT的吸收、分布、代謝和排泄進(jìn)行系統(tǒng)研究。分別給予大鼠靜脈注射ICT 2 mg/kg和灌胃40 mg/kg。采用四極桿時間飛行質(zhì)譜法鑒定ICT的主要代謝物,采用超高高效液相色譜—串聯(lián)質(zhì)譜法對血漿、組織、尿液、糞便和膽汁中ICT及其主要代謝物進(jìn)行定量分析。血漿中共檢測到24種ICT代謝物,口服后ICT的主要代謝物為單體C-7葡萄糖醛酸苷葡萄糖醛酸化淫羊藿素(GICT)。ICT迅速吸收入血,但其絕對生物利用度僅為4.33%。口服給藥時,GICT各時間點濃度均比ICT高6.38~8.81倍,曲線下面積(AUC)約為ICT的8倍,靜脈注射時兩者AUC值基本相等。肝臟和腎臟是ICT的靶器官,大約65.7%的ICT和42.7%的GICT分別分布在肝臟和腎臟。未吸收的ICT至少60%的給藥劑量在24 h內(nèi)以母體形式通過糞便排出,而吸收的ICT主要以GICT形式從尿液排出。
4 小結(jié)
ICT對不同疾病的抗炎作用已在體內(nèi)及體外模型實驗得以驗證,其臨床應(yīng)用范圍還有待進(jìn)一步驗證。現(xiàn)有研究證明,ICT通過上調(diào)PI3K-AKT-Nrf2信號通路,減弱氧化應(yīng)激,促進(jìn)抗炎;下調(diào)MAPKs和NF-?B信號通路,抑制炎癥反應(yīng);ICT的抗炎機(jī)制可能與IGF-1R途徑的激活也相關(guān),尚未完全闡明。
參 考 文 獻(xiàn)
Panigrahy D, Gilligan M M, Serhan C N, et al. Resolution of inflammation: an organizing principle in biology and medicine[J]. Pharmacol Ther, 2021, 227: e107879.
Minihane A M, Vinoy S, Russell W R, et al. Low-grade inflammation, diet composition and health: current research evidence and its translation[J]. Br J Nutr, 2015, 114(7): 999-1012.
Nerurkar L, Siebert S, McInnes I B, et al. Rheumatoid arthritis and depression: an inflammatory perspective[J]. Lancet Psychiat, 2019, 6(2): 164-173.
Rohm T V, Meier D T, Olefsky J M, et al. Inflammation in obesity, diabetes, and related disorders[J]. Immunity, 2022, 55(1): 31-55.
Evans L E, Taylor J L, Smith C J, et al. Cardiovascular comorbidities, inflammation, and cerebral small vessel disease[J]. Cardiovasc Res, 2021, 117(13): 2575-2588.
Zhou R, Ji B, Kong Y, et al. PET Imaging of neuroinflammation in Alzheimers disease[J]. Front Immunol, 2021, 12: e739130.
Lee H, Lobbestael E, Vermeire S, et al. Inflammatory bowel disease and Parkinsons disease: common pathophysiological links[J]. Gut, 2021, 70: 408-417.
Belarbi K, Cuvelier E, Bonte M, et al. Glycosphingolipids and neuroinflammation in Parkinsons disease[J]. Mol Neurodegener, 2020, 15(1): 59-75.
Sonnenberg-Riethmacher E, Miehe M, Riethmacher D. Periostin in allergy and inflammation[J]. Front Immunol, 2021, 12: e722170.
Cayrol C, Girard J P. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy[J]. Curr Opinimmunol, 2014, 31: 31-37.
Brandum E P, Jorgensen A S, Rosenkilde M M, et al. Dendritic cells and CCR7 expression: an important factor for autoimmune diseases, chronic inflammation, and cancer[J]. Int J Mol Sci, 2021, 22(15): e8340.
Tian Y, Cheng C, Wei Y, et al. The role of exosomes in inflammatory diseases and tumor-related inflammation[J]. Cell-Basel, 2022, 11(6): e1005.
Elinav E, Nowarski R, Thaiss C A, et al. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms[J]. Nat Rev Cancer, 2013, 13(11): 759-771.
Khan M O, Lee H J. Synthesis and pharmacology of anti-inflammatory steroidal antedrugs[J]. Chem Rev, 2008, 108(12): 5131-5145.
