掌奕然 陶維國(guó) 郭傳清 陳修杰 苗德俊
摘要:針對(duì)目前對(duì)礦井工作面通風(fēng)系統(tǒng)風(fēng)量調(diào)節(jié)及礦井降阻等方面研究較少的問題,以濟(jì)寧二號(hào)煤礦10303工作面和33下02工作面為工程背景,對(duì)這2處原有的通風(fēng)系統(tǒng)在風(fēng)量調(diào)節(jié)及礦井降阻等方面進(jìn)行優(yōu)化改造。將工作面通風(fēng)系統(tǒng)圖導(dǎo)入Ventism軟件中,生成實(shí)體巷道并迭代計(jì)算,構(gòu)建礦井通風(fēng)網(wǎng)絡(luò)解算模型。將現(xiàn)場(chǎng)實(shí)測(cè)的主要參數(shù)輸入到該模型中進(jìn)行風(fēng)流計(jì)算,得到的巷道內(nèi)流速、溫度及風(fēng)量等相關(guān)數(shù)據(jù)與現(xiàn)場(chǎng)測(cè)定數(shù)據(jù)誤差在標(biāo)準(zhǔn)范圍內(nèi)。由礦井通風(fēng)阻力測(cè)定結(jié)果可知,原有通風(fēng)系統(tǒng)存在如下問題:南翼石門調(diào)節(jié)風(fēng)墻設(shè)置不合理;33下02工作面實(shí)際供風(fēng)量小于理想需風(fēng)量;南翼?740水平軌道大巷通風(fēng)路線長(zhǎng),受輔助運(yùn)輸巷并聯(lián)進(jìn)風(fēng)的影響,南翼回風(fēng)大巷阻力大。針對(duì)上述問題,提出3條改造措施:①在南翼回風(fēng)石門和北翼帶式輸送機(jī)巷交匯處設(shè)置1個(gè)封閉風(fēng)門,并將南翼帶式輸送機(jī)大巷與回風(fēng)石門原有的風(fēng)窗面積調(diào)整為2.9 m2;②在三采區(qū)軌道下山延伸與33下02軌道聯(lián)絡(luò)巷處設(shè)置1個(gè)面積為0.1 m2的調(diào)節(jié)風(fēng)窗;③在十一采區(qū)管子道和南翼?740水平軌道大巷接口處,將0.9 m2的調(diào)節(jié)風(fēng)窗改為2.4 m2,減少南翼?740水平軌道大巷風(fēng)量,增加輔助運(yùn)輸巷的并聯(lián)風(fēng)量。改造后的通風(fēng)系統(tǒng)模擬結(jié)果表明:南翼?740水平軌道大巷阻力降低了32.7%,33下02工作面風(fēng)量提升了19.8%,礦井通風(fēng)路線總阻力降低了6.4%。改造后的通風(fēng)系統(tǒng)現(xiàn)場(chǎng)實(shí)測(cè)結(jié)果表明:實(shí)測(cè)風(fēng)量和數(shù)值模擬結(jié)果平均相對(duì)誤差為1.28%,實(shí)測(cè)阻力和數(shù)值模擬結(jié)果平均相對(duì)誤差為2.52%,模擬結(jié)果與現(xiàn)場(chǎng)實(shí)測(cè)結(jié)果基本吻合。通風(fēng)系統(tǒng)改造后,進(jìn)風(fēng)井風(fēng)量和阻力變化不大;回風(fēng)井監(jiān)測(cè)點(diǎn)處的風(fēng)量減少,阻力降低;33下02軌道聯(lián)絡(luò)巷及工作面監(jiān)測(cè)點(diǎn)處實(shí)測(cè)風(fēng)量分別增加了25.3%和21.4%,阻力增大了57.4%和41.1%;南翼?740水平軌道大巷監(jiān)測(cè)點(diǎn)處實(shí)測(cè)風(fēng)量降低了20.3%,實(shí)測(cè)阻力減小了36.6%。工作面風(fēng)量和礦井總阻力達(dá)到預(yù)期優(yōu)化效果。
關(guān)鍵詞:煤礦通風(fēng)系統(tǒng);風(fēng)量調(diào)節(jié);礦井通風(fēng)網(wǎng)絡(luò)解算;Ventsim軟件;通風(fēng)阻力
中圖分類號(hào): TD724??? 文獻(xiàn)標(biāo)志碼: A
Optimization and transformation of ventilation system in Jining No.2 Coal Mine
ZHANG Yiran1, TAO Weiguo2, GUO Chuanqing2, CHEN Xiujie1, MIAO Dejun1
(1. College of Safety and Environmental Engineering, Shandong University of Science and Technology,Qingdao 266590, China;2. Jining No.2 Coal Mine, YankuangEnery Group Co., Ltd., Jining 272000, China)
