雷明雨 溫斌
摘 要:
作為材料微觀結(jié)構(gòu)狀態(tài)的一個(gè)內(nèi)部變量,位錯(cuò)密度與材料組織結(jié)構(gòu)演化和力學(xué)性能密切相關(guān)。金屬材料在塑性變形過(guò)程中,其位錯(cuò)密度會(huì)發(fā)生演化。因此,位錯(cuò)密度演化模型的建立是材料組織結(jié)構(gòu)和力學(xué)性能研究領(lǐng)域的一個(gè)重要課題。本文簡(jiǎn)要介紹了位錯(cuò)密度的演化規(guī)律及其物理機(jī)制,綜述了當(dāng)前位錯(cuò)密度演化模型的研究進(jìn)展,總結(jié)了位錯(cuò)密度演化數(shù)值計(jì)算方法的研究現(xiàn)狀,介紹了位錯(cuò)密度對(duì)組織結(jié)構(gòu)演化和力學(xué)性能的影響規(guī)律,探討了位錯(cuò)密度演化研究的發(fā)展趨勢(shì)。
關(guān)鍵詞:
塑性變形;位錯(cuò)密度演化模型;數(shù)值計(jì)算方法;微觀組織結(jié)構(gòu);力學(xué)性能
中圖分類號(hào):TU313.2? 文獻(xiàn)標(biāo)識(shí)碼: A? DOI:10.3969/j.issn.1007-791X.2023.01.001
0 引言
材料的性能取決于材料的微觀組織結(jié)構(gòu),材料的微觀組織結(jié)構(gòu)又與其前期的加工歷程緊密相關(guān)。因此,材料加工過(guò)程中微觀組織結(jié)構(gòu)演化的研究[1-3]不僅對(duì)材料性能的研究具有重要的意義[4],而且對(duì)指導(dǎo)材料加工工藝的開發(fā)研究也具有重要的意義[5-6]。
塑性變形是一種重要的金屬材料加工方法[7],而塑性變形的主要載體是位錯(cuò)。在塑性變形過(guò)程中,位錯(cuò)會(huì)發(fā)生增殖等一系列的行為,從而使位錯(cuò)的數(shù)量、類型和空間分布等發(fā)生演化,進(jìn)而影響材料的微觀組織結(jié)構(gòu)和力學(xué)行為。位錯(cuò)密度可以定量反映材料的微觀組織結(jié)構(gòu)和力學(xué)性能,所以位錯(cuò)密度演化的研究就成為金屬材料組織和性能研究的一個(gè)關(guān)鍵。因此,許多研究者對(duì)位錯(cuò)密度演化進(jìn)行了研究,并建立了很多位錯(cuò)密度演化模型。例如,K-M模型[8-14]、L-J模型[15-18]、E-K模型[19-21]和位錯(cuò)胞結(jié)構(gòu)模型[22-27]等。除位錯(cuò)密度演化模型外,研究者還通過(guò)數(shù)值計(jì)算的方法對(duì)位錯(cuò)密度演化模型進(jìn)行了研究,例如,有限元模擬方法(Finite Element Method,F(xiàn)EM)[28-32]、元胞自動(dòng)機(jī)模擬方法(Cellular Automata,CA)[33-39]、分子動(dòng)力學(xué)模擬方法(Molecular Dynamic,MD)[40-43]和離散位錯(cuò)動(dòng)力學(xué)模擬方法(Discrete Dislocation Dynamics,DDD)[44-50]等。
無(wú)論在位錯(cuò)密度演化模型的建立方面,還是在位錯(cuò)密度數(shù)值計(jì)算方面,目前的研究已經(jīng)取得了很大的進(jìn)展。為了對(duì)位錯(cuò)密度演化模型有一個(gè)更全面的認(rèn)識(shí),本文對(duì)位錯(cuò)密度演化模型和數(shù)值計(jì)算方法的研究進(jìn)展進(jìn)行系統(tǒng)的綜述,對(duì)位錯(cuò)密度對(duì)組織結(jié)構(gòu)演化和力學(xué)性能的影響規(guī)律進(jìn)行總結(jié),并對(duì)位錯(cuò)密度演化研究的發(fā)展趨勢(shì)進(jìn)行探討。
1 位錯(cuò)密度的定義及實(shí)驗(yàn)測(cè)定方法
1934年,Taylor,Orowan和Polanyi幾乎同時(shí)提出了位錯(cuò)的概念[51-54]。隨后,位錯(cuò)缺陷被透射電鏡實(shí)驗(yàn)所證實(shí)[55]。作為晶體中的一維缺陷,位錯(cuò)可以認(rèn)為是已滑移區(qū)與未滑移區(qū)之間的分界。
1.1 位錯(cuò)密度的定義
為了定量反映材料單位體積內(nèi)位錯(cuò)的多少,研究者提出了位錯(cuò)密度的概念[56]。位錯(cuò)密度通常被定義為單位體積晶體中位錯(cuò)線的總長(zhǎng)度,或單位面積中位錯(cuò)線的數(shù)量,因此,位錯(cuò)密度可以表示為
ρ=LV=NlSl=NS,
式中,L為體積為V的晶體中位錯(cuò)線的總長(zhǎng)度,V為晶體體積,N為面積為S的晶體截面中的位錯(cuò)數(shù)(位錯(cuò)線與觀察表面的交點(diǎn)),l為垂直于晶體截面方向的晶體尺寸。
1.2 位錯(cuò)密度的實(shí)驗(yàn)測(cè)量方法
比較常用的測(cè)量位錯(cuò)密度的實(shí)驗(yàn)方法是表面腐蝕法(圖1(a)[57])。由于位錯(cuò)處的原子處于亞穩(wěn)態(tài),腐蝕處理后,很容易在位錯(cuò)露頭處出現(xiàn)腐蝕坑。所以,將試樣切割和打磨后,進(jìn)行腐蝕,然后統(tǒng)計(jì)晶體單位面積內(nèi)腐蝕坑的數(shù)量即可得到位錯(cuò)密度。該方法雖然在操作上簡(jiǎn)單且成本較低,但是一般僅適用于單晶體位錯(cuò)的測(cè)量。此外,表面腐蝕法只能表征特定滑移面的平均位錯(cuò)密度行為,不能解釋微觀結(jié)構(gòu)的不均勻性,導(dǎo)致測(cè)量結(jié)果具有隨機(jī)性,精度較差。
針對(duì)宏觀區(qū)域范圍位錯(cuò)密度的測(cè)量,還可以采用X射線衍射線性分析法(圖1(b)[58]、1(c)[58])。作為一種間接分析方法,因其統(tǒng)計(jì)性強(qiáng)的特點(diǎn),適用范圍更廣。但當(dāng)材料的位錯(cuò)密度較低時(shí),由于衍射線寬不明顯,會(huì)導(dǎo)致結(jié)果誤差較大。 為此,可通過(guò)透射電鏡分析法(圖1(d)[59])對(duì)微觀區(qū)域的位錯(cuò)密度進(jìn)行測(cè)量。該方法不僅能直觀地觀測(cè)到位錯(cuò)的組態(tài)和數(shù)量,而且能夠解釋微觀結(jié)構(gòu)的不均勻性。此外,出于操作的簡(jiǎn)單和便捷性,電子背散射衍射分析法(圖1(e)[60]、1(f)[60])也常被應(yīng)用于測(cè)量材料的位錯(cuò)密度。該方法的另一個(gè)特點(diǎn)在于能直觀地觀測(cè)并對(duì)比不同試樣間的位錯(cuò)密度,且精度更高。
2 影響位錯(cuò)密度演化的因素
位錯(cuò)密度作為微觀組織狀態(tài)的內(nèi)部變量,影響其演化的因素較多,例如應(yīng)變量[61-63]、溫度[64-68]、應(yīng)變速率[67,69-70]、晶粒尺度[21,71-79]和加載方式等。下面就這些因素對(duì)位錯(cuò)密度演化行為的影響做以總結(jié)。
2.1 應(yīng)變量
應(yīng)變量是影響材料位錯(cuò)密度演化的一個(gè)重要因素。在塑性變形開始階段,金屬內(nèi)部的位錯(cuò)密度較低。初始位錯(cuò)隨應(yīng)變量的增加不斷增殖,并與其他位錯(cuò)纏結(jié),直到堆積到材料表面。此時(shí), 由于應(yīng)變量較小,堆積和纏結(jié)的位錯(cuò)很難動(dòng)態(tài)回復(fù),使得位錯(cuò)密度越來(lái)越大[61,63]。隨應(yīng)變量的進(jìn)一步增大,大量塞積的位錯(cuò)會(huì)形成很高的形變儲(chǔ)能,促進(jìn)位錯(cuò)的動(dòng)態(tài)回復(fù)。回復(fù)過(guò)程可分為兩個(gè)方面:一方面是螺型位錯(cuò)的交滑移;另一方面是刃型位錯(cuò)的攀移。因此,當(dāng)交滑移活躍時(shí),螺型位錯(cuò)密度不再增加,刃型位錯(cuò)密度仍然增加,位錯(cuò)密度的增殖速率減慢。由于塑性變形處于小應(yīng)變區(qū)域,整體的位錯(cuò)密度仍舊處于增加階段。但是,當(dāng)達(dá)到臨界應(yīng)變量和較高溫度條件時(shí),刃型位錯(cuò)攀移作用增加,在晶界及亞晶界處發(fā)生動(dòng)態(tài)再結(jié)晶[80],使得整體的位錯(cuò)密度降低。此后,塑性變形進(jìn)入大應(yīng)變區(qū)域,位錯(cuò)密度的增殖速率和回復(fù)速率趨于平衡,位錯(cuò)密度進(jìn)入穩(wěn)態(tài)階段。