Nugrahani I, Parwati R D. Challenges and progress in nonsteroidal anti-inflammatory drugs co-crystal development[J]. Molecules, 2021, 26(14): e4185.
Cunningham K, Candelario D M, Angelo L B. Nonsteroidal anti-inflammatory drugs: updates on dosage formulations and adverse effects[J]. Orthop Nurs, 2020, 39(6): 408-413.
Dona I, Salas M, Perkins J R, et al. Hypersensitivity reactions to non-steroidal anti-inflammatory drugs[J]. Curr Pharm Des, 2016, 22(45): 6784-6802.
Dudics S, Langan D, Meka R R, et al. Natural products for the treatment of autoimmune arthritis: their mechanisms of action, targeted delivery, and interplay with the host microbiome[J]. Int J Mol Sci, 2018, 19(9): e2508.
Meng T, Xiao D, Muhammed A, et al. Anti-inflammatory action and mechanisms of resveratrol[J]. Molecules, 2021, 26(1): e26010229.
Arulselvan P, Fard M T, Tan W S, et al. Role of antioxidants and natural products in inflammation[J]. Oxid Med Cell Longev, 2016, 2016: e5276130.
Wen K, Fang X, Yang J, et al. Recent research on flavonoids and their biomedical applications[J]. Curr Med Chem, 2021, 28(5): 1042-1066.
Russo M, Moccia S, Spagnuolo C, et al. Roles of flavonoids against coronavirus infection[J]. Chem Biol Interact, 2020, 328: e109211.
Calis Z, Mogulkoc R, Baltaci A K. The roles of flavonols/flavonoids in neurodegeneration and neuroinflammation[J]. Mini Rev Med Chem, 2020, 20(15): 1475-1488.
Kumar S, Pandey A K. Chemistry and biological activities of flavonoids: an overview[J]. Scientific World Journal, 2013, e162750.
Zhang S Q. Biodistribution evaluation of icaritin in rats by ultra-performance liquid chromatography-tandem mass spectrometry[J]. J Ethnopharmacol, 2014, 155(2): 1382-1387.
Ma H, He X, Yang Y, et al. The genus Epimedium: an ethnopharmacological and phytochemical review[J]. J Ethnopharmacol, 2011, 134(3): 519-541.
Zhang S Q. Ultra-high performance liquid chromatography-tandem mass spectrometry for the quantification of icaritin in mouse bone[J]. J Chromatogr B, 2015, 978(1): 24-28.
Zhang S Q, Zhang S Z. Oral absorption, distribution, metabolism, and excretion of icaritin in rats by Q-TOF and UHPLC-MS/MS[J]. Drug Test Anal, 2017, 9(10): 1604-1610.
Sheng H, Rui X F, Sheng C J, et al. A novel semisynthetic molecule icaritin stimulates osteogenic differentiation and inhibits adipogenesis of mesenchymal stem cells[J]. Int J Med Sci, 2013, 10(6): 782-789.
張軍, 任躍明, 張雙慶. 淫羊藿素抗骨質(zhì)疏松作用及其給藥系統(tǒng)研究進(jìn)展[J]. 中國藥學(xué)雜志, 2021, 56(10): 781-784.
Wang Z, Zhang X, Wang H, et al. Neuroprotective effects of icaritin against beta amyloid-induced neurotoxicity in primary cultured rat neuronal cells via estrogen-dependent pathway[J]. Neuroscience, 2007, 145(3): 911-922.
Wo Y B, Zhu D Y, Hu Y, et al. Reactive oxygen species involved in prenylflavonoids, icariin and icaritin, initiating cardiac differentiation of mouse embryonic stem cells[J]. J Cell Biochem, 2008, 103(5): 1536-1550.
Tao C C, Wu Y, Gao X, et al. The antitumor effects of icaritin against breast cancer is related to estrogen receptors[J]. Curr Mol Med, 2021, 21(1): 73-85.
Lai X, Ye Y, Sun C, et al. Icaritin exhibits anti-inflammatory effects in the mouse peritoneal macrophages and peritonitis model[J]. Int Immunopharmacol, 2013, 16(1): 41-49.
Qin S K, Li Q, Ming X J, et al. Icaritin-induced immunomodulatory efficacy in advanced hepatitis B virus-related hepatocellular carcinoma: immunodynamic biomarkers and overall survival[J]. Cancer Sci, 2020, 111(11): 4218-4231.