Abstract: Currently, there's a lack of research on air volume regulation and mine resistance reduction of ventilation system in mine working face. In order to solve the above problem, taking 10303 working face and 33low 02 working face of Jining No.2 Coal Mine as the engineering background, the original ventilation systems in these two areas are optimized and transformed in terms of air volume regulation and mine resistance reduction. The ventilation system diagram of the working face is imported into Ventism software, generating a solid roadway and iterating the calculation to construct a mine ventilation network solution model. The main parameters measured on-site are input into the model for airflow calculation. The errors between calculated relevant data suchas flow velocity, temperature, and air volume in the roadway obtained and the on-site measurement data are within the standard range. From the measurement results of mine ventilation resistance, it can be seen that the original ventilation system has the following problems. The setting of the regulating air wall at the south wing stone gate is unreasonable. The actual air supply volume of 33low02 working face is less than the ideal air volume. The ventilation route of the south wing -740 horizontal track main roadway is long. It is affected by the parallel intake of auxiliary transportation roadways, resulting in high resistance in the south wing return air main roadway. In order to solve the above problems, three renovation measures are proposed.① A closed air door is installed at the intersection of the south wing return air stone gate and the north wing belt conveyor roadway. The original air window area of the south wing belt conveyor roadway and return air stone gate is adjusted to 2.9 m2.② A 0.1 m2 adjustable wind window is installed at the intersection of the extension of the third mining area's track downhill and the 33low02 connecting roadway.③ The 0.9 m2 adjustable air window at the interface between the pipe duct in the 11th mining area and the south wing -740 horizontal track roadwayhas been changed to 2.4 m2,so as to reduce the air volume of the south wing -740 horizontal track roadway and increase the parallel air volume of the auxiliary transportation roadway. The simulation results of the modified ventilation system show that the resistance of the southern wing -740 horizontal track main roadway has been reduced by 32.7%. The air volume of the 33low02 working face has been increased by 19.8%. The total