張夢(mèng)壕 王久和 張玲 張雅靜 李建國(guó)
摘 要:
為解決直流微電網(wǎng)Buck變換器對(duì)低壓直流母線電壓調(diào)節(jié)能力弱的問題,本文提出了一種新的控制策略。該策略通過建立帶等效恒功率負(fù)載的Buck變換器的Brayton-Moser模型,構(gòu)建Buck變換器系統(tǒng)混合勢(shì)函數(shù),設(shè)計(jì)功率成形控制器。同時(shí),針對(duì)等效恒功率負(fù)載的負(fù)載功率未知問題,設(shè)計(jì)了功率觀測(cè)器實(shí)現(xiàn)對(duì)恒功率負(fù)載的負(fù)載功率進(jìn)行實(shí)時(shí)觀測(cè)。仿真結(jié)果表明,與PI雙閉環(huán)控制、外環(huán)PI內(nèi)環(huán)無源控制策略相比,本文所提出的控制策略能更好地提升Buck變換器對(duì)低壓直流母線電壓的動(dòng)態(tài)與穩(wěn)態(tài)調(diào)節(jié)性能。
關(guān)鍵詞:
Buck變換器;恒功率負(fù)載;混合勢(shì)函數(shù);Brayton-Moser模型;功率成形控制器;功率觀測(cè)器
中圖分類號(hào): TM46? 文獻(xiàn)標(biāo)識(shí)碼: A? DOI:10.3969/j.issn.1007-791X.2023.01.004
0 引言
微電網(wǎng)是由分布式電源、儲(chǔ)能設(shè)備、負(fù)載和變換器裝置等組成的一種小型發(fā)配電系統(tǒng)。根據(jù)電源的不同,微電網(wǎng)可分為直流微電網(wǎng)和交流微電網(wǎng)兩類。與交流微電網(wǎng)相比,直流微電網(wǎng)具有不需要無功功率、頻率和相位控制等優(yōu)點(diǎn)[1],使其獲得了廣泛應(yīng)用。常見的直流微電網(wǎng)系統(tǒng)[2]如圖1所示。
在直流微電網(wǎng)中,負(fù)載需要不同的電源電壓,對(duì)于低壓負(fù)載,需通過Buck變換器將高壓直流母線電壓變換到低壓直流母線電壓,以便為低壓負(fù)載供電,如圖1所示。圖1中Buck變換器低壓直流母線通過變換器連接負(fù)載,從而給負(fù)載供電,而連接負(fù)載的變換器在負(fù)反饋控制帶寬內(nèi)輸入端呈負(fù)阻特征,即輸入端呈現(xiàn)恒功率特性[3]。
因此,本文的直流微電網(wǎng)Buck變換器低壓直流母線側(cè)負(fù)載可等效為恒功率負(fù)載(Constant Power Load, CPL)[4]。CPL的負(fù)阻特性會(huì)導(dǎo)致低壓直流母線電壓的穩(wěn)定性下降,進(jìn)而影響了低壓負(fù)載的穩(wěn)定運(yùn)行。因此,需對(duì)帶CPL的直流微電網(wǎng)Buck變換器控制策略進(jìn)行深入研究,提高其對(duì)低壓直流母線電壓的動(dòng)態(tài)與穩(wěn)態(tài)調(diào)節(jié)性能。
文獻(xiàn)[5]將帶CPL的Buck變換器中的內(nèi)阻作為未知擾動(dòng),采用擴(kuò)張狀態(tài)觀測(cè)器對(duì)其進(jìn)行觀測(cè),再與無源控制器(Passivity-Based Controller, PBC)結(jié)合,從而解決帶CPL的Buck變換器中的內(nèi)阻引起的穩(wěn)態(tài)誤差問題。文獻(xiàn)[6]采用自適應(yīng)能量成形控制器解決CPL的負(fù)阻特性引起的系統(tǒng)直流母線電壓不穩(wěn)定的問題。文獻(xiàn)[7]提出了一種非線性邊界控制器來緩解CPL給DC-DC變換器帶來的不穩(wěn)定問題。文獻(xiàn)[8]針對(duì)CPL的負(fù)阻特性引起的穩(wěn)定性問題,設(shè)計(jì)了一種適用于帶CPL的Buck變換器的滑模占空比控制器,用于在較寬的負(fù)載變化范圍內(nèi)實(shí)現(xiàn)系統(tǒng)穩(wěn)定。文獻(xiàn)[9]將負(fù)載變換器視為CPL,針對(duì)其所具有的負(fù)電阻特性,采用模糊邏輯控制器確保Buck變換器在CPL變化后電壓調(diào)節(jié)下的系統(tǒng)穩(wěn)定性。
雖然上述文獻(xiàn)的研究解決了因CPL的負(fù)阻特性引起的變換器系統(tǒng)穩(wěn)定性問題,但所采用的非線性控制策略仍存在不足。例如,非線性邊界控制當(dāng)初始條件處于某個(gè)特殊區(qū)域時(shí),在瞬態(tài)響應(yīng)過程中會(huì)存在較大的過沖問題;滑模占空比控制存在高頻抖振問題;模糊控制缺乏系統(tǒng)性無法定義控制目標(biāo)問題。