除了軋制、循環(huán)變形以外,人們對(duì)蠕變過(guò)程中的位錯(cuò)組態(tài)演化也進(jìn)行了研究。研究人員發(fā)現(xiàn),由于高溫下刃型位錯(cuò)能夠攀移,此外蠕變速率一般較低,這就使得蠕變過(guò)程中易于形成位錯(cuò)胞結(jié)構(gòu)。因此,位錯(cuò)模式的形成和演化將為蠕變塑性過(guò)程的建模提供指導(dǎo)。從位錯(cuò)動(dòng)力學(xué)角度出發(fā),蠕變和塑性變形常被視為一個(gè)統(tǒng)一的熱激活過(guò)程[87]。塑性變形期間位錯(cuò)堆積引起的內(nèi)應(yīng)力集中,在隨后的蠕變期間以位錯(cuò)攀移的形式釋放。隨著亞晶粒的形成,變形的阻力逐漸由亞晶界提供。然而,在本質(zhì)上,蠕變和塑性變形存在差異[94],只是二者存在共同的內(nèi)在微觀機(jī)制,這就需要對(duì)位錯(cuò)滑移模式和微觀物理機(jī)制進(jìn)行更深入的研究。
4.2 元胞自動(dòng)機(jī)模擬方法
元胞自動(dòng)機(jī)是一種廣泛使用的數(shù)值計(jì)算方法,該方法[34,120]通過(guò)模擬每個(gè)晶粒的微觀組織演變,搭建離散的網(wǎng)格動(dòng)力學(xué)模型。變形過(guò)程按照固定的規(guī)則進(jìn)行更新,從而預(yù)測(cè)變形過(guò)程中的顯微組織演化[121]。如上節(jié)所述,有限元模擬方法有效考慮了位錯(cuò)間的相互作用,但未能捕獲動(dòng)態(tài)再結(jié)晶過(guò)程的形態(tài)特征。為了解決這些問題,Li等提出了如圖6(a)所示的模型構(gòu)建概念[38],將動(dòng)態(tài)再結(jié)晶視為本構(gòu)行為的一部分,通過(guò)元胞自動(dòng)機(jī)與晶體塑性有限元的完全耦合,充分考慮了動(dòng)態(tài)再結(jié)晶過(guò)程的微觀結(jié)構(gòu)演化和多尺度非均勻變形的塑性變形行為,建立了三維的元胞自動(dòng)機(jī)晶體塑性有限元模型,并成功應(yīng)用于TA15合金。在變形初期,位錯(cuò)主要集中在晶界處。模擬結(jié)果表明,隨變形量的增加,晶粒內(nèi)部的位錯(cuò)密度增加。但由于晶粒取向不同,大部分晶粒仍處在位錯(cuò)密度較低的階段,與實(shí)驗(yàn)結(jié)果符合得很好。結(jié)合K-M模型,Qian和Guo[34]
利用元胞自動(dòng)機(jī)方法研究了HY-100鋼的微觀組織,成功模擬了塑性變形中的動(dòng)態(tài)再結(jié)晶行為,其預(yù)測(cè)與實(shí)驗(yàn)結(jié)果吻合得很好。出于元胞自動(dòng)機(jī)方法對(duì)高溫變形下動(dòng)態(tài)再結(jié)晶行為模擬的優(yōu)勢(shì)性,通過(guò)建立合理的可視化模型(圖6(b)[122-123]),能夠有效評(píng)估再結(jié)晶條件下相應(yīng)的微觀結(jié)構(gòu)形態(tài)演化和位錯(cuò)密度變化,為揭示材料高溫下的變形機(jī)制提供了高效途徑。
4.3 分子動(dòng)力學(xué)模擬方法
分子動(dòng)力學(xué)模擬方法是以牛頓運(yùn)動(dòng)方程和應(yīng)用力場(chǎng)為基礎(chǔ)的計(jì)算機(jī)模擬方法,可對(duì)體系中微觀粒子之間的相互作用進(jìn)行模擬[40]。該方法將位錯(cuò)作為原子動(dòng)力學(xué)的介質(zhì),解釋了位錯(cuò)介導(dǎo)的塑性極限的原子機(jī)制[41]。通過(guò)模擬不同變形條件下的應(yīng)變響應(yīng),為材料變形機(jī)理的微觀尺度研究提供了有效手段。分子動(dòng)力學(xué)模擬方法的優(yōu)勢(shì)在于通過(guò)建立3D原子模型,能夠模擬特定的加工工藝。文獻(xiàn)[127]模擬了超細(xì)晶納米鎳在三種不同溫度下的非對(duì)稱循環(huán)加載變形,如圖7所示。
不難看出,溫度的變化對(duì)位錯(cuò)密度有顯著的影響。隨溫度的升高,原子的擴(kuò)散增加了位錯(cuò)的運(yùn)動(dòng)速率。這有助于相反符號(hào)位錯(cuò)的湮滅,使得位錯(cuò)密度降低,材料的流動(dòng)應(yīng)力降低。由于其變形過(guò)程的復(fù)雜性,通過(guò)控制原子水平上的結(jié)構(gòu)演化和潛在的變形機(jī)制,對(duì)納米鎳材料的性能研究具有重要意義。有時(shí),為了得到力學(xué)性能良好的工程材料,需要量化材料微觀結(jié)構(gòu)在變形中的演化行為[4]。例如,在高位錯(cuò)密度下的加工硬化效應(yīng)和位錯(cuò)演化導(dǎo)致的晶粒細(xì)化,能有效提高材料的強(qiáng)度。但是對(duì)于成分復(fù)雜的合金材料和相對(duì)多道次的加工工藝而言,實(shí)驗(yàn)上尚且無(wú)法直接觀察到其位錯(cuò)的演化過(guò)程,這就使得分子動(dòng)力學(xué)模擬方法應(yīng)用范圍更加廣泛[6]。分子動(dòng)力學(xué)模擬方法的優(yōu)勢(shì)在于能夠有效描述微觀結(jié)構(gòu)的演化過(guò)程,并對(duì)小尺寸模型中位錯(cuò)介導(dǎo)的塑性流動(dòng)的原子尺度觀察非常有效。例如:在低溫的塑性變形條件下,螺型位錯(cuò)的交滑移作為位錯(cuò)軟化行為的重要回復(fù)機(jī)制,一直是研究的重點(diǎn)問題。Li等[125]利用分子動(dòng)力學(xué)模擬方法,通過(guò)模擬原子尺度的熱激活過(guò)程,直觀地觀察到了純銅在低溫下的交滑移行為,為理論研究提供了合理的支撐。Yashiro等[126]采用分子動(dòng)力學(xué)方法,對(duì)鎳基高溫合金進(jìn)行單軸拉伸模擬,通過(guò)對(duì)自由表面形核的刃型位錯(cuò)、沉淀物對(duì)位錯(cuò)的釘扎以及位錯(cuò)間的相互作用等具體細(xì)節(jié)的分析,揭示了位錯(cuò)成核的新機(jī)制,這是實(shí)驗(yàn)上很難觀測(cè)到的。但是由于時(shí)間與原子尺度的限制,要在分子動(dòng)力學(xué)模擬中實(shí)現(xiàn)與實(shí)驗(yàn)過(guò)程相近的加載條件幾乎是不可能的,這需要非常充裕的計(jì)算資源。此外,對(duì)于具體化的位錯(cuò)模型搭建、定量插入各種類型的初始位錯(cuò)密度以及位錯(cuò)相互作用機(jī)制的調(diào)控,分子動(dòng)力學(xué)模擬便很難實(shí)現(xiàn),而離散位錯(cuò)動(dòng)力學(xué)方法的優(yōu)勢(shì)便得到了有效地發(fā)揮。
4.4 離散位錯(cuò)動(dòng)力學(xué)模擬方法
離散位錯(cuò)動(dòng)力學(xué)模擬是基于Peach-Koehler力的數(shù)值計(jì)算方法,能夠直觀地預(yù)測(cè)位錯(cuò)間的相互作用,進(jìn)而揭示位錯(cuò)微觀結(jié)構(gòu)與塑性行為間的物理聯(lián)系[127]。Bulatov和Cai[128]對(duì)離散位錯(cuò)動(dòng)力學(xué)模擬方法作出了詳細(xì)的理論解釋,對(duì)比了各種離散位錯(cuò)動(dòng)力學(xué)數(shù)值計(jì)算軟件,并列舉了位錯(cuò)演化現(xiàn)象的相應(yīng)代碼。其中離散位錯(cuò)動(dòng)力學(xué)模擬平臺(tái)ParaDis因其高效的計(jì)算能力,是現(xiàn)階段較為完善的離散位錯(cuò)動(dòng)力學(xué)模擬軟件[44-45]。對(duì)于金屬材料而言,塑性變形離不開位錯(cuò)之間的相互作用。然而,傳統(tǒng)的數(shù)值方法很難實(shí)現(xiàn)對(duì)位錯(cuò)行為的可視化模擬,尤其對(duì)于很難定量判斷的位錯(cuò)源而言,離散位錯(cuò)動(dòng)力學(xué)方法能夠很容易地搭建出滿足材料本身特性的位錯(cuò)源條件,使位錯(cuò)主導(dǎo)的變形機(jī)制建立在一定的物理基礎(chǔ)之上。因此,離散位錯(cuò)動(dòng)力學(xué)方法為微觀尺度位錯(cuò)介導(dǎo)的塑性研究提供了橋梁[74]。熊健等[47]提出使用離散位錯(cuò)動(dòng)力學(xué)模擬方法解決位錯(cuò)密度梯度結(jié)構(gòu)的演化過(guò)程,并以Cu單晶微柱作為模擬對(duì)象,指出了加載方向?qū)ξ诲e(cuò)密度梯度材料力學(xué)性能的影響。Sills等[129]利用離散位錯(cuò)動(dòng)力學(xué)模擬了面心立方Cu的應(yīng)變硬化行為,圖8(a)[129]為離散位錯(cuò)動(dòng)力學(xué)模擬中典型的位錯(cuò)微觀結(jié)構(gòu)。由于不同連接類型對(duì)位錯(cuò)間相互作用的強(qiáng)度貢獻(xiàn)存在差異[130],使得塑性變形過(guò)程中位錯(cuò)密度的演化速率不同,進(jìn)而導(dǎo)致剪切應(yīng)力應(yīng)變曲線的不同(圖8(b)[129]),這對(duì)揭示位錯(cuò)密度演化對(duì)材料力學(xué)性能的影響提供了有效手段。此外,該方法的另一個(gè)優(yōu)勢(shì)在于:可對(duì)不同滑移系內(nèi)位錯(cuò)密度的演化給出合理預(yù)測(cè)(圖8(c)[131]),有效解決了大部分本構(gòu)模型由于忽略了滑移系開動(dòng)的先后順序而導(dǎo)致的初始應(yīng)變硬化速率過(guò)大的問題。