resistance of the mine ventilation route has been reduced by 6.4%. The on-site measurement results of the modified ventilation system show that the average relative error between the measured air volume and numerical simulation results is 1.28%. The average relative error between the measured resistance and numerical simulation results is 2.52%. The optimized simulation results are basically consistent with the on-site test results. The range of changes in air volume and resistance of the intake shaft before and after the entilation system adjustment is not significant. The air volume at the measuring point of the return air shaft decreases, and resistance decreased. The optimized measured air volume at the 33low02 track connecting roadway and the measuring points of the working face increase by 25.3% and 21.4%, respectively, and the resistances increase by 57.4% and 41.1%. The optimized measured air volume at the south wing -740 horizontal track roadway decreases by 20.3%, and resistance decreases by 36.6%. After the renovation, the air volume of the working face and the total resistance of the mine have achieved the expected results.
Key words: coal mine ventilation system; air volume regulation; mine ventilation network calculation; Ventsim software; ventilation resistance
0 引言
礦井通風(fēng)的作用是供給井下足夠的新鮮空氣,稀釋并排除井下有毒有害氣體,調(diào)節(jié)井下氣候,保證正常生產(chǎn)[1-2]。為了設(shè)計(jì)和模擬井下工作環(huán)境,研究人員開發(fā)應(yīng)用Ventsim三維礦井通風(fēng)仿真系統(tǒng),其不僅適用于通風(fēng)設(shè)計(jì)與網(wǎng)絡(luò)解算,也可對(duì)風(fēng)流、污染物及火災(zāi)進(jìn)行實(shí)時(shí)模擬與監(jiān)測(cè),確保工人和設(shè)備處在一個(gè)良好的工作環(huán)境中[3-5]。
目前,Ventsim軟件已廣泛應(yīng)用到煤礦和非煤礦山的通風(fēng)系統(tǒng)優(yōu)化中[6]。盧輝等[7]使用Ventsim軟件對(duì)工作面優(yōu)化后的通風(fēng)系統(tǒng)和風(fēng)壓分布狀態(tài)進(jìn)行模擬。辛嵩等[8]運(yùn)用Ventsim軟件對(duì)煤礦單翼通風(fēng)系統(tǒng)進(jìn)行優(yōu)化處理,得到通風(fēng)總阻力、巷道測(cè)點(diǎn)風(fēng)速等優(yōu)化結(jié)果。陳浩等[9]利用Ventsim軟件優(yōu)化通風(fēng)系統(tǒng),有效降低了礦井通風(fēng)阻力,減少了能耗。耿守鋒[10]采用Ventsim軟件對(duì)通風(fēng)網(wǎng)絡(luò)進(jìn)行計(jì)算,有效解決了礦井風(fēng)機(jī)聯(lián)合運(yùn)行不穩(wěn)定的問題。肖夢(mèng)輝等[11]使用Ventsim軟件對(duì)金屬礦山進(jìn)行3種不同工況下的火災(zāi)數(shù)值模擬,研究當(dāng)有火源產(chǎn)生時(shí),井下風(fēng)壓變化及煙氣的擴(kuò)散規(guī)律。任浩[12]采用增大巷道斷面面積、提升主要通風(fēng)機(jī)性能、改變通風(fēng)方式等方法對(duì)通風(fēng)網(wǎng)絡(luò)進(jìn)行優(yōu)化,通過Ventsim軟件進(jìn)行風(fēng)路優(yōu)化網(wǎng)絡(luò)解算,達(dá)到礦井通風(fēng)系統(tǒng)預(yù)期風(fēng)量?jī)?yōu)化目標(biāo)。上述學(xué)者借助Ventsim軟件對(duì)礦井通風(fēng)系統(tǒng)預(yù)警與穩(wěn)定性進(jìn)行了分析,但缺乏對(duì)工作面風(fēng)量調(diào)節(jié)及礦井降阻等方面的研究[13-14]。
