吳越 楊宗軍 徐瑛蕾 張璐 潘月帥 魏麗麗
[摘要] 目的 檢測(cè)妊娠期糖尿病(gestational diabetes mellitus,GDM)患者外周血NOX5基因甲基化狀態(tài),并分析其與GDM的相關(guān)性。方法 以2020—2021年我院產(chǎn)科門診確診為GDM的孕婦67例為病例組,同期門診口服糖耐量正常的健康孕婦87例為對(duì)照組,采用甲基化特異性PCR方法檢測(cè)兩組孕婦NOX5基因甲基化狀態(tài),并根據(jù)NOX5基因甲基化狀態(tài)將病例組孕婦分為陽性亞組44例和陰性亞組23例,根據(jù)是否胎兒窘迫、是否巨大兒將154例新生兒分為窘迫組(6例)和非窘迫組(148例)、巨大兒組(11例)和非巨大兒組(143例),分析NOX5基因甲基化狀態(tài)與GDM孕婦一般資料及妊娠結(jié)局的相關(guān)性。結(jié)果 病例組和對(duì)照組NOX5基因甲基化陽性構(gòu)成比分別為65.67%、40.23%,兩組比較差異有顯著性(χ2=9.807,P<0.05),陽性亞組和陰性亞組比較孕婦年齡、孕前體質(zhì)量指數(shù)(BMI)、收縮壓、舒張壓、空腹血糖差異無顯著性(P>0.05)。胎兒窘迫組與非窘迫組、巨大兒組與非巨大兒組NOX5基因甲基化陽性構(gòu)成比比較差異無顯著性(P>0.05)。結(jié)論 GDM患者NOX5基因易發(fā)生甲基化,但NOX5基因甲基化狀態(tài)與GDM孕婦年齡、孕前BMI、血壓、空腹血糖無明顯相關(guān),與胎兒窘迫、巨大兒也無明顯相關(guān)。
[關(guān)鍵詞] 糖尿病,妊娠;DNA甲基化;NADPH氧化酶5;胎兒窘迫;巨大胎兒
[中圖分類號(hào)] R714.7? ? [文獻(xiàn)標(biāo)志碼] A
[ABSTRACT] Objective To investigate the methylation status of the NOX5 gene in peripheral blood of patients with gestational diabetes mellitus (GDM) and its association with GDM.? Methods A total of 67 pregnant women who were diagnosed with GDM at the outpatient service of Department of Obstetrics in our hospital from 2020 to 2021 were enrolled as case group, and 87 healthy pregnant women with normal oral glucose tolerance test results during the same period of time were enrolled as control group. Methylation-specific PCR was used to determine the methylation status of the NOX5 gene, and according to the methylation status of the NOX5 gene, the pregnant women in the case group were further divided into positive subgroup with 44 women and negative subgroup with 23 women. According to the presence or absence of fetal distress or fetal macrosomia, 154 neonates were divided into distress group with 6 neonates and non-distress group with 148 neonates, as well as fetal macrosomia group with 11 neonates and non-fetal macrosomia group with 143 neonates. The methylation status of the NOX5 gene was analyzed in terms of its association with the general information and pregnancy outcome of the pregnant women with GDM.? Results There was a significant difference in the constituent ratio of positive NOX5 gene methylation between the case group and the control group (65.67% vs 40.23%,χ2=9.807,P<0.05), and there were no significant differences between the positive subgroup and the negative subgroup in age, pre-pregnancy body mass index (BMI), systolic blood pressure, diastolic blood pressure, and fasting blood glucose (P>0.05). There was no significant difference in the constituent ratio of positive NOX5 gene methylation between the distress group and the non-distress group and between the fetal macrosomia group and the non-fetal macrosomia group (P>0.05).? Conclusion NOX5 gene methylation is often observed in pregnant women with GDM, but the methylation status of the NOX5 gene is not associated with the age, pre-pregnancy BMI, blood pressure, and fasting blood glucose of pregnant women with GDM, and it is also not associated with fetal distress and fetal macrosomia.