Dooley D, Vidal P, Hendrix S. Immunopharmacological intervention for successful neural stem cell therapy: new perspectives in CNS neurogenesis and repair[J]. Pharmacol Ther, 2014, 141(1): 21-31.
Ferguson L R. Chronic inflammation and mutagenesis[J]. Mutat Res, 2010, 690(1-2): 3-11.
Yan N, Wen D S, Zhao Y R, et al. Epimedium sagittatum inhibits TLR4/MD-2 mediated NF-kappaB signaling pathway with anti-inflammatory activity[J]. Bmc Complement Altern Med, 2018, 18(1): e303.
Chen W F, Wu L, Du Z R, et al. Neuroprotective properties of icariin in MPTP-induced mouse model of Parkinsons disease: Involvement of PI3K/Akt and MEK/ERK signaling pathways[J]. Phytomedicine, 2017, 25: 93-99.
Austin J R, Kirkpatrick B J, Rodriguez R R, et al. Baicalein is a phytohormone that signals through the progesterone and glucocorticoid receptors[J]. Horm Cancer, 2020, 11(2): 97-110.
Gosselin D, Link V M, Romanoski C E, et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities[J]. Cell, 2014, 159(6): 1327-1340.
Glass C K, Saijo K, Winner B, et al. Mechanisms underlying inflammation in neurodegeneration[J]. Cell, 2010, 140(6): 918-934.
Belanger M, Allaman I, Magistretti P J. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation[J]. Cell Metab, 2011, 14(6): 724-738.
Liddelow S A, Guttenplan K A, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia[J]. Nature, 2017, 541(7638): 481-487.
解曉曼, 胡子凡, 楊妍卿, 等. IGF-1聯(lián)合ICT對BV2小膠質(zhì)細(xì)胞炎癥反應(yīng)影響[J].青島大學(xué)學(xué)報(醫(yī)學(xué)版), 2022, 58(03): 353-356.
張文娣, 張梅, 白金月, 等. 淫羊藿素對LPS誘導(dǎo)原代星形膠質(zhì)細(xì)胞COX-2和iNOS基因表達(dá)影響[J]. 青島大學(xué)學(xué)報(醫(yī)學(xué)版), 2019, 55(01): 32-34.
朱夢琳, 王曉雯, 黃琳琳, 等. 淫羊藿素對脂多糖誘導(dǎo)的阿爾茨海默病小鼠海馬炎癥反應(yīng)的影響[J].精準(zhǔn)醫(yī)學(xué)雜志, 2019, 34(03): 237-239.
陳夙, 朱夢琳, 宋加昊, 等. 淫羊藿素對LPS誘導(dǎo)原代皮質(zhì)星形膠質(zhì)細(xì)胞炎性反應(yīng)影響[J].青島大學(xué)學(xué)報(醫(yī)學(xué)版), 2021, 57(02): 167-170.
Zhang W D, Li N, Du Z R, et al. IGF-1 receptor is involved in the regulatory effects of icariin and icaritin in astrocytes under basal conditions and after an inflammatory challenge[J]. Eur J Pharmacol, 2021, 906: e174269.
Wang S, Zhang Y. HMGB1 in inflammation and cancer[J]. J Hematol Oncol, 2020, 13(1): e116.
Sims G P, Rowe D C, Rietdijk S T, et al. HMGB1 and RAGE in inflammation and cancer[J]. Annu Rev Immunol, 2010, 28: 367-388.
Liu L, Zhao Z, Lu L, et al. Icariin and icaritin ameliorated hippocampus neuroinflammation via inhibiting HMGB1-related pro-inflammatory signals in lipopolysaccharide-induced inflammation model in C57BL/6J mice[J]. Int Immunopharmacol, 2019, 68: 95-105.
Zhang Z Y, Li C, Zug C, et al. Icariin ameliorates neuropathological changes, TGF-beta1 accumulation and behavioral deficits in a mouse model of cerebral amyloidosis[J]. Plos One, 2014, 9(8): e104616.
Sharma B R, Kanneganti T D. NLRP3 inflammasome in cancer and metabolic diseases[J]. Nat Immunol, 2021, 22(5): 550-559.
Wu H, Liu X, Gao Z, et al. Icaritin provides neuroprotection in Parkinsons disease by attenuating neuroinflammation, oxidative stress, and energy deficiency[J]. Antioxidants, 2021, 10(4): e10040529.