對(duì)此,國(guó)內(nèi)外學(xué)者基于布雷頓-莫澤(Brayton-Moser,BM)模型,利用混合勢(shì)函數(shù)(Mixed Potential Function,MPF)理論分析系統(tǒng)的穩(wěn)定性[10-14]及穩(wěn)定條件,獲得了很好的效果,但沒有基于BM模型和MPF,研究進(jìn)一步提高系統(tǒng)動(dòng)態(tài)與穩(wěn)態(tài)性能的控制器[15-16]。為保證在穩(wěn)定性的基礎(chǔ)上,提高直流微電網(wǎng)Buck變換器系統(tǒng)低壓直流母線電壓的動(dòng)態(tài)與穩(wěn)態(tài)性能,本文基于BM模型和MPF,研究了一種新的控制器,稱之為功率成形控制器(Power-Shaping Controller,PSC);同時(shí),設(shè)計(jì)了CPL功率觀測(cè)器(Power Observer,PO),可實(shí)時(shí)觀測(cè)變化的CPL功率。PSC與PO的結(jié)合,可使直流微電網(wǎng)Buck變換器對(duì)低壓直流母線電壓具有很好的動(dòng)態(tài)調(diào)節(jié)性能。
1 直流微電網(wǎng)Buck變換器控制
1.1 直流微電網(wǎng)Buck變換器等效拓?fù)浣Y(jié)構(gòu)
對(duì)于圖1中Buck變換器,低壓母線側(cè)負(fù)載可等效為CPL(由直流負(fù)載,交流負(fù)載及變換器等設(shè)備組成),則直流微電網(wǎng)Buck變換器的等效拓?fù)浣Y(jié)構(gòu)如圖2所示。圖2中ubus1為高壓母線電壓(即變換器輸入電壓,由分布電源、交流電網(wǎng)及儲(chǔ)能設(shè)備提供),VT為開關(guān)管,D為二極管,L為電感器電感,C為電容器電容,CPL為等效恒功率負(fù)載,iL為流經(jīng)電感器的電流,低壓母線電壓ubus2亦為電容器兩端輸出電壓,iCPL為流經(jīng)CPL的電流。
2 仿真研究
2.1 仿真參數(shù)與模型
為證明本文所提出的控制策略的可行性,利用MATLAB/Simulink電力電子模塊等模塊搭建了帶CPL的Buck變換器控制系統(tǒng)仿真模型。仿真參數(shù)見表1。
表1中,對(duì)于PI+PBC控制器,PBC控制電流內(nèi)環(huán),PI控制電壓外環(huán),r為PBC的注入阻尼,kp為PI控制器的比例系數(shù),ki為PI控制器的積分系數(shù);對(duì)于PI雙閉環(huán)控制器,kop為電壓外環(huán)比例系數(shù),koi為電壓外環(huán)積分系數(shù),kip為電流內(nèi)環(huán)比例系數(shù),kii為電流內(nèi)環(huán)積分系數(shù)。
2.2 仿真結(jié)果
利用仿真模型對(duì)采用不同控制器的直流微電網(wǎng)Buck變換器系統(tǒng)在負(fù)載變化以及母線電壓(ubus1)變化兩種情況下進(jìn)行仿真研究。
2.2.1 負(fù)載變化時(shí)系統(tǒng)仿真結(jié)果
在直流微電網(wǎng)Buck變換器系統(tǒng)中采用PSC、PI+PBC和PI雙閉環(huán)三種不同控制器分別對(duì)系統(tǒng)進(jìn)行控制,當(dāng)系統(tǒng)達(dá)到穩(wěn)態(tài)后,首先,在0.4 s處負(fù)載功率下降500 W。接著,在0.6 s、0.8 s處負(fù)載功率依次增加500 W。最后,在1 s處負(fù)載功率再次下降500 W使得系統(tǒng)重新恢復(fù)到原來的穩(wěn)態(tài)。仿真結(jié)果如圖5所示。
2.2.2 母線電壓(ubus1)變化時(shí)系統(tǒng)仿真結(jié)果
當(dāng)系統(tǒng)達(dá)到穩(wěn)態(tài)后,首先,在0.4 s處ubus1由原來的400 V降為300 V。接著,在0.6 s、0.8 s處ubus1依次增加100 V使其達(dá)到400 V和500 V。最后,在1 s處ubus1重新恢復(fù)到起初的400 V。其仿真結(jié)果如圖6所示。
采用不同控制策略的直流微電網(wǎng)Buck變換器系統(tǒng)在負(fù)載變化以及母線電壓(ubus1)變化兩種情況下的仿真結(jié)果如圖5、圖6所示,相應(yīng)的動(dòng)態(tài)響應(yīng)指標(biāo)見表2。由表2可以看出,采用BM模型設(shè)計(jì)的控制器并結(jié)合功率觀測(cè)器的控制策略可以使得直流微電網(wǎng)Buck變換器有著更穩(wěn)定的性能,相比經(jīng)典的PI雙閉環(huán)控制和PI+PBC雙閉環(huán)控制策略而言,本文所提出的控制策略其動(dòng)態(tài)性能響應(yīng)沒有超調(diào),響應(yīng)迅速,其穩(wěn)態(tài)性能表現(xiàn)為輸出電壓和流經(jīng)電感器電流可以穩(wěn)定控制在期望值。
3 結(jié)論
本文對(duì)直流微電網(wǎng)環(huán)境下Buck變換器的控制策略進(jìn)行了研究,通過理論研究與仿真分析,得到以下結(jié)論:
1) 采用混合勢(shì)函數(shù),建立了直流微電網(wǎng)Buck變換器系統(tǒng)的Brayton-Moser模型;基于該模型,從功率的角度出發(fā)設(shè)計(jì)的功率成形控制器可使直流微電網(wǎng)Buck變換器對(duì)低壓直流母線電壓具有更好的動(dòng)態(tài)和穩(wěn)定調(diào)節(jié)性能。