本文以兗礦能源集團(tuán)股份有限公司濟(jì)寧二號(hào)煤礦10303工作面和33下02工作面為工程背景,采用Ventsim軟件建立三維通風(fēng)網(wǎng)絡(luò)模型,基于該模型,針對(duì)這2處通風(fēng)系統(tǒng)存在通風(fēng)路線長(zhǎng)、阻力大、南北兩翼通風(fēng)結(jié)構(gòu)不均衡等問題,對(duì)原有的通風(fēng)系統(tǒng)進(jìn)行優(yōu)化改造。
1 礦井概況及通風(fēng)系統(tǒng)分析
1.1 礦井概況
濟(jì)寧二號(hào)煤礦位于山東省濟(jì)寧市高新區(qū),隸屬兗礦能源集團(tuán)股份有限公司。該礦主要以長(zhǎng)壁開采法采煤,礦井生產(chǎn)能力為5 Mt/a,核定通風(fēng)能力為 6 Mt/a,配套建設(shè)一座入洗能力為4 Mt/a 的現(xiàn)代化大型造煤廠,井田面積為90 km2,地質(zhì)儲(chǔ)量為8.55億 t,可采儲(chǔ)量為3.47億 t。礦井地質(zhì)條件復(fù)雜,煤層賦存變化大,埋藏深,礦井采用立井多水平開拓方式,第一水平標(biāo)高為?555 m,第二水平標(biāo)高為?740 m,開采深度為?450~?1000 m。
1.2 通風(fēng)系統(tǒng)分析
礦井通風(fēng)系統(tǒng)為中央并列通風(fēng),通風(fēng)方式為抽出式,主井和副井進(jìn)風(fēng),回風(fēng)井回風(fēng)。其中南翼軌道大巷、南翼公路大巷、南翼?740水平軌道大巷、十采區(qū)進(jìn)風(fēng)巷為進(jìn)風(fēng),西翼通風(fēng)巷、北翼回風(fēng)巷、南翼回風(fēng)大巷為回風(fēng)。地面主要通風(fēng)機(jī)機(jī)房安裝2臺(tái) GAF33.5?17?1GZ 型軸流式通風(fēng)機(jī),配備 TD1600?8/1430同步電動(dòng)機(jī),電動(dòng)機(jī)額定功率為1600 kW,額定轉(zhuǎn)速為750 r/min,額定流量為342.8 m3/s。
結(jié)合礦井的生產(chǎn)布局和現(xiàn)有的通風(fēng)系統(tǒng)狀況,在通風(fēng)路線及用風(fēng)地點(diǎn)設(shè)置20個(gè)監(jiān)測(cè)點(diǎn),如圖1所示,通風(fēng)路線阻力測(cè)定數(shù)據(jù)見表1。
2 通風(fēng)系統(tǒng)三維模型建立及可靠性驗(yàn)證
2.1 三維模型建立
由于濟(jì)寧二號(hào)煤礦通風(fēng)網(wǎng)絡(luò)結(jié)構(gòu)復(fù)雜,為了確保模擬的準(zhǔn)確性,對(duì)不受2條通風(fēng)系統(tǒng)路線影響的其他巷道及部分密閉的巷道采取不建模解算,模型中只保留主要通風(fēng)大巷及部分聯(lián)絡(luò)巷。在不影響、破壞整個(gè)通風(fēng)系統(tǒng)分析的前提下,對(duì)濟(jì)寧二號(hào)煤礦通風(fēng)模型進(jìn)行簡(jiǎn)化。利用 CAD 繪圖軟件繪制通風(fēng)路線的巷道中心線并標(biāo)出 z 軸坐標(biāo),圖紙以 DXF 格式保存并導(dǎo)出。將繪制完成的通風(fēng)系統(tǒng)圖以單線格式導(dǎo)入Ventism[15]軟件中,構(gòu)建礦井通風(fēng)網(wǎng)絡(luò)拓?fù)潢P(guān)系[16],對(duì)通風(fēng)系統(tǒng)進(jìn)行數(shù)字化、可視化處理,錄入巷道尺寸、風(fēng)阻參數(shù)、風(fēng)機(jī)數(shù)據(jù)等解算相關(guān)數(shù)據(jù),生成實(shí)體巷道并迭代計(jì)算。最終對(duì)比實(shí)測(cè)數(shù)據(jù)進(jìn)行校準(zhǔn)和檢測(cè)[17-18],構(gòu)建礦井通風(fēng)網(wǎng)絡(luò)解算模型,如圖2所示。
2.2 模型可靠性驗(yàn)證
為檢驗(yàn)?zāi)M結(jié)果的可靠性,對(duì)通風(fēng)系統(tǒng)三維模型進(jìn)行網(wǎng)絡(luò)模擬解算。將現(xiàn)場(chǎng)實(shí)測(cè)的巷道斷面尺寸、障礙物面積、摩擦因數(shù)等主要參數(shù)輸入模型中,進(jìn)行風(fēng)流計(jì)算并得到巷道內(nèi)的流速、溫度及風(fēng)量等相關(guān)數(shù)據(jù)[19-20]。將模擬結(jié)果與現(xiàn)場(chǎng)實(shí)測(cè)數(shù)據(jù)進(jìn)行對(duì)比驗(yàn)證,通過二者誤差結(jié)果判定模型及相關(guān)參數(shù)的可靠性,確保該模型能夠應(yīng)用到優(yōu)化改造措施中,比結(jié)果如圖3所示。
