趙亞麗 陳天蘭
本文研究了非線性四階差分方程邊值問題
Δ4u(t-2)+fu(t)=0,t∈T2=2,3,…,T-1,u(0)=Δu(0)=Δu(T)=Δ2u(0)=0
正解的存在性,其中T≥4為固定的正整數(shù),f:0,∞→0,∞連續(xù).主要結(jié)果的證明基于Leray-Schauder不動(dòng)點(diǎn)定理.
四階差分方程; 格林函數(shù); Leray-Schauder不動(dòng)點(diǎn)定理; 正解
O175.7A2023.031002
收稿日期: 2022-03-23
作者簡(jiǎn)介: 趙亞麗(1997-), 女, 甘肅定西人, 碩士研究生, 主要研究方向?yàn)椴罘址匠碳捌鋺?yīng)用.E-mail: zylZYL19970807@163.com
通訊作者: 陳天蘭. chentianlan511@126com
Existence of positive solutions for a class of fourth-order nonlinear discrete boundary value problems
ZHAO Ya-Li, CHEN Tian-Lan
(School of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China)
In this paper, we study the existence of positive solutions for the nonlinear fourth-order difference equation boundary value problem
Δ4u(t-2)+fu(t)=0,t∈T2=2,3,…,T-1,u(0)=Δu(0)=Δu(T)=Δ2u(0)=0,
where T≥4 is a fixed positive integer,f:0,∞→0,∞ is continuous. The proof of the main results is based on the Leray-Schauder fixed point theorem.
Fourth-order difference equation; Greens function; Leray-Schauder fixed point theorem; Positive solution
(2010 MSC 34B15)
1 引 言
四階非線性差分方程在生態(tài)學(xué)、經(jīng)濟(jì)學(xué)、人口動(dòng)力學(xué)等領(lǐng)域有著廣泛應(yīng)用,其邊值問題解的存在性廣受關(guān)注[1-8]. 例如,彈性梁方程就是通過不同邊界條件的四階非線性常微分方程來刻畫的. 近年來,對(duì)兩端簡(jiǎn)單支撐以及一端簡(jiǎn)單支撐另一端滑動(dòng)支撐的彈性梁方程的解的存在性已有大量研究[4-6].
本文的研究對(duì)象是邊界條件為u(0)=u′(0)=u′(1)=u″(0)=0的非線性四階常微分方程. 這是一類與彈性梁方程類似的方程. 據(jù)我們所知,對(duì)其邊值問題正解的存在性的研究比較少[9, 10],對(duì)其離散形式解的存在性則從未被研究過. 這正是我們的研究目標(biāo). 令T≥4為一整數(shù).記T0={0,1,…,T+1},T1={1,2,…,T},T2={2,3,…,T-1}. 我們將運(yùn)用Leray-Schauder不動(dòng)點(diǎn)定理來討論四階離散問題
趙亞麗, 等: 一類非線性四階離散邊值問題正解的存在性
Δ4u(t-2)+fu(t)=0,t∈T2??? (1)u(0)=Δu(0)=Δu(T)=Δ2u(0)=0? (2)
正解的存在性,并討論該問題所對(duì)應(yīng)的線性問題Δ4u(t-2)+h(t)=0的格林函數(shù)的性質(zhì).
下面我們概述相關(guān)的一些研究.Lu等[4]和Ma等[5]分別運(yùn)用分歧法和錐上的不動(dòng)點(diǎn)指數(shù)理論研究了兩端簡(jiǎn)單支撐的非線性四階離散問題
Δ4u(t-2)=λfu(t),t∈T3=2,3,…,T,u(1)=u(T+1)=Δ2u(0)=Δ2u(T)=0
正解的存在性,其中λ>0是參數(shù),f:T3×[0,∞)→[0,∞)連續(xù),且T≥5. He等[6]運(yùn)用錐上的不動(dòng)點(diǎn)定理研究了一端簡(jiǎn)單支撐另一端滑動(dòng)支撐的非線性四階離散問題
Δ4u(t-2)-λa(t)fu(t)=0,
t∈T4=2,3,…,T+2,u(0)=Δ2u(0)=ΔuT+1=Δ3u(T-1)=0
正解的存在性,其中λ是特征值,權(quán)函數(shù)a非負(fù),f:R+→R+連續(xù),且T≥1. 而Benaicha等[9]和Haddouchi[10]則分別運(yùn)用錐上的不動(dòng)點(diǎn)定理和Leray-Schauder不動(dòng)點(diǎn)定理研究了帶積分邊界條件的四階常微分方程邊值問題
u″″(t)+fu(t)=0,t∈0,1,
u′(0)=u′(1)=u″(0)=0,
u(0)=∫10a(s)u(s)ds
正解的存在性,其中a:0,1→[0,∞),0<∫10a(s)ds<1,f:0,∞→0,∞連續(xù).