5 材料組織微觀結(jié)構(gòu)和力學(xué)性能
位錯(cuò)作為金屬材料塑性變形的介質(zhì),與材料的強(qiáng)度、屈服、塑性等力學(xué)性能密切相關(guān)[132]。在金屬材料的塑性變形過(guò)程中,位錯(cuò)會(huì)發(fā)生增殖和湮滅等一系列交互作用[106,133],從而使材料中的位錯(cuò)密度發(fā)生演化,進(jìn)而影響材料的微觀組織結(jié)構(gòu)和力學(xué)行為。通過(guò)對(duì)位錯(cuò)運(yùn)動(dòng)與材料的微觀組織結(jié)構(gòu)演化關(guān)系的研究,有助于從本質(zhì)上解釋材料的組織和性能變化的物理機(jī)制,揭示材料的力學(xué)行為[134]。通過(guò)對(duì)材料微觀組織結(jié)構(gòu)的分析,可以有效確定材料的熱力學(xué)特征、指導(dǎo)材料的加工工藝并保證材料的使用質(zhì)量。正如上文L-J模型所提到的,在高堆垛層錯(cuò)能材料中,隨應(yīng)變量的增加,加工硬化與動(dòng)態(tài)軟化表現(xiàn)出相互競(jìng)爭(zhēng)的關(guān)系。動(dòng)態(tài)回復(fù)過(guò)程伴隨可動(dòng)位錯(cuò)與弗蘭克位錯(cuò)網(wǎng)絡(luò)中儲(chǔ)存的位錯(cuò)相互作用使得位錯(cuò)間發(fā)生湮滅,最終導(dǎo)致二者趨于動(dòng)態(tài)平衡。Serajzadeh等[135]給出了熱變形期間由于動(dòng)態(tài)回復(fù)過(guò)程對(duì)應(yīng)的流動(dòng)應(yīng)力變化關(guān)系:
σ2=[σ2Rec+(σ20-σ2Rec)e-Ωε],
式中,σ,σ0,σRec分別為流動(dòng)應(yīng)力,屈服應(yīng)力和穩(wěn)態(tài)應(yīng)力,Ω為動(dòng)態(tài)回復(fù)系數(shù)。
在中等至低堆垛層錯(cuò)能的材料中,位錯(cuò)易發(fā)生分解,位錯(cuò)密度降低[136]。新的晶粒在驅(qū)動(dòng)力的作用下逐漸形核長(zhǎng)大,表現(xiàn)出動(dòng)態(tài)軟化的特征,我們稱之為動(dòng)態(tài)再結(jié)晶現(xiàn)象。其中,每個(gè)動(dòng)態(tài)再結(jié)晶晶粒的位錯(cuò)密度和晶粒長(zhǎng)大動(dòng)力學(xué)都與動(dòng)態(tài)再結(jié)晶過(guò)程密切相關(guān)。流動(dòng)應(yīng)力通過(guò)泰勒關(guān)系[137],由基體和全部動(dòng)態(tài)再結(jié)晶晶粒的平均位錯(cuò)密度值估算得到。動(dòng)態(tài)再結(jié)晶對(duì)流動(dòng)應(yīng)力的影響,可由Avrami方程[138]進(jìn)行評(píng)估,形式如下:
σ=σP-XD(σP-σRex),
其中,σP=αMGbρ為動(dòng)態(tài)再結(jié)晶引起的峰值應(yīng)力,σ為位錯(cuò)的強(qiáng)化因子,
XD=1-exp[-k·(ε-εc/εp)nd]為動(dòng)態(tài)再結(jié)晶的體積分?jǐn)?shù),k和nd為動(dòng)態(tài)再結(jié)晶材料參數(shù),εc為發(fā)生動(dòng)態(tài)再結(jié)晶時(shí)的臨界應(yīng)變,εp為峰值應(yīng)變。
值得注意的是,隨應(yīng)變量的增加,無(wú)論動(dòng)態(tài)回復(fù)是否同時(shí)發(fā)生,動(dòng)態(tài)再結(jié)晶的開始都對(duì)應(yīng)一個(gè)臨界的位錯(cuò)密度值[139]。一旦位錯(cuò)密度到達(dá)該臨界值時(shí),將在晶界或其他內(nèi)部晶體缺陷處形成新晶粒。因此,對(duì)于這種形核機(jī)制,臨界位錯(cuò)密度的關(guān)系式[140]如下:
ρ0c=20S3blmτ21/3,
其中,S為晶界能,l為位錯(cuò)移動(dòng)的平均自由程,m為晶界的遷移率,τ為位錯(cuò)線的能量。
位錯(cuò)密度為金屬材料微觀組織演化過(guò)程的分析提供了內(nèi)部條件。通過(guò)位錯(cuò)密度演化過(guò)程對(duì)回復(fù)和再結(jié)晶過(guò)程影響的研究,將微觀組織演化與位錯(cuò)的運(yùn)動(dòng)聯(lián)系起來(lái),從而建立材料力學(xué)性能與其微觀組織結(jié)構(gòu)的相關(guān)性。借助于預(yù)測(cè)得到的微觀組織結(jié)構(gòu)和塑性流動(dòng)行為,可以為實(shí)際的生產(chǎn)加工工藝提供合理的參考依據(jù)。
此外,為了保證工程構(gòu)件的安全性,強(qiáng)度是其中一個(gè)重要的研究課題。在工業(yè)生產(chǎn)中,人們常將關(guān)注點(diǎn)放在比原子尺寸范圍大的其他缺陷,如雜質(zhì)、裂縫和疏松等,通過(guò)改善這些缺陷提高材料強(qiáng)度。工程中用屈服強(qiáng)度和抗拉強(qiáng)度作為強(qiáng)度指標(biāo),但是很難針對(duì)強(qiáng)度給出定量精確的預(yù)測(cè)。因此,有必要從微觀尺度出發(fā)揭示金屬材料應(yīng)變硬化過(guò)程的強(qiáng)度來(lái)源,指導(dǎo)材料的加工工藝。從位錯(cuò)理論出發(fā),金屬材料的強(qiáng)度與材料中的位錯(cuò)密度狀態(tài)或位錯(cuò)亞結(jié)構(gòu)直接相關(guān)。眾所周知,晶粒細(xì)化可以有效提高多晶金屬的強(qiáng)度。晶粒尺寸作為影響位錯(cuò)密度重要因素之一,可將晶粒尺寸、位錯(cuò)密度和材料強(qiáng)度聯(lián)系起來(lái)?;诰Я3叽缦嚓P(guān)的位錯(cuò)介導(dǎo)塑性研究,El-Awady[72]建立了一個(gè)能夠反映和預(yù)測(cè)金屬材料機(jī)械性能的模型,表達(dá)式為
τ/μ=βDρ+αbρ,
式中,β和α為無(wú)量綱的常數(shù),D為晶粒尺寸,ρ為位錯(cuò)密度,μ為剪切模量。
圖9(a)[72]為四種不同鎳單晶尺寸的無(wú)量綱解析剪切強(qiáng)度與位錯(cuò)密度的關(guān)系圖。從圖中不難看出,由于完美晶體的位錯(cuò)密度很低,因此其初始強(qiáng)度很高。隨可動(dòng)位錯(cuò)的移動(dòng)和增殖,材料的強(qiáng)度表現(xiàn)出下降的趨勢(shì)。但當(dāng)位錯(cuò)密度達(dá)到某一臨界值時(shí),變形機(jī)制轉(zhuǎn)變?yōu)榱钟不J?,較高的位錯(cuò)密度使得位錯(cuò)纏結(jié)阻礙運(yùn)動(dòng),持續(xù)的變形會(huì)增加材料強(qiáng)度,所以位錯(cuò)密度和材料強(qiáng)度之間存在非常大的相關(guān)性[141]。
此外,材料強(qiáng)度還可通過(guò)位錯(cuò)密度、應(yīng)變速率建立起聯(lián)系。在可動(dòng)位錯(cuò)密度的演化過(guò)程中,由于加載路徑和應(yīng)變速率的差異,很難給出合理的預(yù)測(cè)。為此,F(xiàn)an等[142]采用離散位錯(cuò)動(dòng)力學(xué)模擬和分子動(dòng)力學(xué)模擬,揭示了應(yīng)變率和位錯(cuò)密度對(duì)銅及鋁單晶強(qiáng)度的影響。如圖9(b)[142]所示,在高應(yīng)變率(或低位錯(cuò)密度)下,材料的強(qiáng)度主要受到應(yīng)變率硬化行為的影響,在低應(yīng)變率(或高位錯(cuò)密度下)主要受到林位錯(cuò)硬化行為的控制。通過(guò)模擬結(jié)果得到了無(wú)量綱屈服應(yīng)力的最小值點(diǎn),由于林位錯(cuò)硬化應(yīng)力正好是應(yīng)變率硬化應(yīng)力的二倍,通過(guò)解析關(guān)系推導(dǎo)出了二者轉(zhuǎn)變的臨界位錯(cuò)密度公式,如下:
ρc=2BαMfaGb32/3
式中,B為阻尼系數(shù),為應(yīng)變速率,fa為比例系數(shù)。
在工程實(shí)際中,尤其是材料加工過(guò)程中,如何在較大程度上保證金屬材料具有一定強(qiáng)度的前提下,依然兼?zhèn)淞己玫乃苄?,一直是人們關(guān)注的焦點(diǎn)[143]。圖10[144]為金屬材料強(qiáng)度和延展性間的權(quán)衡關(guān)系圖。不難看出,相對(duì)較高的應(yīng)變硬化能力是避免強(qiáng)度-延展性協(xié)調(diào)作用的關(guān)鍵。在試樣受到機(jī)械應(yīng)力作用時(shí),材料通常先表現(xiàn)為彈性變形。當(dāng)應(yīng)力達(dá)到屈服極限后,材料出現(xiàn)塑性變形現(xiàn)象。這將導(dǎo)致試樣在最薄弱處出現(xiàn)頸縮[104],截面面積減少直至斷裂。該點(diǎn)的應(yīng)變稱為斷裂應(yīng)變,即為對(duì)材料延展性的測(cè)量。這是由塑性不均勻造成的,發(fā)生頸縮的不穩(wěn)定性始于:
dσdε+mσ≤σ,
式中,σ為真實(shí)應(yīng)力,ε為真實(shí)應(yīng)變,m為應(yīng)變率敏感系數(shù)。
金屬材料的塑性行為與晶體中位錯(cuò)的運(yùn)動(dòng)相關(guān),這些位錯(cuò)在非彈性變形過(guò)程中產(chǎn)生、儲(chǔ)存和移動(dòng)。當(dāng)施加的外力超過(guò)屈服點(diǎn)后,材料進(jìn)入塑性變形階段,晶體材料的流動(dòng)應(yīng)力由各部分貢獻(xiàn)[5],如下:
τ=τ0+τR+τρ+τ*,
其中,τ0,τR,τ*,τρ分別為晶格摩擦應(yīng)力,位錯(cuò)源激活應(yīng)力,應(yīng)變速率相關(guān)的有效應(yīng)力和位錯(cuò)間的相互作用力。
綜上所述,位錯(cuò)密度作為材料微觀結(jié)構(gòu)狀態(tài)的一個(gè)內(nèi)部變量,與材料組織結(jié)構(gòu)演化和力學(xué)性能密切相關(guān)。因此,有必要對(duì)位錯(cuò)密度演化的全過(guò)程有一個(gè)總體的理解,建立合理的位錯(cuò)密度演化模型,指導(dǎo)材料的制備工藝。
6 總結(jié)與展望
闡明位錯(cuò)密度演化規(guī)律及其物理機(jī)制,建立可定量描述位錯(cuò)密度演化的模型,對(duì)材料性能的研究和材料加工工藝的開發(fā)具有重要的意義。本文綜述了當(dāng)前位錯(cuò)密度演化模型的研究進(jìn)展,總結(jié)了位錯(cuò)密度演化數(shù)值計(jì)算方法的研究現(xiàn)狀,特別介紹了位錯(cuò)密度對(duì)材料組織結(jié)構(gòu)演化和力學(xué)性能的影響因素。
到目前為止,位錯(cuò)密度演化模型的研究已經(jīng)取得了很大的進(jìn)展,但仍然存在許多問題。在理論方面,現(xiàn)有的位錯(cuò)密度演化模型不僅在物理過(guò)程的考慮角度存在差異,而且在狀態(tài)參數(shù)的選擇和數(shù)量方面也存在差異。這就導(dǎo)致模型僅適
用于特定的材料和
加載條件,模型中的材料常數(shù)嚴(yán)重依賴于實(shí)驗(yàn)數(shù)據(jù)的擬合參考值。雖然結(jié)合數(shù)值模擬手段,為一些特定的“經(jīng)驗(yàn)參數(shù)”提供了較為合理的參考值,但是從本質(zhì)上講,由于缺少對(duì)位錯(cuò)密度演化全過(guò)程較為綜合的微觀物理機(jī)制的研究,絕大多數(shù)已建立的模型仍處于定性和半定量階段。潛在的物理過(guò)程大大限制了模型的有效范圍,也阻礙和影響了新材料力學(xué)性能的設(shè)計(jì)。
實(shí)際上,金屬材料的塑性變形是位錯(cuò)滑移、位錯(cuò)交互和位錯(cuò)湮滅在以滑移平面和伯氏矢量為特征的特定滑移系統(tǒng)上相互作用的結(jié)果。因此,位錯(cuò)密度的變化決定了金屬的應(yīng)力-應(yīng)變行為。為了解決這一問題,需要從微觀尺度出發(fā),探索位錯(cuò)密度演化過(guò)程的物理機(jī)制,建立適用于更廣泛加工條件范圍的統(tǒng)一模型。在此,我們提出對(duì)現(xiàn)有模型的改進(jìn)建議如下:
1) 基于應(yīng)用范圍較為廣泛的位錯(cuò)胞結(jié)構(gòu)模型,首先按空間分布將總的位錯(cuò)密度劃分為可動(dòng)位錯(cuò)密度、胞內(nèi)不可動(dòng)位錯(cuò)密度和胞壁不可動(dòng)位錯(cuò)密度三個(gè)內(nèi)部狀態(tài)變量。此外,由于刃型位錯(cuò)在高溫下受擴(kuò)散攀移機(jī)制控制,而螺型位錯(cuò)在低溫下受交滑移機(jī)制影響,二者在具體計(jì)算中存在差異,故而有必要在這種復(fù)合結(jié)構(gòu)模型中,額外劃分螺型位錯(cuò)分量和刃型位錯(cuò)分量,并具體分析不同位錯(cuò)類型對(duì)位錯(cuò)密度演化行為的影響。
2) 層錯(cuò)作為金屬和合
金中的面缺陷,很大程度上決定了它們的力學(xué)行為。層錯(cuò)能的大小直接影響擴(kuò)展位錯(cuò)間的距離,從而改變位錯(cuò)交滑移的概率。對(duì)于低層錯(cuò)能材料,擴(kuò)展位錯(cuò)寬度大,當(dāng)位錯(cuò)遇到勢(shì)壘(空位、位錯(cuò)、晶界等)時(shí),位錯(cuò)很難通過(guò)交滑移和攀移繼續(xù)移動(dòng),從而減緩了因交滑移而導(dǎo)致的位錯(cuò)湮滅。此時(shí),位錯(cuò)的回復(fù)速率較低,總位錯(cuò)密度能夠達(dá)到動(dòng)態(tài)再結(jié)晶的臨界位錯(cuò)密度值,演化曲線表現(xiàn)出動(dòng)態(tài)再結(jié)晶趨勢(shì)。相反,材料表現(xiàn)出回復(fù)趨勢(shì)。因此,通過(guò)考慮層錯(cuò)能的直接影響,可以進(jìn)一步改進(jìn)位錯(cuò)密度演化模型。
3) 對(duì)于通常表現(xiàn)為非均勻相的合金材料而言,固溶體基體中包含的第二相會(huì)阻礙到位錯(cuò)的運(yùn)動(dòng),因此有必要考慮固溶體硬化和沉淀硬化對(duì)位錯(cuò)密度演化行為的影響。
4) 在金屬材料的塑性變形初期,金屬內(nèi)部的滑移系統(tǒng)不一定全部開動(dòng),先開動(dòng)的滑移面上的位錯(cuò)密度較大。隨應(yīng)變量的增加,晶體發(fā)生轉(zhuǎn)動(dòng)、位錯(cuò)間的交滑移機(jī)制導(dǎo)致其他滑移系相繼開動(dòng),最終使得整個(gè)晶體內(nèi)部的位錯(cuò)密度升高到相同的水平。因此考慮滑移系開動(dòng)的先后順序,有助于模擬出更符合實(shí)驗(yàn)結(jié)果的位錯(cuò)密度演化曲線。
5) 金屬材料在疲勞、剪切、拉伸、軋制、蠕變和循環(huán)等變形過(guò)程中的位錯(cuò)組態(tài)存在差異。大致表現(xiàn)為高低位錯(cuò)密度相間出現(xiàn)的空間有序結(jié)構(gòu),即脈、墻、迷宮和位錯(cuò)胞。在材料的變形過(guò)程中,位錯(cuò)解離、結(jié)合、滑移、交滑移和攀移等機(jī)制都是活躍的。因此,通過(guò)不同加載方式分析不同類型位錯(cuò)模式的形成機(jī)制,有助于揭示位錯(cuò)密度演化過(guò)程的微觀物理機(jī)制和最終形成的微觀結(jié)構(gòu)。
參考文獻(xiàn)
[1] BONTCHEVA N,PETZOV G.Microstructure evolution during metal forming processes [J].Computational Materials Science,2003,28(3/4):563-573.
[2] SU J Q,NELSON T W,STERLING C J.Microstructure evolution during FSW/FSP of high strength aluminum alloys [J].Materials Science and Engineering:A,2005,405(1/2):277-286.
[3] KIM S D,PARK J Y,PARK S J,et al.Direct observation of dislocation plasticity in high-Mn lightweight steel by in-situ TEM [J].Scientific Reports,2019,9(1):1-13.