2) 本文所設(shè)計(jì)的功率觀測(cè)器可對(duì)直流微電網(wǎng)Buck變換器不同的CPL功率進(jìn)行快速實(shí)時(shí)觀測(cè),配合功率成形控制器可使低壓直流母線電壓對(duì)CPL變化具有良好的魯棒性能。
本文所提的Buck變換器控制策略對(duì)直流微電網(wǎng)其他變換器控制策略研究具有參考價(jià)值。
參考文獻(xiàn)
[1] 苗中磊, 蔡逢煌, 王群興, 等.分布式直流微電網(wǎng)分級(jí)控制技術(shù)綜述[J]. 電源學(xué)報(bào),2019,17(6):115-127.MIAO Z L, CAI F H, WANG Q X, et al. Review of hierarchical control of distributed DC microgrid[J]. Journal of Power Supply, 2019,17(6):115-127.
[2] ZHENG C, DRAGICEVIC T, ZHANG J, et al. Composite robust quasi-sliding mode control of DC-DC Buck converter with constant power loads[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(2): 1455-1464.
[3] HARNEFORS L, WANG X F,YEPES A G,et al. Passivity-based stability assessment of grid-connected VSCs-an overview[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(1):116-125.
[4] KUMARA J, AGARWAL A, AGARWAL V, et al. A review on overall control of DC microgrids[J]. Journal of Energy Storage, 2019, 21: 113-138.
[5] CUI J, LI J, WANG J, et al. Application research of ESO in solving parasitic resistance in CPL system[C]//2018 IEEE International Conference of Safety Produce Informatization, Chongqing, China, 2018: 555-560.
[6] SINGH B, SINGH M. Adaptive energy shaping control of Buck converter feeding CPL in DC micro-grid system[C]//2021 IEEE 2nd International Conference on Smart Technologies for Power, Energy and Control,Bilaspur, India, 2021: 1-5.
[7] TU G, LI Y, XIANG J, et al. A nonlinear boundary controller for Buck converters feeding constant-power loads[C]// 2017 36th Chinese Control Conference, Dalian, China, 2017: 698-703.
[8] ZHAO Y, QIAO W, HA D, et al. A sliding-mode duty-ratio controller for DC/DC Buck converters with constant power loads[J]. IEEE Transactions on Industry Applications, 2014, 50(2): 1448-1458.
[9] Al-NUSSAIRI M K, BAYINDIR R, HOSSAIN E, et al. Fuzzy logic controller for DC-DC Buck converter with constant power load[C]//2017 IEEE 6th International Conference on Renewable Energy Research and Applications, San Diego, USA, 2017: 5-8.
[10] 厲澤坤, 孔力,裴瑋,等. 直流微電網(wǎng)大擾動(dòng)穩(wěn)定判據(jù)及關(guān)鍵因素分析[J].高電壓技術(shù),2019,45(12):3993-4002.LI Z K, KONG L, PEI W, et al. Analyses of stability criterion and key factors of DC microgrid under large disturbance[J].High Voltage Engineering, 2019,45(12):3993-4002.