受以上文獻(xiàn)啟發(fā),本文通過建立適當(dāng)?shù)腻F,利用Leray-Schauder不動(dòng)點(diǎn)定理來研究問題正解的存在性,主要結(jié)果如下:
定理1.1 設(shè)f:0,∞→0,∞連續(xù),并假設(shè)以下條件之一成立:(i)f0=lims→0+f(s)s=0;(ii)f∞=lims→∞f(s)s=0, 則問題(1)(2)至少存在一個(gè)正解.
2 預(yù)備知識(shí)
引理2.1[11] 設(shè)X是Banach空間,ΩX是一個(gè)凸子集,且0∈Ω. 若A:Ω→Ω是一個(gè)全連續(xù)算子.則下列結(jié)論之一成立:(i)A在Ω中至少有一個(gè)不動(dòng)點(diǎn);(ii) 集合{x∈Ω:x=λAx,0<λ<1}無界.
引理2.2 設(shè)h:T2→R. 則線性邊值問題
Δ4u(t-2)+h(t)=0,t∈T2,u(0)=Δu(0)=Δu(T)=Δ2u(0)=0(3)
的解等價(jià)于
u(t)=∑T-1s=2G(t,s)h(s),t∈T0(4)
其中
G(t,s)=16T(T-1)t(t-1)(t-2)T+1-s(T-s), 1≤t≤s≤T-1,t(t-1)(t-2)T+1-s(T-s)- T(T-1)(t-s)t-s-1 t-s+1,2≤s≤t≤T.
證明 設(shè)u滿足式(3).通過對(duì)(3)式中的方程進(jìn)行和分運(yùn)算,結(jié)合u(0)=Δu(0)=Δ2u(0)=0可得
u(t)=t(t-1)(t-2)6Δ3u(0)-
∑t-1s=2(t-s)t-s-1t-s+16h(s)(5)
代入邊界條件Δu(t)=0可得
uT+1=T(T-1)T+16Δ3u(0)-
∑Ts=2(T-s)T+1-sT+2-s6h(s),
u(t)=T(T-1)(T-2)6Δ3u(0)-
∑T-1s=2(T-s)T-1-sT+1-s6h(s).
進(jìn)而解得
Δ3u(0)=∑T-1s=2(T-s)T+1-sT(T-1)h(s)(6)
將(6)式代入(5)式中可得
u(t)=t(t-1)(t-2)6∑T-1s=2(T-s)T+1-sT(T-1)h(s)-∑t-1s=2(t-s)t-s-1t-s+16h(s)=
∑t-1s=2t(t-1)(t-2)(T-s)T+1-s-T(T-1)(t-s)t-s-1t-s+16T(T-1)h(s)+
∑T-1s=tt(t-1)(t-2)(T-s)T+1-s6T(T-1)h(s).
因而u也滿足式(4).
另一方面,容易驗(yàn)證式(4)滿足式(3).證畢.
引理2.3 格林函數(shù)G(t,s)滿足如下性質(zhì):(i) G(t,s)≥0,s∈T1,t∈T1; (ii) ρ(t)Φ(s)≤G(t,s)≤Φ(s),s∈T1,t∈T1, 其中
ρ(t)=min t(t-1)(t-2)T(T-1)2T-3,
(t-2)T-tT-t+1T(T-1)3T-3,
Φ(s)=s(T-2)(T+1-s)(T-s)12.
證明 (i) 當(dāng)1≤t≤s≤T-1時(shí),顯然有G(t,s)≥0. 當(dāng)2≤s≤t≤T時(shí),我們分兩種情況討論. 當(dāng)t-s-1≤0時(shí),顯然有G(t,s)≥0;當(dāng)t-s-1>0時(shí),即t>s+1時(shí),我們有
G(t,s)=t(t-1)(t-2)T+1-s(T-s)-T(T-1)(t-s)t-s-1t-s+16T(T-1)>
t-3t(t-1)T+1-s(T-s)-T(T-1)(t-s)t-s+16T(T-1)=
t-3t2-tT2-2Ts+s2+T-s-T2-Tt2-2ts+s2+t-s6T(T-1)=
t-3s2t2-T2+s2T-t+2stTT-t+sT2-t2+st-T+2tTt-T6T(T-1)=
t-3T-ts21-T-t+s2tT+T+t-1-2tT6T(T-1)=
t-3s-1T-t2tT-sT+t-16T(T-1)>t-3s-1T-t2s+1T-sT-st+s6T(T-1)=
t-3s-1T-tsT-t+2T+s6T(T-1)≥0(7)
故(i)成立.