[4] LI J,F(xiàn)ANG Q,LIU B,et al.Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular dynamics simulation [J].RSC Advances,2016,6(80):76409-76419.
[5] ZHOU W,REN X,YANG Y,et al.Dislocation behavior in nickel and iron during laser shock-induced plastic deformation [J].The International Journal of Advanced Manufacturing Technology,2020,108(4):1073-1083.
[6] VIJAY REDDY K,PAL S.Structural evolution and dislocation behaviour during nano-rolling process of FCC metals:a molecular dynamics simulation based investigation [J].Journal of Applied Physics,2019,125(9):095101.
[7] KOVCS I,ZSOLDOS L.Dislocations and plastic deformation [M].Oxford:Pergamon Press,2016:252-281.
[8] MECKING H,KOCKS U F.Kinetics of flow and strain-hardening [J].Acta Metallurgica,1981,29(11):1865-1875.
[9] KOCKS U F.Laws for work-hardening and low-temperature creep [J].Journal of Engineering Materials and Technology,1976,98(1):76-85.
[10] KOCKS U F,MECKING H.A mechanism for static and dynamic recovery [M].Oxford:Pergamon Press,1979:345-350.
[11] MECKINGS H,KOCKS U F.Kinecits of flow and strain-hardening [J].Acta Metallurgica,1981,29(11):1865-1875.
[12] ESTRIN Y,MECKING H.A unified phenomenological description of work hardening and creep based on one-parameter models [J].Acta Metallurgica,1984,32(1):57-70.
[13] MALYGIN G A.Dislocation density evolution equation and strain hardening of f.c.c crystals [J].Physica Status Solidi (A),1990,119(2):423-436.
[14] KOCKS U F,MECKING H.Physics and phenomenology of strain hardening:the FCC case [J].Progress in Materials Science,2003,48(3):171-273.
[15] LAASRAOUI A,JONAS J J.Prediction of steel flow stresses at high temperatures and strain rates [J].Metallurgical Transactions A,1991,22(7):1545-1558.
[16] YOSHIE A,MORIKAWA H,ONOE Y.Formulation of static recrystallizatio of austenite in hot rolling process of steel plate [J].Transactions of the Iron and Steel Institute of Japan,1987,27(6):425-431.
[17] BERGSTRM Y.A dislocation model for stress-strain behaviour of polycrystalline α-Fe with special emphasis on the variation of the densities of mobile and immobile dislocation [J].Materials Science and Engineering,1970,5(4):193-200.
[18] GOURDET S,MONTHEILLET F.A model of continuous dynamic recrystallization [J].Acta Materialia,2003,51(9):2685-2699.
[19] ESTRIN Y,KUBIN L P.Local strain hardening and onuniformity of plastic deformation [J].Acta Merallurgica,1986,34(12):2455-2464.
[20] SCHLIPF J.Stable and unstable modes in tensile deformation [J].Materials Science and Engineering,1986,77(1):19-26.
[21] ESTRIN Y.Unified constitutive laws of plastic deformation [M].New York:Academic Press,1996:69-106.
[22] ROTERS F,RAABE D,GOTTSTEIN G.Work hardening in heterogeneous alloys-a microstructural approach based on three internal state variables [J].Acta Materialia,2000,48(17):4181-4189.
[23] ROTERS F.A new concept for the calculation of the mobile dislocation density in constitutive models of strain hardening [J].Physica Status Solidi (B),2003,240(1):68-74.
[24] ESTRIN Y,TTH L S,MOLINARI A,et al.A dislocation-based model for all hardening stages in large strain deformation [J].Acta Materialia,1998,46(15):5509-5522.
[25] PRINZ F B,ARGON A S.The evolution of plastic resistance in large strain plastic flow of single phase subgrain forming metals [J].Acta Metallurgica,1984,32(7):1021-1028.
[26] NIX W D,GIBELING J C,HUGHES D A.Time-dependent deformation of metals [J].Metallurgical Materials Transactions A,1985,16(12):2215-2226.
[27] TTH L S,MOLINARI A,ESTRIN Y,et al.Strain hardening at large strains as predicted by dislocation based polycrystal plasticity model [J].Journal of Engineering Materials and Technology,2002,124(1):71-77.
[28] BAIK S C,ESTRIN Y,KIM H S,et al.Dislocation density-based modeling of deformation behavior of aluminium under equal channel angular pressing [J].Materials Science and Engineering: A,2003,351(1/2):86-97.
[29] MA A,ROTERS F,RAABE D.A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations [J].Acta Materialia,2006,54(8):2169-2179.