[11] MU H, CHEN W, HE B, et al. Large signal stability analysis of multi-voltage level DC system[C]// 2021 IEEE 16th Conference on Industrial Electronics and Applications, Chengdu, China, 2021: 1040-1045.
[12] 厲澤坤,孔力,裴瑋,等.基于混合勢(shì)函數(shù)的下垂控制直流微電網(wǎng)大擾動(dòng)穩(wěn)定性分析[J].電網(wǎng)技術(shù),2018, 42(11): 3725-3734.LI Z K, KONG L, PEI W, et al. Large-disturbance stability analysis of droop-controlled DC microgrid based on mixed potential function[J]. Power System Technology,2018,42(11): 3725-3734.
[13] DENG W, PEI W, LI Z, et al. Research on intelligent autonomous control technology for low-voltage multi-terminal DC power distribution system[C]// 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration, Changsha, China, 2019: 12-17.
[14] 劉欣博,劉寧,宋曉通,等.基于交流恒功率負(fù)載特性的交直流混合微電網(wǎng)系統(tǒng)大信號(hào)穩(wěn)定性判據(jù)[J]. 高電壓技術(shù),2021,47(10):3441-3451.LIU X B, LIU N, SONG X T, et al. Large-signal stability criteria of AC/DC hybrid microgrid based on AC constant power loads[J].High Voltage Engineering,2021,47(10):3441-3451.
[15] 楊繼鑫,王久和,王勉,等.級(jí)聯(lián)Buck變換器混合無源控制與大信號(hào)穩(wěn)定性[J].電力系統(tǒng)及其自動(dòng)化學(xué)報(bào), 2021, 33(7):73-79.YANG J X, WANG J H, WANG M, et al. Hybrid passivity-based control of cascaded Buck converter and large-signal stability[J]. Proceedings of the CSU-EPSA, 2021,33(7): 73-79.
[16] 王久和,王勉,吳學(xué)智,等.直流分布式電源系統(tǒng)穩(wěn)定性判據(jù)研究綜述[J].發(fā)電技術(shù),2020,41(2):175-185.WANG J H, WANG M, WU X Z, et al. Review of stability criteria study for direct current distributed power system[J]. Power Generation Technology, 2020,41(2):175-185.
[17] BRAYTON R K, MOSER J K. A theory of nonlinear networks-I[J]. Quarterly of Applied Mathematics, 1964, 22: 1-33.
[18] KOSARAJU K C, CUCUZZELLA M, SCHERPEN J M A, et al. Differentiation and passivity for control of Brayton-Moser systems[J]. IEEE Transactions on Automatic Control, 2021, 66(3): 1087-1101.
[19] GARCIA-CANSECO E, JELTSEMA D, ORTEGA R, et al. Power-based control of physical systems[J]. Automatica, 2010, 46(1): 127-132.
[20] BLANKENSTEIN G. Power balancing for a new class of non-linear systems and stabilization of RLC circuits[J]. International Journal of Control, 2005, 78(3): 159-171.
[21] 王久和.電能變換器及其無源控制[M].北京:科學(xué)出版社, 2014: 156-162.WANG J H. Power converter and passivity-based control[M]. Beijing:Science Press,2014: 156-162.
[22] 賀偉.電力電子系統(tǒng)的無源性和抗干擾控制理論與應(yīng)用研究[D].南京:東南大學(xué),2018.HE W. Research on passivity and disturbance rejection based control theory and application for power electronic systems[D]. Nanjing: Southeast University, 2018.
Control strategy of Buck converter in DC microgrid
based on Brayton-Moser model
ZHANG Menghao1, WANG Jiuhe1, ZHANG Ling2, ZHANG Yajing1, LI Jianguo1
(1.School of Automation, Beijing Information Science and Technology University,Beijing 100192, China;
2.School of Architecture,Yanching Institute of Technology,Sanhe,Hebei 065201,China)
Abstract:
To solve the problem that the Buck converter in DC microgrid is weak in regulating the voltage of low voltage DC bus, a new control strategy is proposed in this paper. By establishing the Brayton-Moser model of Buck converter with equivalent constant power load in this strategy, the mixed potential function of the Buck converter system is constructed, and the power forming controller is designed. At the same time, a power observer is designed to observe the unknown load power of equivalent constant power load power in real time. The simulation results show that compared with PI double closed-loop control and PI inner loop passivity-based control strategy,the control strategy proposed in this paper can improve the dynamic and steady adjusting performance of Buck converter to low voltage DC bus voltage better.
Keywords:
Buck converter;constant power load; mixed potential function;Brayton-Moser model;power shaping controller;power observer