(ii) 當(dāng) 1≤t≤s≤T-1時(shí),有
G(t,s)=t(t-1)(t-2)T+1-s(T-s)6T(T-1)≤ss-1s-2T+1-s(T-s)6T(T-1) sT+1-s(T-s)6·T-22=s(T-2)T+1-s(T-s)12. 另一方面, G(t,s)=t(t-1)(t-2)T+1-s(T-s)6T(T-1)≥t(T-1)(t-2)T+1-s(T-s)6T(T-1)· sT-1·T-22T-3=t(t-1)(t-2)s(T-2)T+1-s(T-s)12T(T-1)2T-3. 當(dāng)2≤s≤t≤T時(shí),有 G(t,s)=t(t-1)(t-2)T+1-s(T-s)-T(T-1)(t-s)t-s-1t-s+16T(T-1)≤ t(t-1)(t-2)T+1-s(T-s)6T(T-1)≤(T-2)T+1-s(T-s)6≤s(T-2)T+1-s(T-s)12. 另一方面,類似(7)式的處理方法,有 G(t,s)=t(t-1)(t-2)T+1-s(T-s)-T(T-1)(t-s)t-s-1t-s+16T(T-1)> (t-2)[t(t-1)T+1-s(T-s)-T(T-1)(t-s)t-s+1]6T(T-1)= (t-2)s-1T-t[2tT-sT+t-1]6T(T-1)≥ss-1(t-2)T-tT-t+16T(T-1)≥ s(t-2)T-tT-t+16T(T-1)>s(t-2)T-tT-t+16T(T-1)·T-22T-3·T+1-sT-1· T-sT-1=(t-2)T-tT-t+1s(T-2)T+1-s(t-s)12T(T-1)3T-3. 故(ii)成立. 證畢. 引理2.4 設(shè)h:T2→0,∞.Symbol`@@則問題(3)式的唯一解u非負(fù),且滿足mint∈T2 u(t)≥ρu, 其中ρ=mint∈T2 ρ(t). 證明 由引理2.2和引理2.3可知u(t)非負(fù),且對(duì)任意t∈T1有 u(t)=∑T-1s=2G(t,s)h(s)≤ ∑T-1s=2s(T-2)T+1-s(T-s)12h(s)= (T-2)12∑T-1s=2sT+1-s(T-s)h(s). 進(jìn)而有 u≤(T-2)12∑T-1s=2sT+1-s(T-s)h(s). 另一方面, u(t)=∑T-1s=2G(t,s)h(s)≥ ∑T-1s=2ρ(t)s(T-2)T+1-s(T-s)12h(s)= ρ(t)(T-2)12∑T-1s=2sT+1-s(T-s)h(s)≥ ρ(t)u≥ρu. 故mint∈T2 u(t)≥ρu. 證畢. 下面我們引入本文使用的空間. 定義空間 E={u:T0→R|u(0)=Δu(0)=Δu(T)= Δ2u(0)=0}, 其在范數(shù)u=maxt∈T0|u(t)|下構(gòu)成Banach空間. 定義錐KE, K=u∈E|u(t)≥0,mint∈T2 u(t)≥ρu. 定義非線性算子A:E→E, Au(t)=∑T-1s=2G(t,s)f(u(s)),t∈T0. 依據(jù)引理2.2,我們很容易得到如下結(jié)論: 引理2.5 若f:0,∞→0,∞連續(xù),則u(t)是問題(1)-(2)的正解當(dāng)且僅當(dāng)Au=u. 引理2.6 若f:0,∞→0,∞連續(xù),則算子A:K→K全連續(xù)且A(K)K. 證明 由引理2.4可知,A(K)K. 又因E為有限維空間,結(jié)合f的連續(xù)性易證A:K→K是全連續(xù)的.證畢. 3 主要結(jié)果的證明 (i) 因?yàn)閒0=0,則對(duì)任意0<ε≤1∑T-1s=2g(s)可取R1>0,使得當(dāng)0 Au(t)=∑T-1s=2G(t,s)f(u(s))≤ ∑T-1s=2s(T-2)T+1-s(T-s)12fu(s)= ∑T-1s=2g(s)f(u(s))(8) 其中g(shù)(s)=(T-2)12s(T+1-s)(T-s). 故 Au≤∑T-1s=2g(s)f(u(s))(9) 由引理2.4和(9)式可知Au(t)≥0,且對(duì)任意t∈T2有 Au(t)=∑T-1s=2G(t,s)f(u(s))≥ ∑T-1s=2ρ(t)s(T-2)T+1-s(T-s)12fu(s) =ρ(t)∑T-1s=2g(s)f(u(s))≥ρAu. 因此,mint∈T2 Au(t)≥ρAu. 另一方面,由(8)式可得 Au(t)≤∑T-1s=2g(s)f(u(s))≤εu∑T-1s=2g(s)≤ u≤R1. 因此 Au≤R1. 則A(Ω)Ω.由Arzelà-Ascoli定理可知A:Ω→Ω是全連續(xù)的. 令 ω=u∈Ω:u=λAu,0<λ<1(10) 對(duì)任意u∈ω,有u(t)=λAu(t) (ii) 我們分兩種情況討論. 若f有界, 即存在N>0,使得f(u)≤N,u∈0,∞. 對(duì)任意u∈K,有Au∈K且A:Ω→Ω是全連續(xù)的. 由(8)式可得 Au(t)≤∑T-1s=2g(s)f(u(s))≤N∑T-1s=2g(s). 因此Au≤N∑T-1s=2g(s). 集合ω的定義同式(10). 對(duì)任意u∈ω,有 u(t)=λAu(t) 因此u≤N∑T-1s=2g(s),即集合ω有界. 由引理21可知A在Ω中至少有一個(gè)不動(dòng)點(diǎn),故問題(1)(2)至少存在一個(gè)正解. 若f無界,則因f∞=0,對(duì)任意0<η≤1∑T-1s=2g(s)存在R2>0,使得當(dāng)u>R2時(shí)有fu≤ηu. 