[30] MA A,ROTERS F,RAABE D.A dislocation density based constitutive law for BCC materials in crystal plasticity FEM [J].Computational Materials Science,2007,39(1):91-95.
[31] ALANKAR A,MASTORAKOS I N,F(xiàn)IELD D P.A dislocation-density-based 3D crystal plasticity model for pure aluminum [J].Acta Materialia,2009,57(19):5936-5946.
[32] LEE D J,YOON E Y,AHN D H,et al.Dislocation density-based finite element analysis of large strain deformation behavior of copper under high-pressure torsion [J].Acta Materialia,2014,76(1):281-293.
[33] 李殿中,杜強(qiáng),胡志勇,等.金屬成形過(guò)程組織演變的Cellular Automaton模擬技術(shù) [J].金屬學(xué)報(bào),1999,35(11):1201-1205.
LI D Z,DU Q,HU Z Y,et al.Simulation of the microstructure evolution in metal forming by using cellular automation method [J].Acta Metallurgica Sinica,1999,35(11):1201-1205.
[34] QIAN M,GUO Z X.Cellular automata simulation of microstructural evolution during dynamic recrystallization of an HY-100 steel [J].Materials Science and Engineering:A,2004,365(1/2):180-185.
[35] 何燕,張立文,牛靜,等.元胞自動(dòng)機(jī)方法對(duì)動(dòng)態(tài)再結(jié)晶過(guò)程的模擬 [J].材料熱處理學(xué)報(bào),2005,26(4):120-124.
HE Y,ZHANG L W,NIU J,et al.Simulation of dynamic recrystallization process using cellular automata [J].Transactions of Materials and Heat Treatment,2005,26(4):120-124.
[36] 劉筱,朱必武,李落星.Laasraoui-Jonas 位錯(cuò)密度模型結(jié)合元胞自動(dòng)機(jī)模擬AZ31鎂合金動(dòng)態(tài)再結(jié)晶 [J].中國(guó)有色金屬學(xué)報(bào),2013,23(1):898-904.
LIU X,ZHU B W,LI L X.Dynamic recrystallization of AZ31 magnesium alloy simulated by Laasraoui-Jonas dislocation equation coupled cellular automata method [J].The Chinese Journal of Nonferrous Metals,2013,23(1):898-904.
[37] 韓亞瑋,蘇娟華,任鳳章,等.應(yīng)用Laasraoui-Jonas 位錯(cuò)密度模型模擬工業(yè)純鈦微觀組織演變 [J].材料熱處理學(xué)報(bào),2014,35(1):210-214.
HAN Y W,SU J H,REN F Z,et al.Simulation of microstructure evolution of hot-deformed commercial pure titanium by Laasraoui-Jonas dislocation density model [J].Transactions of Materials and Heat Treatment,2014,35(1):210-214.
[38] LI H,SUN X,YANG H.A three-dimensional cellular automata-crystal plasticity finite element model for predicting the multiscale interaction among heterogeneous deformation,DRX microstructural evolution and mechanical responses in titanium alloys [J].International Journal of Plasticity,2016,87:154-80.
[39] 陳學(xué)文,張亞東,王納納,等.基于 L-J 位錯(cuò)密度模型及CA 法的45Cr4NiMoV合金動(dòng)態(tài)再結(jié)晶行為 [J].材料熱處理學(xué)報(bào),2017,38(7):167-172.CHEN X W,ZHANG Y D,WANG N N,ZHANG X D.Dynamic recrystallization behavior of 45Cr-4NiMoV alloy based on L-J dislocation density model and CA? method[J].Journal of Material Heat Treatment,2017,38(7):167-172.
[40] ANDERSEN H C.Molecular dynamics simulations at
constant pressure and/or temperature [J].The Journal of Chemical Physics,1980,72(4):2384-2393.
[41] ZEPEDA-RUIZ L A,STUKOWSKI A,OPPELSTRUP
T,et al.Probing the limits of metal plasticity with molecular dynamics simulations [J].Nature,2017,550(7677):492-495.
[42] TEMITOPE OYINBO S T,JEN T C.Molecular
dynamics simulation of dislocation plasticity mechanism of nanoscale ductile materials in the cold gas dynamic spray process [J].Coatings,2020,10(11):1079.
[43] ZHANG Y,JIANG S,ZHU X,et al.Influence of void
density on dislocation mechanisms of void shrinkage in nickel single crystal based on molecular dynamics simulation [J].Physica E:Low-dimensional Systems and Nanostructures,2017,90:90-97.
[44] BULATOV V V,HSIUNG L L,TANG M,et al.
Dislocation multi-junctions and strain hardening [J].Nature,2006,440(7088):1174-1178.
[45] ARSENLIS A,CAI W,TANG M,et al.Enabling strain
hardening simulations with dislocation dynamics [J].Modelling and Simulation in Materials Science and Engineering,2007,15(6):553-595.
[46] LIN B,HUANG M,ZHAO L,et al.3D DDD modelling of dislocation-precipitate interaction in a nickel-based single crystal superalloy under cyclic deformation [J].Philosophical Magazine,2018,98(17):1550-1575.
[47] 熊健,魏德安,陸宋江,等.位錯(cuò)密度梯度結(jié)構(gòu)Cu
單晶微柱壓縮的三維離散位錯(cuò)動(dòng)力學(xué)模擬 [J].金屬學(xué)報(bào),2019,55(11):1477-86.
XIONG J,WEI D A,LU S J,et al.A three-dimensional discrete dislocation dynamics simulation on micripillar compression of single crystal copper with dislocation density gradient [J].Acta Metallurgica Sinica,2019,55 (11):1477-1486.
[48] SUDMANNS M,STRICKER M,WEYGAND D,et al.
Dislocation multiplication by cross-slip and glissile reaction in a dislocation based continuum formulation of crystal plasticity [J].Journal of the Mechanics and Physics of Solids,2019,132:103695.
[49] MINSHENG H,SONG H,SHUANG L,et al.Discrete
dislocation dynamics algorithms and their application in modeling of plastic behaviors of crystalline materials [J].Chinese Science Bulletin,2019,64(18):1864-1877.
[50] LI D,ZBIB H,SUN X,et al.Predicting plastic flow
and irradiation hardening of iron single crystal with mechanism-based continuum dislocation dynamics [J].International Journal of Plasticity,2014,52:3-17.
[51] OROWAN E. Zur kristallplastizitt. i[J]. Zeitschrift für Physik, 1934, 89(9): 605-613.
[52] OROWAN E. Zur kristallplastizitt. iii[J].Zeitschrift für Physik, 1934, 89(9):634-659.
[53] TAYLOR G I. The mechanism of plasticdeformation of crystals. Part I—Theoretical[J]. Proceedings of theRoyal Society of London, 1934, 145(855): 362-387.
[54] POLANYI M.ber eine Art Gitterstrung, die einen Kristall plastisch machen knnte[J]. Zeitschrift für Physik,1934, 89(9): 660-664.
[55] WHELAN M J,HIRSCH P B,HORNE R W,et al.
Dislocations and stacking faults in stainless steel [J].Proceedings of the Royal Society of London Series A. Mathematical and Physical Sciences,1957,240(1223):524-538.
[56] HAM R K.The determination of dislocation densities
in thin films [J].Philosophical Magazine,1961,6(69):1183-1184.
[57] LU D,WU M.Observation of etch pits in Fe-36wt%
Ni Invar alloy [J].International Journal of Minerals,Metallurgy and Materials,2014,21(7):682-686.
[58] 張鵬,陳誠(chéng),袁武華.應(yīng)變速率對(duì)7050鋁合金性能
的影響及強(qiáng)化機(jī)理 [J].鍛壓技術(shù),2021,46(10):225-232.
ZHANG P,CHEN C,YUAN W H.Influence of strain rate on properties for 7050 aluminum alloy and strengthening mechanism [J].Forging and Stamping Technology,2021,46 (10):225-232.
[59] PEICˇKA J,KUEL R,DRONHOFER A,et al.The
evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels [J].Acta Materialia,2003,51(16):4847-4862.
[60] BERECZ T,JENEI P,CSRA,et al.Determination
of dislocation density by electron backscatter diffraction and X-ray line profile analysis in ferrous lath martensite [J].Materials Characterization,2016,100(113):117-124.
[61] 何進(jìn),何建麗,陳飛.應(yīng)變量對(duì)WE43鎂合金微觀
組織演變及力學(xué)性能的影響 [J].鍛壓技術(shù),2020,45(6):182-189.
HE J,HE J L,CHEN F.Influence of strain on microstructure evolution and mechanical properties for WE43 magnesium alloy [J].Forging and Stamping Technology,2020,45(6):182-189.