Bellavia D, Dimarco E, Costa V, et al. Flavonoids in bone erosive diseases: perspectives in osteoporosis treatment[J]. Trends Endocrinol Metab, 2021, 32(2): 76-79.
Xu B, He Y, Lu Y, et al. Glucagon like peptide 2 has a positive impact on osteoporosis in ovariectomized rats[J]. Life Sci, 2019, 226: 47-56.
Li H, Huang C, Zhu J, et al. Lutein suppresses oxidative stress and inflammation by Nrf2 activation in an osteoporosis rat model[J]. Med Sci Monit, 2018, 24: 5071-5075.
Zhang Q, Song X, Chen X, et al. Antiosteoporotic effect of hesperidin against ovariectomy-induced osteoporosis in rats via reduction of oxidative stress and inflammation[J]. J Biochem Mol Toxicol, 2021, 35(8): e22832.
Lacativa P G, Farias M L. Osteoporosis and inflammation[J]. Arq Bras Endocrinol Metabol, 2010, 54(2): 123-132.
Gao L, Zhang S Q. Antiosteoporosis effects, pharmacokinetics, and drug delivery systems of icaritin: advances and prospects[J]. Pharmaceuticals (Basel), 2022, 15(4): e15040397.
Park C, Park J, Kim W J, et al. Malonic acid isolated from pinus densiflora inhibits UVB-induced oxidative stress and inflammation in HaCaT Keratinocytes[J]. Polymers (Basel), 2021, 13(5): e13050816.
Hwang E, Lin P, Ngo H, et al. Icariin and icaritin recover UVB-induced photoaging by stimulating Nrf2/ARE and reducing AP-1 and NF-kappaB signaling pathways: a comparative study on UVB-irradiated human keratinocytes[J]. Photochem Photobiol Sci, 2018, 17(10): 1396-1408.
佘毅敏. 淫羊藿素抗放射性軟組織損傷的作用研究[D]. 福建醫(yī)科大學(xué), 2014.
Shen Y, Liu X, Shi J, et al. Involvement of Nrf2 in myocardial ischemia and reperfusion injury[J]. Int J Biol Macromol, 2019, 125: 496-502.
Zhang W, Xing B, Yang L, et al. Icaritin attenuates myocardial ischemia and reperfusion injury via anti-inflammatory and anti-oxidative stress effects in rats [J]. Am J Chin Med, 2015, 43(6): 1083-1097.
He Y Q, Zhou C C, Yu L Y, et al. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms[J]. Pharmacol Res, 2021, 163: e105224.
蔡雨春. 淫羊藿素對脂多糖誘導(dǎo)小鼠急性肺損傷的保護(hù)作用研究[D]. 桂林醫(yī)學(xué)院, 2021.
Scoditti E, Massaro M, Garbarino S, et al. Role of diet in chronic obstructive pulmonary disease prevention and treatment[J]. Nutrients, 2019, 11(6): e11061357.
Vij N, Chandramani-Shivalingappa P, Van Westphal C, et al. Cigarette smoke-induced autophagy impairment accelerates lung aging, COPD-emphysema exacerbations and pathogenesis[J]. Am J Physiol Cell Physiol, 2018, 314(1): C73-C87.
Wu J, Xu H, Wong P F, et al. Icaritin attenuates cigarette smoke-mediated oxidative stress in human lung epithelial cells via activation of PI3K-AKT and Nrf2 signaling[J]. Food Chem Toxicol, 2014, 64: 307-313.
Hu J, Yang T, Xu H, et al. A novel anticancer agent icaritin inhibited proinflammatory cytokines in TRAMP mice [J]. Int Urol Nephrol, 2016, 48(10): 1649-1655.
郭亮, 湯其群. 非酒精性脂肪肝發(fā)病機(jī)制和治療的研究進(jìn)展[J]. 生命科學(xué), 2018, 30(11): 1165-1172.
Wu Y, Yang Y, Li F, et al. Icaritin attenuates lipid accumulation by increasing energy expenditure and autophagy regulated by phosphorylating AMPK[J]. J Clin Transl Hepatol, 2021, 9(3): 373-383.
Xiong Y, Chen Y, Huang X, et al. Icaritin ameliorates hepatic steatosis via promoting fatty acid beta-oxidation and insulin sensitivity[J]. Life Sci, 2021, 268: e119000.