由圖3可看出,測(cè)點(diǎn)2副井處實(shí)際風(fēng)量與模擬風(fēng)量的誤差最大,誤差值為3.2%;測(cè)點(diǎn)9十采區(qū)帶式輸送機(jī)巷誤差最小,其誤差值為1.3%。根據(jù)上述結(jié)果可得,誤差區(qū)間在標(biāo)準(zhǔn)范圍(±20%)之內(nèi),模擬結(jié)果符合實(shí)際情況。因此,本文構(gòu)建的三維模型真實(shí)有效,模型參數(shù)可在后續(xù)通風(fēng)系統(tǒng)的改造中使用。
3 改造措施的建立及模擬分析
3.1 改造措施的建立
根據(jù)礦井通風(fēng)阻力測(cè)定結(jié)果可知,濟(jì)寧二號(hào)煤礦通風(fēng)系統(tǒng)存在通風(fēng)路線長(zhǎng)、阻力大、南北兩翼通風(fēng)結(jié)構(gòu)不均衡等問題。南北兩翼帶式輸送機(jī)大巷貫穿整個(gè)礦井的南北采區(qū),南翼石門調(diào)節(jié)風(fēng)墻設(shè)置不合理,南翼帶式輸送機(jī)大巷阻力為175 Pa;33下02 工作面受到三采區(qū)軌道下山分風(fēng)的影響,實(shí)際供風(fēng)量為24.8 m3/s,小于理想需風(fēng)量;南翼?740水平軌道大巷通風(fēng)路線長(zhǎng),受到輔助運(yùn)輸巷并聯(lián)進(jìn)風(fēng)的影響,南翼回風(fēng)大巷阻力達(dá)227.45 Pa。為了滿足礦井正常生產(chǎn),本文提出3條改造措施,如圖4—圖6所示。
改造措施1:回風(fēng)風(fēng)流從南翼帶式輸送機(jī)大巷到北翼帶式輸送機(jī)大巷再到北翼回風(fēng)巷,其路程長(zhǎng),摩擦阻力大。在南翼回風(fēng)石門和北翼帶式輸送機(jī)大巷交匯處設(shè)置1個(gè)封閉風(fēng)門,并將南翼帶式輸送機(jī)大巷與回風(fēng)石門原有的風(fēng)窗面積調(diào)整為2.9 m2。通過增大南翼回風(fēng)石門的回風(fēng)量,降低北翼帶式輸送機(jī)大巷阻力。
改造措施2:33下02工作面風(fēng)量?jī)H為24.8 m3/s,實(shí)際供風(fēng)量遠(yuǎn)小于理想需風(fēng)量。由于三采區(qū)軌道下山延伸后的巷道不參與通風(fēng)回路解算,在三采區(qū)軌道下山延伸與33下02軌道聯(lián)絡(luò)巷處設(shè)置1個(gè)調(diào)節(jié)風(fēng)窗,風(fēng)窗面積為0.1 m2,增大了33下02軌道聯(lián)絡(luò)巷和33下02工作面的供風(fēng)量。
改造措施3:進(jìn)風(fēng)風(fēng)流從南翼進(jìn)風(fēng)、軌道下山并聯(lián)進(jìn)入?740水平軌道巷和輔助運(yùn)輸巷,由南翼進(jìn)風(fēng)下山貫穿十一采區(qū)管子道通向南翼?740水平軌道大巷,在十一采區(qū)管子道和南翼?740水平軌道大巷接口處有1個(gè)0.9 m2的調(diào)節(jié)風(fēng)窗,將其面積改為2.4 m2,減少南翼?740水平軌道大巷風(fēng)量,增加輔助運(yùn)輸巷的并聯(lián)風(fēng)量。
3.2 改造后模擬結(jié)果分析
對(duì)北翼回風(fēng)巷、33下02工作面及?740水平軌道大巷3處用風(fēng)地點(diǎn)進(jìn)行優(yōu)化改造,通過設(shè)置風(fēng)門、改變調(diào)節(jié)風(fēng)窗面積、并聯(lián)通風(fēng)降阻等措施,解決了礦井通風(fēng)系統(tǒng)阻力大、路線長(zhǎng)及局部地點(diǎn)風(fēng)量較小等問題,對(duì)改造后的通風(fēng)系統(tǒng)進(jìn)行風(fēng)流模擬,結(jié)果見表2。
根據(jù)圖7表2可得,20個(gè)巷道監(jiān)測(cè)點(diǎn)優(yōu)化后的總阻力為2081.31 Pa,較優(yōu)化前降低了6.4%。分析南北兩翼回風(fēng)大巷、南翼?740水平軌道大巷、33下02 工作面4個(gè)監(jiān)測(cè)點(diǎn)優(yōu)化前后的風(fēng)量和阻力,以此探究3處用風(fēng)地點(diǎn)的優(yōu)化效果。南翼回風(fēng)大巷優(yōu)化后的風(fēng)量為123.0 m3/s,較優(yōu)化前增加了2.4 m3/s;北翼回風(fēng)大巷優(yōu)化后的風(fēng)量?jī)H為1.2 m3/s,阻力為0.19 Pa,阻力較優(yōu)化前降低了103.45 Pa。南翼?740水平軌道大巷優(yōu)化后的風(fēng)量為62 m3/s,阻力為7.69 Pa,阻力較優(yōu)化前降低了32.7%。33下02工作面優(yōu)化后的風(fēng)量為29.7 m3/s,較優(yōu)化前增加了19.8%。通過增加南翼回風(fēng)大巷的回風(fēng)量,降低了北翼回風(fēng)大巷阻力;通過增大調(diào)節(jié)風(fēng)窗面積,降低了南翼?740水平軌道大巷阻力;在33下02軌道聯(lián)絡(luò)巷設(shè)置調(diào)節(jié)風(fēng)窗,33下02工作面的風(fēng)量得到了提升。礦井的總阻力降低,各測(cè)點(diǎn)優(yōu)化后的風(fēng)量及阻力都符合標(biāo)準(zhǔn)。