[62] 陳歡,孫新軍,王小江.晶粒尺寸與應(yīng)變量對(duì)高錳
奧氏體鋼加工硬化行為的影響 [J].金屬熱處理,2018,43(11):31-37.
CHEN H,SUN X J,WNAG X J.Effect of grain size and strain on work hardening behavior of high manganese austenitic steel [J].Heat Treatment of Metals,2018,43(11):31-37.
[63] 陳銘森,韓靖,陳霞,等.不同應(yīng)變量對(duì)7A04鋁
合金包申格效應(yīng)的影響 [J].熱加工工藝,2015,44(6):53-55.
CHEN M S,HAN J,CHEN X,et al.Effect of strain capacities on Bauschinger effect of 7A04 aluminum alloy [J].Hot Working Technology,2015,44(6):53-55.
[64] JIANG J,JIANG F,ZHANG M,et al.Al3(Sc,Zr)
precipitation in deformed Al-Mg-Mn-Sc-Zr alloy:effect of annealing temperature and dislocation density [J].Journal of Alloys and Compounds,2020,831:154856.
[65] SAASTAMOINEN A,KAIJALAINEN A,PORTER D,
et al.The effect of finish rolling temperature and tempering on the microstructure,mechanical properties and dislocation density of direct-quenched steel [J].Materials Characterization,2018,139:1-10.
[66] ZAMANI M,DINI H,SVOBODA A,et al.A
dislocation density based constitutive model for as-cast Al-Si alloys:effect of temperature and microstructure [J].International Journal of Mechanical Sciences,2017,100(121):164-170.
[67] LEE W S,LIU C Y.The effects of temperature and
strain rate on the dynamic flow behaviour of different steels [J].Materials Science and Engineering:A,2006,426(1/2):101-113.
[68] GOETZ R L,SEMIATIN S L.The adiabatic correction
factor for deformation heating during the uniaxial compression test [J].Journal of Materials Engineering and Performance,2001,10(6):710-717.
[69] MATAYA M C,SACKSCHEWSKY V E.Effect of
internal heating during hot compression on the stress-strain behavior of alloy 304L [J].Metallurgical and Materials Transactions A,1994,25(12):2737-2752.
[70] GILBERT A, WILCOX B A, HAHN G T. The effect of strain rate on dislocation multiplication in polycrystalline molybdenum[J]. Philosophical Magazine, 1965, 12(117): 649-653.
[71] ROHITH P,SAINATH G,SRINIVASAN V S.Effect
of size,temperature and strain rate on dislocation density and deformation mechanisms in Cu nanowires [J].Physica B:Condensed Matter,2019,561:136-140.
[72] EL-AWADY J A.Unravelling the physics of size-
dependent dislocation-mediated plasticity [J].Nature Communications,2015,6(1):1-9.
[73] SHI J,ZIKRY M A.Grain size,grain boundary sliding,
and grain boundary interaction effects on nanocrystalline behavior [J].Materials Science and Engineering:A,2009,520(1/2):121-133.
[74] CHIA K,JUNG K,CONRAD H.Dislocation density
model for the effect of grain size on the flow stress of a Ti-15.2 at.% Mo β-alloy at 4.2-650K [J].Materials Science and Engineering:A,2005,409(1/2):32-38.
[75] CONRAD H.Grain-size dependence of the flow stress of Cu from millimeters to nanometers [J].Metallurgical and Materials Transactions A,2004,35(9):2681-2695.
[76] HANSEN N.Polycrystalline strengthening [J].
Metallurgical Transactions A,1985,16(12):2167-2190.
[77] SIM G D,KIM G,LAVENSTEIN S,et al.Anomalous
hardening in magnesium driven by a size-dependent tr ansition in deformation modes [J].Acta Materialia,2018,144:11-20.
[78] GRACIO J J.The double effect of grain size on the
work hardening behaviour of polycrystalline copper [J].Scripta Metallurgica et Materiallia,1994,31(4):487-489.
[79] GRACIO J J,F(xiàn)ERNANDES J V,SCHMITT J H.Effect
of grain size on substructural evolution and plastic behaviour of copper [J].Materials Science and Engineering:A,1989,118:97-105.
[80] MOMENI A,DEHGHANI K,EBRAHIMI G R.
Modeling the initiation of dynamic recrystallization using a dynamic recovery model [J].Journal of Alloys and Compounds,2011,509(39):9387-9393.
[81] AMIN H A,VOYIADJIS G Z.Effect of strain rate on
the dynamic hardness in metals [J].Journal of Engineering Materials and Technology,2007,129(4):505-512.
[82] 李周兵,沈健,閆亮明,等.應(yīng)變速率對(duì)7055鋁合
金顯微組織和力學(xué)性能的影響 [J].稀有金屬,2010,34(5):643-7.
LI Z B,SHEN J,YAN L M,et al.Influence of hot process strain rate on microstructures and tensile properties of 7055 aluminum alloy [J].Chinese Journal of Rare Metals,2010,34(5):643-647.
[83] ZHENG R,DU J P,GAO S,et al.Transition of
dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer [J].Acta Materialia,2020,198(1):35-46.
[84] PIETRZYK M,CSER L,LENARD J.Mathematical
and physical simulation of the properties of hot rolled products [M].Amsterdam:Elsevier Press,1999:85-104.
[85] LI P,LI S X,WANG Z G,et al.Fundamental factors on
formation mechanism of dislocation arrangements in cyclically deformed fcc single crystals [J].Progress in Materials Science,2011,56(3):328-377.
[86] ESTRIN Y,BRAASCH H,BRECHET Y.A dislocation
density based constitutive model for cyclic deformation [J].Journal of Engineering Materials and Technology,1996,118(4):441-447.
[87] SANDSTRM R,HALLGREN J.The role of creep in
stress strain curves for copper [J].Journal of Nuclear Materials,2012,422(1/2/3):51-57.
[88] ZHOU H,KONG Q P.The generation rate of
dislocations during creep evaluated by the method of dynamic internal friction [J].Scripta Materialia,1996,34(2):269-274.
[89] PIETRZYK M,LENARD J G.Deformation heating
during cold rolling of aluminum strips [J].Journal of Engineering Materials and Technology,1991,113(1):69-73.
[90] HE X,YAO Y.A dislocation density-based viscoplas
ticity model for cyclic deformation:application to P91 steel [J].International Journal of Applied Mechanics,2018,10(5):1850055.
[91] LI P,LI S X,WANG Z G,et al.Unified factor control
ling the dislocation evolution of fatigued face-centered cubic crystals [J].Acta Materialia,2017,129:98-111.
[92] ZECEVIC M,KNEZEVIC M.A dislocation density
based elasto-plastic self-consistent model for the prediction of cyclic deformation:application to AA6022-T4 [J].International Journal of Plasticity,2015,72:200-217.
[93] WU X M,WANG Z G,LI G Y.Cyclic deformation and
strain burst behavior of Cu-7at.% Al and Cu-16at.% Al single crystals with different orientations [J].Materials Science and Engineering:A,2001,314(1/2):39-47.
[94] PREUNER J,RUDNIK Y,BREHM H,et al.A
dislocation density based material model to simulate the anisotropic creep behavior of single-phase and two-phase single crystals [J].International Journal of Plasticity,2009,25(5):973-994.
[95] BERGSTRM Y.HALLN H.An improved
dislocation model for the stress-strain behaviour of polycrystalline α-Fe [J].Materials Science and Engineering,1982,55(1):49-61.
[96] KREYCA J F.State parameter based modelling of
stress-strain curves in aluminium alloys [D].Vienna:Vienna University of Technology,2017.
[97] ASHBY M F.The deformation of plastically non-
homogeneous materials [J].The Philosophical Magazine:A Journal of Theoretical Experimental and? Applied Physics,2006,21(170):399-424.
[98] KARHAUSEN K F,ROTERS F.Development and
application of constitutive equations for the multiple-stand hot rolling of Al-alloys [J].Journal of Materials Processing Technology,2002,123(1):155-166.
[99] PRINZ F B,ARGON A S.The evolution of plastic
resistance in large strain plastic flow of single phase subgrain forming metals [J].Acta Matalluriga 1984, 32(7):1021-1028.
[100] MONTHEILLET F,LURDOS O,DAMAMME G.A
grain scale approach for modeling steady-state discontinuous dynamic recrystallization [J].Acta? Materialia,2009,57(5):1602-1612.
[101] GOURDET S,MONTHEILLET F.Effects of
dynamic grain boundary migration during the hot compression of high stacking fault energy metals [J].Acta Materialia,2002,50(11):2801-2812.