[KEY WORDS] Diabetes, gestational; DNA methylation; NADPH oxidase 5; Fetal distress; Fetal macrosomia
妊娠期糖尿?。╣estational diabetes mellitus,GDM)是指孕婦妊娠期首次發(fā)生和發(fā)現(xiàn)的不同程度的糖代謝異常[1],不僅會(huì)增加巨大兒、先天畸形的發(fā)生率,還會(huì)增加孕婦患子癇等疾病的風(fēng)險(xiǎn),對(duì)母嬰及后代的健康影響極大[2]。GDM與2型糖尿?。╠iabetes mellitus type 2,T2DM)的病理特征均為胰島β細(xì)胞凋亡、胰島素抵抗,并且GDM孕婦后期發(fā)生T2DM的風(fēng)險(xiǎn)亦顯著增加,因此GDM也被認(rèn)為是T2DM的早期階段,兩者可能存在著相似的遺傳基礎(chǔ)[3]。DNA甲基化是表觀遺傳的重要方式,在各種疾病的發(fā)生發(fā)展中起著關(guān)鍵作用[4]。近年來的研究表明DNA甲基化與T2DM等代謝疾病密切相關(guān),其主要作用是抑制調(diào)控胰島素分泌基因的表達(dá),造成胰島素分泌減少,最終形成T2DM。既往研究顯示,T2DM患者外周血中存在基因的甲基化[5],而T2DM與GDM存在相似的遺傳基礎(chǔ),因此GDM患者外周血中也可能存在控制胰島素分泌基因的甲基化。NADPH氧化酶(NOX)5是NOX家族的7個(gè)成員之一,目前研究已經(jīng)了解到NOX5的同源物NOX2、NOX4可以導(dǎo)致胰島β細(xì)胞凋亡及胰島素抵抗[6-7],但由于NOX5發(fā)現(xiàn)的時(shí)間較短,且不存在于大鼠和小鼠中,所以目前尚沒有關(guān)于NOX5基因與糖尿病相關(guān)性的研究。本研究通過甲基化特異性PCR方法,分析NOX5基因甲基化狀態(tài)與GDM的相關(guān)性。現(xiàn)將結(jié)果報(bào)告如下。
1 對(duì)象與方法
1.1 研究對(duì)象
以2020—2021年我院產(chǎn)科門診就診最終診斷為GDM的67例患者為病例組,患者平均年齡為(33.76±4.56)歲,孕前體質(zhì)量指數(shù)(BMI)(21.89±2.28)kg/m2,收縮壓(16.01±2.11)kPa,舒張壓(10.06±0.97)kPa,胎兒窘迫6例,巨大兒11例。另選取同期在同一產(chǎn)科門診就診口服糖耐量正常的健康孕婦87例為對(duì)照組,孕婦平均年齡(33.86±3.70)歲,孕前BMI(21.19±2.11)kg/m2,收縮壓(15.71±1.43)kPa,舒張壓(10.02±1.01)kPa,無胎兒窘迫和巨大兒情況。GDM的診斷標(biāo)準(zhǔn)采用美國(guó)糖尿病協(xié)會(huì)2019年標(biāo)準(zhǔn)[8];胎兒窘迫、巨大兒的診斷參照《婦產(chǎn)科學(xué)》第7版中的標(biāo)準(zhǔn)。兩組孕婦年齡、孕前BMI、收縮壓、舒張壓比較差異均無顯著性(P>0.05),而胎兒窘迫、巨大兒情況比較差異有顯著性(P<0.05)。兩組均排除存在輸血史、免疫治療史及其他并發(fā)癥的孕婦。
1.2 樣品采集與處理
采集每一位孕婦的靜脈血5 mL于抗凝管中,—80 ℃冰箱凍存。使用血液基因組DNA提取試劑盒(北京天根生化科技有限公司)提取基因組DNA。使用基因甲基化檢測(cè)試劑盒(ZYMO生物科技公司,美國(guó))進(jìn)行亞硫酸鹽轉(zhuǎn)化。使用甲基化特異性PCR試劑盒(北京天根生化科技有限公司)對(duì)制備好的DNA進(jìn)行擴(kuò)增,采用Meth Premier 5.0軟件設(shè)計(jì)引物,引物名稱及序列詳見表1。反應(yīng)條件:95 ℃預(yù)變性5 min;然后4 ℃變性20 s,50 ℃退火30 s,72 ℃延伸20 s,總共進(jìn)行35個(gè)循環(huán);最后以72 ℃中止5 min。PCR總反應(yīng)體系為20 μL,內(nèi)含DNA 500 ng,上下游引物各1 μL,dNTPs 1.6 μL,Taq酶0.4 μL,Buffer溶液2 μL,加蒸餾水補(bǔ)足至20 μL。取PCR產(chǎn)物10 μL置于15 g/L瓊脂糖凝膠中電泳,紫外線檢測(cè)儀檢測(cè)?;蚣谆袛鄻?biāo)準(zhǔn):①甲基化:僅存在甲基化條帶,或甲基化、非甲基化條帶同時(shí)存在的樣品;②非甲基化:僅存在非甲基化條帶的樣品。