3.3 改造后實(shí)測(cè)效果分析
在三采區(qū)軌道下山延伸與33下02軌道聯(lián)絡(luò)巷處設(shè)置風(fēng)窗,33下02軌道聯(lián)絡(luò)巷和33下02工作面設(shè)置監(jiān)測(cè)點(diǎn);主井、副井及回風(fēng)井各設(shè)置監(jiān)測(cè)點(diǎn);南翼?740水平軌道大巷1號(hào)聯(lián)絡(luò)巷設(shè)置1個(gè)監(jiān)測(cè)點(diǎn)。監(jiān)測(cè)點(diǎn)需要放置在風(fēng)流穩(wěn)定、巷道規(guī)整的地點(diǎn),然后使用 CFZZ5通風(fēng)阻力測(cè)試儀,風(fēng)表、秒表等工具監(jiān)測(cè)幾處測(cè)點(diǎn)的風(fēng)量、阻力變化情況,如圖7所示,將優(yōu)化前后測(cè)定的數(shù)據(jù)與數(shù)值模擬結(jié)果對(duì)比見,表3。
由表3可看出,各監(jiān)測(cè)點(diǎn)優(yōu)化前實(shí)測(cè)風(fēng)量和模擬風(fēng)量誤差在1%之內(nèi),優(yōu)化后二者最大誤差為2.4%,這是由于優(yōu)化后南翼?740水平軌道大巷內(nèi)風(fēng)量減小,解算的參數(shù)不變,導(dǎo)致二者誤差變大,但在可接受范圍之內(nèi)。優(yōu)化后實(shí)測(cè)風(fēng)量和模擬風(fēng)量平均相對(duì)誤差為1.28%,優(yōu)化后實(shí)測(cè)阻力和模擬阻力平均相對(duì)誤差為2.52%,模擬結(jié)果與現(xiàn)場(chǎng)實(shí)測(cè)結(jié)果基本吻合。通風(fēng)系統(tǒng)優(yōu)化后,進(jìn)風(fēng)井風(fēng)量和阻力變化不大;回風(fēng)井監(jiān)測(cè)點(diǎn)處的風(fēng)量減少,阻力降低;33下02 軌道聯(lián)絡(luò)巷及工作面監(jiān)測(cè)點(diǎn)處實(shí)測(cè)風(fēng)量分別增加了25.3%和21.4%,阻力增大了57.4%和41.1%;南翼 ?740水平軌道大巷監(jiān)測(cè)點(diǎn)處實(shí)測(cè)風(fēng)量降低了20.3%,實(shí)測(cè)阻力減小了36.6%。工作面風(fēng)量和礦井總阻力達(dá)到預(yù)期優(yōu)化效果。
4 優(yōu)化后通風(fēng)系統(tǒng)安全校驗(yàn)及網(wǎng)絡(luò)解算
為確保優(yōu)化后的通風(fēng)系統(tǒng)既能夠完成部分區(qū)域的風(fēng)量調(diào)節(jié)目標(biāo),又不影響礦井其他分支的風(fēng)量輸送,對(duì)整個(gè)礦井進(jìn)行通風(fēng)網(wǎng)絡(luò)安全校驗(yàn)。根據(jù)優(yōu)化后的通風(fēng)系統(tǒng)得到風(fēng)網(wǎng)阻力參數(shù),在原有網(wǎng)絡(luò)結(jié)構(gòu)上添加分支,并結(jié)合現(xiàn)有的巷道參數(shù)對(duì)分支進(jìn)行賦值,最終對(duì)優(yōu)化后的通風(fēng)系統(tǒng)進(jìn)行網(wǎng)絡(luò)解算。優(yōu)化后礦井通風(fēng)網(wǎng)絡(luò)解算結(jié)果見表4??煽闯鲞M(jìn)風(fēng)總風(fēng)量為288.1 m3/s,回風(fēng)總風(fēng)量為280.5 m3/s,風(fēng)量損失較少,約為2.6%;33下02工作面風(fēng)量達(dá)到30.1 m3/s,較優(yōu)化前提升了21.4%,南翼?740水平軌道大巷阻力降低,且風(fēng)量為60.5 m3/s,減少了20.3%,由此判定整個(gè)通風(fēng)系統(tǒng)是合理的。
5 結(jié)論
1)針對(duì)33下02工作面受到三采區(qū)軌道下山分風(fēng)導(dǎo)致風(fēng)量較小的問題,通過在三采區(qū)軌道下山延伸處設(shè)置1個(gè)0.1 m2的調(diào)節(jié)風(fēng)窗,將三采區(qū)軌道下山的風(fēng)量大部分引入工作面。改造后工作面的實(shí)測(cè)風(fēng)量達(dá)30.1 m3/s,較之前提高了21.4%。
2)風(fēng)流從南翼進(jìn)風(fēng)下山流向南翼?740輔助運(yùn)輸巷和南翼?740水平軌道大巷,將十一采區(qū)管子道和南翼?740水平軌道大巷接口0.9 m2的調(diào)節(jié)風(fēng)窗改為2.4 m2,增加輔助運(yùn)輸巷的并聯(lián)風(fēng)量,改造后南翼?740水平軌道大巷的實(shí)測(cè)風(fēng)量為60.5 m3/s,減少了20.3%;通過在北翼運(yùn)輸巷設(shè)置風(fēng)門,改變聯(lián)絡(luò)巷的風(fēng)窗面積,封閉了北翼回風(fēng)巷,減少了風(fēng)量的沿程損失,總阻力明顯降低。