由f連續(xù)性可知,存在α>0,使得當(dāng)0≤u≤R2時(shí)有fu≤ηα. 記Ω=u∈K:u≤R,其中R=maxα,R2. 若u∈Ω,則fu≤ηR.由(8)式可得 Au(t)≤∑T-1s=2g(s)f(u(s))≤ηR∑T-1s=2g(s)≤R. 因此Au≤R. 集合ω的定義同式(10). 對(duì)任意u∈ω,有u(t)=λAu(t) 4 結(jié) 論 我們通過研究問題(1)(2)的線性化問題(3)的格林函數(shù),運(yùn)用Leray-Schauder不動(dòng)點(diǎn)定理證明問題至少存在一個(gè)正解,從而為差分方程邊值問題正解的存在性提供了一個(gè)新思路. 在從實(shí)際問題抽象出來的數(shù)學(xué)方程中,單個(gè)因素對(duì)系統(tǒng)平衡態(tài)的影響一般作為參數(shù)進(jìn)行研究. 我們期望在以后的研究中考慮滿足邊界條件(2)的含參數(shù)的四階離散邊值問題正解的存在性,以及正解存在時(shí)的最優(yōu)參數(shù)區(qū)間. 參考文獻(xiàn): [1] Chen T L, Ma R Y, Liang Y W. Multiple positive solutions of second-order nonlinear difference equations with discrete singular φ-Laplacian [J]. J Differ Equ Appl, 2019, 25: 38. [2] Ma R Y.Nonlinear discrete Sturm-Liouville problems at resonance [J]. Nonlinear Anal: Theor, 2007, 67: 3050. [3] Graef J R, Heidarkhani S, Kong L J, et al. Existence of solutions to a discrete fourth order boundary value problem [J]. J Differ Equ Appl, 2018, 24: 849. [4] Lu Y Q, Ma R Y. The continuum branch of positive solutions for discrete simply supported beam equation with local linear growth condition [J]. Bound Value Probl, 2018, 2018: 192. [5] Ma R Y, Xu Y J. Existence of positive solution for nonlinear fourth-order difference equations [J]. Comput Math Appl, 2010, 59: 3770. [6] He Z M, Yu J S. On the existence of positive solutions of fourth-order difference equations [J]. Appl Math Comput, 2005, 161: 139. [7] Xu Y J, Gao C H, Ma R Y. Solvability of a nonlinear fourth-order discrete problem at resonance [J]. Appl Math Comput, 2010, 216: 662. [8] Graef J R, Kong L J, Liu X Y. Existence of solutions to a discrete fourth order periodic boundary value problem [J]. J Differ Equ Appl, 2016, 22: 1167. [9] Benaicha S, Haddouchi F. Positive solutions of a nonlinear fourth-order integral boundary value problem [J]. An Univ Vest Timis Ser Mat: Inform, 2016, 54: 73. [10] Haddouchi F. A note on existence results for a nonlinear fourth-order integral boundary value problem [J]. Bul Acad Stiinte Repub Mold Mat, 2019, 91: 3. [11] Granas A, Dugundji J. Fixed point theory [M]. New York: Springer-Verlag, 2003. 引用本文格式: 中 文:? 趙亞麗, 陳天蘭. 一類非線性四階離散邊值問題正解的存在性[J]. 四川大學(xué)學(xué)報(bào):? 自然科學(xué)版, 2023, 60:? 031002. 英 文:? Zhao Y L, Chen T L. Existence of positive solutions for a class of fourth-order nonlinear discrete boundary value problems [J]. J Sichuan Univ:? Nat Sci Ed, 2023, 60:? 031002.