1.3 NOX5基因甲基化狀態(tài)與GDM孕婦一般資料及妊娠結(jié)局的相關(guān)性
根據(jù)NOX5基因甲基化狀態(tài)將病例組孕婦分為陽性亞組(44例)和陰性亞組(23例)。另外根據(jù)是否胎兒窘迫將154例新生兒分為窘迫組(6例)和非窘迫組(148例),根據(jù)是否巨大兒將154例新生兒分為巨大兒組(11例)和非巨大兒組(143例),分析NOX5基因甲基化狀態(tài)與GDM孕婦一般資料及妊娠結(jié)局的相關(guān)性。
1.4 統(tǒng)計(jì)學(xué)處理
使用SPSS 23.0軟件進(jìn)行統(tǒng)計(jì)學(xué)處理,計(jì)量資料以±s表示,組間比較采用t檢驗(yàn)。計(jì)數(shù)資料以例(率)表示,組間比較采用χ2檢驗(yàn)。以P<0.05為差異有顯著性。
2 結(jié)? 果
2.1 兩組孕婦NOX5基因甲基化狀態(tài)比較
病例組與對(duì)照組孕婦NOX5基因甲基化陽性構(gòu)成比分別為65.67%、40.23%,差異具有顯著意義(χ2=9.807,P<0.05)。
2.2 NOX5基因甲基化狀態(tài)與GDM孕婦一般資料的關(guān)系
陽性亞組與陰性亞組相比較,孕婦年齡、孕前BMI、收縮壓、舒張壓、空腹血糖差異無顯著性(P>0.05)。見表2。
2.3 NOX5基因甲基化狀態(tài)與妊娠結(jié)局的關(guān)系
窘迫組、非窘迫組NOX5基因甲基化陽性構(gòu)成比分別為83.33%、50.00%,兩組比較差異無顯著性(P>0.05);巨大兒組、非巨大兒組NOX5基因甲基化陽性構(gòu)成比分別為72.73%、49.65%,兩組比較差異無顯著性(P>0.05)。
3 討? 論
GDM是孕期常見的并發(fā)癥[9],隨著孕婦肥胖人群比例的增加,GDM的發(fā)病率也逐年增高[10]。流行病學(xué)調(diào)查發(fā)現(xiàn),GDM存在顯著的種族差異,遺傳因素在GDM孕婦的發(fā)病中發(fā)揮著非常重要的作用[11-12]。GDM與T2DM具有相似的代謝特征和遺傳背景,被認(rèn)為是T2DM的早期階段,所以通常借鑒T2DM的遺傳學(xué)研究方法來探討GDM發(fā)生的病因及機(jī)制[13]。DNA甲基化是表觀遺傳的重要方式,在遺傳調(diào)控中起著重要作用[14],可以解釋糖尿病等多種慢性疾病的發(fā)生機(jī)制。當(dāng)調(diào)控胰島素分泌的基因發(fā)生異常甲基化時(shí),會(huì)抑制胰島素信號(hào)通路的傳導(dǎo),造成胰島素分泌減少,這可能是T2DM形成的一個(gè)重要因素[15]。由于T2DM與GDM有著相似遺傳背景,所以DNA甲基化也可能是GDM發(fā)生的重要原因。
NOX家族是活性氧(ROS)的主要來源,是細(xì)胞內(nèi)生成ROS的主要物質(zhì),在正常情況下ROS可以調(diào)節(jié)胰島素分泌,維持正常的生理過程,但是當(dāng)ROS在體內(nèi)大量積聚時(shí),會(huì)對(duì)糖酵解和三羧酸循環(huán)進(jìn)行抑制,抑制胰島β細(xì)胞的功能,使胰島素分泌減少,最終參與糖尿病的發(fā)生[16-19]。NOX5基因是NOX家族的一員,位于15號(hào)染色體q22.31處,可以生成ROS。目前還沒有關(guān)于NOX5與GDM的相關(guān)性研究,但是NOX5基因可以促進(jìn)糖尿病并發(fā)癥的發(fā)生和發(fā)展,動(dòng)物實(shí)驗(yàn)表明NOX5基因的過表達(dá)可以使ROS生成增加,加速腎小球硬化,促進(jìn)糖尿病腎病的發(fā)展[20]。同時(shí),NOX5基因甲基化對(duì)子癇前期的發(fā)生也有明顯的促進(jìn)作用[21]。糖尿病腎病、子癇都是GDM孕婦產(chǎn)后常見的并發(fā)癥,并且兩者在GDM孕婦當(dāng)中的發(fā)病風(fēng)險(xiǎn)均明顯高于正常孕婦[22-23],由此可以推斷NOX5基因可能與GDM孕婦的發(fā)病有關(guān)。