[102] HUNTER A, PRESTON D L. Analytic model of dislocation density evolution in fcc polycrystals accounting for dislocation generation, storage, and dynamic recovery mechanisms[J]. International Journal of Plasticity, 2022, 151: 103178.
[103] ESTRIN Y. Dislocation-density-related
constitutive modeling[M]// KRAUSS A S.Unified constitutive laws of plastic deformation. New York:Academic Press Inc., 1996: 69-106.
[104] NABARRO F R N.Work hardening and dynamical
recovery of f.c.c.metals in multiple glide [J].Acta Metallurgica,1964,37(6):1521-1546.
[105] GOETZ R L,SEETHARAMAN V.Modeling
dynamic recrystallization using cellular automata [J].Scripta Materialia,1998,38(3):405-413.
[106] ESSMANN U,MUGHRABI H.Annihilation of
dislocations during tensile and cyclic deformation and limits of dislocation densities [J].Philosophical Magazine A,1979,40(6):731-756.
[107] SANDSTRM R,LAGNEBORG R.A controlling
factor for dynamic recrystallisation [J].Scripta Metallurgica,1975,9(1):59-66.
[108] ESTRIN Y, KUBIN L P. Plastic instabilities: phenomenology and theory[J]. Materials Science and Engineering: A, 1991, 137(15): 125-134.
[109] REYNE B, MANACH P Y, MOES N. Macroscopic consequences of Piobert-Lüders and Portevin-Le Chatelier bands during tensile deformation in Al-Mg alloys[J] Materials Science and Engineering: A, 2019, 746: 187-196.
[110] KUBIN L P, ESTRIN Y. Evolution of dislocation densities and the critical conditions for the Portevin-Le Chatelier effect[J]. Acta Metallurgica et Materialia, 1990, 38(5): 697-708.
[111] HART E W.Theory of the tensile test [J].Acta Metallurgica,1967,15(2):351-355.
[112] WANG Z,BEYERLEIN I,LESAR R.Plastic anisitro
py in fcc single crystals in high rate deformation [J].International Journal of Plasticity,2009,25(1):26-48.
[113] LI J,YI M,WU H,et al.Fine-grain-embedded dislocation-cell structures for high strength and ductility in additively manufactured steels [J].Materials Science? and Engineering:A,2020,790:139736.
[114] MUGHRABI H.Dislocation wall and cell structures
and long-range internal stress in deformation matal crystals [J].Acta Metallurgica,1983,31(9):1367-1379.
[115] MA A,ROTERS F.A constitutive model for fcc single
crystals based on dislocation densities and its application to uniaxial compression of aluminium single crystals [J].Acta Materialia,2004,52(12):3603-3612.
[116] 潘金生,仝健民,田民波.材料科學(xué)基礎(chǔ)(修訂版)[M].北京:清華大學(xué)出版社,2011:177-180.
PAN J S,TONG J M,TIAN M B.Fundamentals of materials science(revised) [M].Beijing:Tsinghua University Press,2011:177-180.
[117] ROTERS F,EISENLOHR P,HANTCHERLI L,et al.
Overview of constitutive laws,kinematics,homogenization and multiscale methods in crystal plasticity finite-element modeling:theory,experiments,applications [J].Acta Materialia,2010,58(4):1152-1211.
[118] WEBER F,SCHESTAKOW I,ROTERS F,et al.
Texture evolution during bending of a single crystal copper nanowire studied by EBSD and crystal plasticity finite element simulations [J].Advanced Engineering Materials,2008,10(8):737-741.
[119] HARDER J.A crystallographic model for the study of
local deformation processes in polycrystals [J].International Journal of Plasticity,1998,15(6):605-624.
[120] HESSELBARTH H W,GBEL I R.Simulation of
recrystallization by cellular automata [J].Acta Metallmater,1991,39(9):2135-2143.
[121] DING R,GUO Z X.Coupled quantitative simulation
of microstructural evolution and plastic flow during dynamic recrystallization [J].Acta Materialia,2001,49(16):3163-3175.
[122] MADEJ L,SITKO M,LEGWAND A,et al.
Development and evaluation of data transfer protocols in the fully coupled random cellular automata finite element model of dynamic recrystallization [J].Journal of Computational Science,2018,26:66-77.
[123] SITKO M,PIETRZYK M,MADEJ L.Time and
length scale issues in numerical modelling of dynamic recrystallization based on the multi space cellular automata method [J].Journal of Computational Science,2016,16:98-113.
[124] PAL S,GURURAJ K,MERAJ M,et al.Molecular
dynamics simulation study of uniaxial ratcheting behaviors for ultrafine-grained nanocrystalline nickel [J].Journal of Materials Engineering and Performance,2019,28(8):4918-4930.
[125] LI M,CHU W Y,GAO K W.Molecular dynamics
simulation of cross-slip and the intersection of dislocations in copper [J].Journal of Physics:Condensed Matter,2003,15(20):3391.
[126] YASHIRO K,NAITO M,TOMITA Y.Molecular
dynamics simulation of dislocation nucleation and motion at γ/γ′ interface in Ni-based superalloy [J].International Journal of Mechanical Sciences,2002,44(9):1845-1860.
[127] PEACH M,KOEHLER J S.The forces exerted on
dislocations and the stress fields produced by them [J].Physical Review,1950,80(3):436-439.
[128] BULATOV V,CAI W.Computer simulations of dislocations [M].Oxford:Oxford University Press,2006:196-240.
[129] SILLS R B,BERTIN N,AGHAEI A,et al.
Dislocation networks and the microstructural origin of
strain hardening [J].Physical Review Letters,2018,
121(8):085501.
[130] DEVINCRE B,HOC T,KUBIN L.Dislocation mean
free paths and strain hardening of crystals [J].Science,2008,320(5884):1745-1748.
[131] HUSSEIN A M,EL-AWADY J A.Quantifying
dislocation microstructure evolution and cyclic hardening in fatigued face-centered cubic single crystals [J].Journal of the Mechanics and Physics of Solids,2016,91:126-144.
[132] 陶正耀.材料強(qiáng)度及其影響因素[J].機(jī)械工程材料,1982(1):35-40.
TAO Z Y.Material strength and its influencing factors [J].Mechanical Engineering Materials,1982(1):35-40.
[133] REID C N,GILBERT A,ROSENFIELD A R.
Dislocation multiplication [J].Philosophical Magazine,1965,12(116):409-412.
[134] SHANTHRAJ P,ZIKRY M A.Dislocation density
evolution and interactions in crystalline materials [J].Acta Materialia,2011,59(20):7695-7702.
[135] SERAJZADEH S,TAHERI A K.Prediction of flow
stress at hot working condition [J].Mechanics Research Communications,2003,30(1):87-93.
[136] SAKAI T,JONAS J J.Overview no.35 dynamic
recrystallization:mechanical and microstructural considerations [J].Acta Metallurgica,1984,32(2):189-209.
[137] TAYLOR G I.Plastic strain in metals [J].The Journal of the Institute of Metals,1938,62:307-324.
[138] SELLARS C M,WHITEMAN J A.Recrystallization and grain growth in hot rolling [J].Metal Science,1979,13(3/4):187-194.
[139] ROBERTS W,AHLBLOM B.A nucleation criterion for dynamic recrystallization during hot working [J].Acta Metallurgica,1978,26(5):801-813.
[140] DING R,GUO Z X.Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization [J].Acta Materialia,2001,49(16):3163-3175.
[141] SEEGER A,DIEHL J,MADER S,et al.Work-hardening and work-softening of face-centred cubic metal crystals [J].Philosophical Magazine,1957,2(15):323-350.
[142] FAN H,WANG Q,EL-AWADY J A,et al.Strain rate dependency of dislocation plasticity [J].Nature Communications,2021,12(1):1-11.
[143] MA E.Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys [J].Nanostructured Materials,2006,58(4):49-53.
[144] MA E,ZHU T.Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J].Materials Today,2017,20(6):323-331.
Research progress of dislocation density evolution models
LEI Mingyu,WEN Bin
(State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao,Hebei 066004,China)
Abstract:
As an internal variable of microstructure,dislocation density is closely related to microstructure evolution and mechanical properties.During the process of plastic deformation of metal materials,the dislocation density will evolve.Therefore,the establishment of dislocation density evolution model is an important topic in the field of microstructure and mechanical properties of materials.In this review paper,the evolution of dislocation density and its physical mechanism are briefly introduced.The research progress of dislocation density evolution model is reviewed.The research status of numerical calculation method of dislocation density evolution is summarized.The influence law of dislocation density on mechanical properties is explained.Finally,the development trend of dislocation density evolution research is discussed in detail.
Keywords:
plastic deformation;dislocation density evolution model;numerical calculation method;microstructure;mechanical properties