3)將改造措施應(yīng)用到濟(jì)寧二號(hào)煤礦的通風(fēng)系統(tǒng)優(yōu)化中,現(xiàn)場(chǎng)實(shí)測(cè)風(fēng)量和數(shù)值模擬結(jié)果平均相對(duì)誤差為1.28%,實(shí)測(cè)阻力和數(shù)值模擬結(jié)果平均相對(duì)誤差為2.52%,優(yōu)化后的模擬結(jié)果與現(xiàn)實(shí)測(cè)結(jié)果基本吻合。
參考文獻(xiàn)(References):
[1] 李興旺.優(yōu)化礦井通風(fēng)與安全生產(chǎn)的關(guān)系研究[J].礦業(yè)裝備,2021(6):164-165.
LI Xingwang. Study on the relationship between optimizing mine ventilation and safety production[J]. Mining Equipment,2021(6):164-165.
[2] 袁明昌,支學(xué)藝,吳亞軍.武山銅礦通風(fēng)系統(tǒng)優(yōu)化研究[J].礦業(yè)研究與開發(fā),2019,39(6):118-121.
YUAN Mingchang,ZHI Xueyi,WU Yajun. Study on optimization of ventilation system in Wushan Copper Mine[J]. Mining Research and Development,2019,39(6):118-121.
[3] 閆巖.基于Ventsim模型礦井通風(fēng)優(yōu)化研究[J].煤炭與化工,2021,44(6):115-117.
YAN Yan. Study on mine ventilation optimization based on Ventsim model[J]. Coal and Chemical Industry,2021,44(6):115-117.
[4] 郝海清,蔣曙光,王凱,等.基于Ventsim的礦井運(yùn)輸巷火災(zāi)風(fēng)煙流應(yīng)急調(diào)控技術(shù)[J].煤礦安全,2022,53(9):38-46.
HAO Haiqing,JIANG Shuguang,WANG Kai,et al. Emergency control technology of air and smoke flow in mine belt roadway fire based on Ventsim software[J]. Safety in Coal Mines,2022,53(9):38-46.
[5] 石銀斌.五虎山礦井通風(fēng)量數(shù)值模擬優(yōu)化研究[J].工礦自動(dòng)化,2021,47(增刊1):75-77.
SHI Yinbin. Research on numerical simulation and optimization of ventilation rate in Wuhushan Coal Mine[J]. Industry and Mine Automation,2021,47(S1):75-77.
[6] 何敏,武福生,成燕玲.基于三維模型的通風(fēng)系統(tǒng)優(yōu)化調(diào)控模擬分析[J].工礦自動(dòng)化,2016,42(11):41-44.
HE Min,WU Fusheng,CHENG Yanling. Simulation analysis of optimal regulation and control of ventilation system based on 3D model[J]. Industry and Mine Automation,2016,42(11):41-44.
[7] 盧輝,袁樹杰,馬瑞峰,等.基于Ventsim的南山煤礦孤島工作面均壓通風(fēng)方案研究[J].中國(guó)安全生產(chǎn)科學(xué)技術(shù),2020,16(8):125-130.
LU Hui,YUAN Shujie,MA Ruifeng,et al. Study on scheme of pressure equalizing ventilation in isolated island working face of Nanshan coal mine based on Ventsim[J]. Journal of Safety Science and Technology,2020,16(8):125-130.
[8] 辛嵩,侯傳彬,金曉娜,等.基于Ventsim模型的礦井單翼通風(fēng)系統(tǒng)優(yōu)化研究[J].礦業(yè)安全與環(huán)保,2019,46(6):84-88.
XIN Song, HOU Chuanbin, JIN Xiaona, et al. Optimization of mine single-wing ventilation system based on ventsim[J]. Mining Safety & Environmental Protection,2019,46(6):84-88.