本研究采用甲基化特異性PCR方法檢測(cè)GDM孕婦外周血NOX5基因甲基化狀態(tài),結(jié)果顯示,病例組孕婦NOX5基因甲基化陽性構(gòu)成比顯著高于對(duì)照組,同時(shí)NOX5基因甲基化狀態(tài)與GDM孕婦年齡、孕前BMI、收縮壓、舒張壓、空腹血糖無明顯相關(guān),與胎兒窘迫、巨大兒也無明顯相關(guān)。本研究結(jié)果說明NOX5基因甲基化可能參與了GDM的發(fā)生,但是與GDM孕婦的一般資料及妊娠結(jié)局無相關(guān),原因可能是GDM是一種發(fā)病機(jī)制十分復(fù)雜的疾病[24-25],NOX家族促進(jìn)胰島β細(xì)胞凋亡及胰島素抵抗只是其中一方面原因,NOX5基因甲基化如何參與血糖的代謝有待下一步研究;此外本研究屬于單中心研究,后期可納入多中心樣本,以便深入探究NOX5基因甲基化與GDM孕婦一般資料及妊娠結(jié)局的關(guān)系。
總之,本研究結(jié)果表明GDM孕婦的NOX5基因易發(fā)生甲基化,但是NOX5基因甲基化狀態(tài)與GDM孕婦年齡、孕前BMI、血壓、空腹血糖無明顯相關(guān)關(guān)系,與胎兒窘迫、巨大兒也無明顯相關(guān)關(guān)系。NOX5基因與GDM的相關(guān)性仍需后續(xù)實(shí)驗(yàn)進(jìn)一步研究驗(yàn)證。
倫理批準(zhǔn)和知情同意:本研究涉及的所有試驗(yàn)均已通過青島大學(xué)附屬醫(yī)院醫(yī)學(xué)倫理委員會(huì)的審核批準(zhǔn)(文件號(hào)QYFYWZLL27449)。所有試驗(yàn)過程均遵照《人體醫(yī)學(xué)研究的倫理準(zhǔn)則》的條例進(jìn)行。受試對(duì)象或其親屬已經(jīng)簽署知情同意書。
作者聲明:吳越、楊宗軍、魏麗麗參與了研究設(shè)計(jì);吳越、徐瑛蕾、張璐、潘月帥參與了論文的寫作和修改。所有作者均閱讀并同意發(fā)表該論文。所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1] AMERICAN DIABETES ASSOCIATION. 14. management of diabetes in pregnancy: Standards of medical care in diabetes-2021[J]. Diabetes Care, 2021,44(Suppl 1):S200-S210.
[2] BAYOUMI M A A, MASRI R M, MATANI N Y S, et al. Maternal and neonatal outcomes in mothers with diabetes mellitus in Qatari population[J]. BMC Pregnancy Childbirth, 2021,21(1):651.
[3] LITHGOW G E, ROSSI J, GRIFFIN S J, et al. Barriers to postpartum diabetes screening: A qualitative synthesis of clinicians views[J]. Br J Gen Pract, 2021,71(707):e473-e482.
[4] MANO T, SATO K, IKEUCHI T, et al. Peripheral blood BRCA1 methylation positively correlates with major Alzheimers disease risk factors[J]. J Prev Alzheimers Dis, 2021,8(4):477-482.
[5] LIN C H, LEE Y S, HUANG Y Y, et al. Methylation status of vault RNA 2-1 promoter is a predictor of glycemic responseto glucagon-like peptide-1 analog therapy in type 2 diabetes? ?mellitus[J]. BMJ Open Diabetes Res Care, 2021,9(1):e001416.
[6] SUCCURRO E, ANDREOZZI F, CARNEVALE R, et al. Nox2 up-regulation and hypoalbuminemia in patients with type 2 diabetes mellitus[J]. Free Radic Biol Med, 2021,168:1-5.
[7] BOUABOUT G, AYME-DIETRICH E, JACOB H, et al. Nox4 genetic inhibition in experimental hypertension and me-tabolic syndrome[J]. Arch Cardiovasc Dis, 2018,111(1):41-52.
[8] AMERICAN DIABETES ASSOCIATION. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2019[J]. Diabetes Care, 2019,42(Suppl 1):S13-S28.
[9] DOMANSKI G, LANGE A E, ITTERMANN T, et al. Eva-luation of neonatal and maternal morbidity in mothers with gestational diabetes: A population-based study[J]. BMC Pregnancy Childbirth, 2018,18(1):367.
[10] PIRAS C, NERI I, PINTUS R, et al. First trimester metabolomics 1H-NMR study of the urinary profile predicts gestatio-nal diabetes mellitus development in obese women[J]. J Matern Fetal Neonatal Med, 2022,35(25):8275-8283.
[11] WANG Q Y, YOU L H, XIANG L L, et al. Current progress in metabolomics of gestational diabetes mellitus[J]. World J Diabetes, 2021,12(8):1164-1186.
[12] WEI W W, HE Y J, WANG X, et al. Gestational diabetes mellitus: The genetic susceptibility behind the disease[J]. Horm Metab, 2021,53(8):489-498.
[13] 韋春蓮,陳穎,徐瑛蕾,等. TGF-β1基因多態(tài)性與妊娠期糖尿病遺傳易感性關(guān)系[J]. 青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2018,54(2):176-179.
[14] 熊靜,王梓炫,陳飛宇,等. Abl相互作用蛋白3的生物學(xué)功能及與疾病關(guān)系的研究進(jìn)展[J]. 精準(zhǔn)醫(yī)學(xué)雜志, 2019,34(4):357-361.
[15] 季慧慧,鄭中華,鄔博逸,等. 女性2型糖尿病患者外周血全基因組DNA甲基化的研究[J]. 中國(guó)糖尿病雜志, 2020,28(8):568-575.
[16] AGIDIGBI T S, KIM C. Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ROS-mediated osteoclast diseases[J]. Int J Mol Sci, 2019,20(14):3576.
[17] 鄭莉芳,陳佩杰,肖衛(wèi)華. 活性氧對(duì)骨骼肌胰島素抵抗的調(diào)控及其機(jī)制[J]. 中國(guó)糖尿病雜志, 2020,28(2):153-157.
[18] BROWN O I, BRIDGE K I, KEARNEY M T. Nicotinamide adenine dinucleotide phosphate oxidases in glucose homeostasis and diabetes-related endothelial cell dysfunction[J]. Cells, 2021,10(9):2315.
[19] JOO E H, KIM Y R, KIM N, et al. Effect of endogenic and exogenic oxidative stress triggers on adverse pregnancy outcomes: Preeclampsia, fetal growth restriction, gestational diabetes mellitus and preterm birth[J]. Int J Mol Sci, 2021,22(18):10122.
[20] JHA J C, DAI A Z, HOLTERMAN C E, et al. Endothelial or vascular smooth muscle cell-specific expression of human NOX5 exacerbates renal inflammation, fibrosis and albuminuria in the Akita mouse[J]. Diabetologia, 2019,62(9):1712-1726.
[21] YEUNG K R, CHIU C L, PIDSLEY R, et al. DNA methylation profiles in preeclampsia and healthy control placentas[J]. Am J Physiol Heart Circ Physiol, 2016,310(10):H1295-H1303.
[22] 郭占榮,劉曉莉. 血清Hcy、Cys-C、SOD及尿NAG對(duì)妊娠期糖尿病患者早期腎損傷的診斷價(jià)值[J]. 包頭醫(yī)學(xué)院學(xué)報(bào), 2021,37(3):46-49.
[23] ZHENG W, HUANG W Y, LIU C, et al. Weight gain after diagnosis of gestational diabetes mellitus and its association with adverse pregnancy outcomes: A cohort study[J]. BMC Pregnancy Childbirth, 2021,21(1):216.
[24] GUO F, LONG W, ZHOU W B, et al. FTO, GCKR, CDKAL1 and CDKN2A/B gene polymorphisms and the risk of gestational diabetes mellitus: A meta-analysis[J]. Arch Gynecol Obstet, 2018,298(4):705-715.
[25] XU Y H, SHI L, BAO Y P, et al. Association between sleep duration during pregnancy and gestational diabetes mellitus: A meta-analysis[J]. Sleep Med, 2018,52:67-74.
(本文編輯 耿波 厲建強(qiáng))