[9] 陳浩,陳宜華,胡秀林,等.基于Ventsim的深井金屬礦山通風(fēng)系統(tǒng)優(yōu)化[J].工業(yè)安全與環(huán)保,2018,44(4):30-33.
CHEN Hao,CHEN Yihua,HU Xiulin,et al. Ventilation system optimization of deep well metal mine based on ventsim[J]. Industrial? Safety and Environmental Protection,2018,44(4):30-33.
[10] 耿守鋒.礦井通風(fēng)系統(tǒng)三維模型構(gòu)建與優(yōu)化設(shè)計(jì)[J].煤礦現(xiàn)代化,2022,31(1):77-79.
GENG Shoufeng. Three-dimensional model construction and optimal design of mine ventilation system[J]. Coal Mine Modernization,2022,31(1):77-79.
[11] 肖夢(mèng)輝,于濤,常寶孟,等.基于Ventsim的復(fù)雜礦井火災(zāi)數(shù)值模擬研究[J].礦業(yè)研究與開發(fā),2021,41(12):129-134.
XIAO Menghui,YU Tao,CHANG Baomeng,et al. Numerical simulation study on complex mine fire based on ventsim[J]. Mining Research and Development,2021,41(12):129-134.
[12] 任浩.新發(fā)煤業(yè)通風(fēng)系統(tǒng)優(yōu)化研究[D].包頭:內(nèi)蒙古科技大學(xué),2020.
REN Hao. Study on optimization of ventilation system in XinfaCoal? Mine[D]. Baotou: Inner? Mongolia University of Science & Technology,2020
[13] 曹懷軒.基于Ventsim的復(fù)雜通風(fēng)系統(tǒng)優(yōu)化及監(jiān)測(cè)預(yù)警研究[D].青島:山東科技大學(xué),2020.
CAO Huaixuan. Research on optimization and monitoring early warning of complex ventilation system based on Ventsim[D]. Qingdao:Shandong University of Science and Technology,2020.
[14] 朱旭東.基于Ventsim的漳村礦通風(fēng)系統(tǒng)優(yōu)化研究[D].焦作:河南理工大學(xué),2020.
ZHU Xudong. Study on optimization of ventilation system of Zhangcun Mine based on Ventsim[D]. Jiaozuo:Henan Polytechnic University,2020.
[15] 陳艷麗.基于Ventsim的礦井通風(fēng)系統(tǒng)穩(wěn)定性分析[D].長(zhǎng)沙:中南大學(xué),2014.
CHEN Yanli. The stability analysis of mine ventilation system on Ventsim software[D]. Changsha:Central South University,2014.
[16] 陶維國(guó),姜希印,王連濤,等.濟(jì)寧二號(hào)煤礦通風(fēng)系統(tǒng)優(yōu)化研究與實(shí)施[J].煤礦現(xiàn)代化,2016(4):130-133.
TAO Weiguo,JIANG Xiyin,WANG Liantao,et al. The optimize researches and implement on ventilation system of Jining NO.2 Coal Mine[J]. Coal Mine Modernization,2016(4):130-133.
[17] 王緒友,王連濤,陶維國(guó),等.濟(jì)寧二號(hào)煤礦沿空留巷工作面通風(fēng)系統(tǒng)優(yōu)化研究[J].礦業(yè)安全與環(huán)保,2016,43(1):77-80.
WANG Xuyou,WANG Liantao,TAO Weiguo,et al. Study on ventilation system optimization of working face with gob-side entry retaining in Jining No.2 Coal Mine[J]. Mining Safety & Environmental Protection,2016,43(1):77-80.
[18] 郭鵬閣.基于VSE軟件的礦井通風(fēng)系統(tǒng)優(yōu)化研究[J].山東煤炭科技,2021,39(3):103-106.
GUO Pengge. Research on optimization of mine ventilation system based on VSE software[J]. Shandong Coal Science and Technology,2021,39(3):103-106.
[19] 謝中朋.復(fù)雜礦井通風(fēng)系統(tǒng)穩(wěn)定性研究[D].北京:中國(guó)礦業(yè)大學(xué)(北京),2015.
XIE Zhongpeng. Research on stability of complicated mine ventilation system[D]. Beijing:China University of Mining and Technology-Beijing,2015.
[20] 孫利陽.魯奎山鐵礦通風(fēng)系統(tǒng)優(yōu)化方案研究[D].昆明:昆明理工大學(xué),2021.
SUN Liyang. Study on the optimization scheme of ventilation system in Rukui Mountain Iron Mine[D]. Kunming: Kunming University? of Science? and Technology,2021.