孫政,賴忠曉,趙曉敏,江志利,2,陳光友,2,馬志卿,2
渭北旱塬蘋果病蟲害全程生物防控技術(shù)應(yīng)用效果評(píng)價(jià)
1西北農(nóng)林科技大學(xué)植物保護(hù)學(xué)院,陜西楊凌 712100;2陜西省生物農(nóng)藥工程技術(shù)研究中心,陜西楊凌 712100
【目的】制約我國蘋果產(chǎn)業(yè)綠色發(fā)展的關(guān)鍵問題之一在于對(duì)其病蟲害綠色防控技術(shù)較為欠缺。本研究對(duì)已構(gòu)建的渭北旱塬蘋果病蟲害全程生物防控技術(shù)的應(yīng)用效果進(jìn)行綜合評(píng)價(jià),為該技術(shù)體系的推廣提供依據(jù)?!痉椒ā?019與2020年連續(xù)兩年在西北農(nóng)林科技大學(xué)旱塬生態(tài)農(nóng)業(yè)科技試驗(yàn)示范站(渭南市澄城縣)的蘋果園,設(shè)置生物防控處理區(qū)和常規(guī)防控處理區(qū),分別采用病蟲害全程生物防控技術(shù)(自每年3月起至11月底,根據(jù)病蟲害發(fā)生情況,全部采用生物農(nóng)藥處理)和當(dāng)?shù)噩F(xiàn)行的以化學(xué)農(nóng)藥為主的防治技術(shù),測定蘋果的產(chǎn)量、品質(zhì)并調(diào)查果園天敵昆蟲發(fā)生動(dòng)態(tài),并由第三方機(jī)構(gòu)檢測蘋果葉片、果實(shí)及果園土壤中的農(nóng)藥殘留。【結(jié)果】采用全程生物防控技術(shù)果園2019與2020年的蘋果產(chǎn)量分別為51 585和53 639 kg·hm-2,與常規(guī)防控果園并無顯著差異;全程生物防控果園蘋果的果型、硬度與可食率等一般物理性狀與常規(guī)防控果園無顯著差異,但其單果質(zhì)量優(yōu)于常規(guī)防控果園產(chǎn)出的蘋果,兩年分別達(dá)到了342.89和377.89 g;2019年,全程生物防控果園蘋果可溶性固形物、pH、Vc含量及可溶性糖含量均顯著高于常規(guī)防控果園蘋果,而可滴定酸含量顯著低于常規(guī)防控果園蘋果,各項(xiàng)指標(biāo)分別為17.06%、4.69、9.23 mg/100 g、16.60%和0.26%,兩年的結(jié)果表現(xiàn)出相似性和一致性;兩年間全程生物防控果園的蘋果果實(shí)、蘋果葉片和土壤中均未發(fā)現(xiàn)農(nóng)藥殘留,而在常規(guī)防控果園中檢測到戊唑醇、高效氯氟氰菊酯、毒死蜱等多種化學(xué)農(nóng)藥殘留;此外全程生物防控果園天敵昆蟲數(shù)量顯著高于常規(guī)防控果園天敵昆蟲數(shù)量。以七星瓢蟲為例,在2019年5月24日,全程生物防控果園七星瓢蟲為1.5頭/梢,而常規(guī)防控果園僅0.5頭/梢。且全程生物防控果園天敵昆蟲種群存在時(shí)間比常規(guī)防控果園長。2019年5月3日至7月12日,全程生物防控果園七星瓢蟲持續(xù)出現(xiàn)71 d,而常規(guī)防控果園僅出現(xiàn)50 d?!窘Y(jié)論】采用全程生物防控技術(shù)果園的蘋果產(chǎn)量與常規(guī)防控果園并無顯著差異,但蘋果品質(zhì)更好,無農(nóng)藥殘留,且天敵昆蟲(七星瓢蟲、異色瓢蟲和草蛉)數(shù)量更多。該技術(shù)體系表現(xiàn)出良好的經(jīng)濟(jì)、環(huán)境和生態(tài)效益,且果品質(zhì)量達(dá)到食品安全的要求,可為有機(jī)蘋果生產(chǎn)提供技術(shù)參考,具有進(jìn)一步推廣應(yīng)用價(jià)值。
有機(jī)蘋果;生物防控;食品安全;生物農(nóng)藥
【研究意義】蘋果是我國最重要的落葉果樹之一。2020年,我國蘋果種植面積達(dá)191.2萬公頃,總產(chǎn)量4 050.1萬噸,分別占世界總種植面積和總產(chǎn)量的41.4%和46.8%,均居世界首位[1]。目前,我國蘋果病蟲害防控仍以化學(xué)防治為主,農(nóng)藥殘留問題較為突出,嚴(yán)重影響果園生態(tài)環(huán)境及果品質(zhì)量[2-4]。因此,建立并推廣應(yīng)用以生物農(nóng)藥為主的蘋果病蟲害全程生物防控技術(shù)體系,有助于我國蘋果產(chǎn)業(yè)的綠色發(fā)展。【前人研究進(jìn)展】蘋果病蟲害的管理一直受到廣泛重視,其種類較多、危害嚴(yán)重、防治困難,常見的包括腐爛病、輪紋病、褐斑病、斑點(diǎn)落葉病、銹病、蚜蟲類(蘋果黃蚜、蘋果瘤蚜和蘋果綿蚜)、葉螨類(山楂葉螨、二斑葉螨和蘋果全爪螨)、金紋細(xì)蛾()、食心蟲類(桃小食心蟲、梨小食心蟲和蘋果蠹蛾)及卷葉蛾類(蘋褐帶卷蛾、頂梢卷葉蛾與黃斑卷葉蛾)等[5-7]。對(duì)上述病蟲害的防治,目前仍然以化學(xué)農(nóng)藥為主[8-10],且用量基本呈逐年增長態(tài)勢[11]。隨著食品安全、環(huán)境安全和國家發(fā)展戰(zhàn)略的推進(jìn),對(duì)農(nóng)業(yè)投入品的種類及用量提出了更高的要求,尤其是在果蔬、茶葉、中草藥等經(jīng)濟(jì)作物生產(chǎn)中,對(duì)綠色、安全、有機(jī)的要求更為嚴(yán)苛。為提高蘋果生產(chǎn)的安全性,國內(nèi)外對(duì)蘋果病蟲害綠色防控技術(shù)體系開展了大量研究。如,以苦參堿等植物源農(nóng)藥與氯蟲苯甲酰胺等低毒化學(xué)農(nóng)藥替換毒死蜱等高毒農(nóng)藥[12];“科學(xué)監(jiān)測+明確對(duì)象+找準(zhǔn)適期+精準(zhǔn)選藥+器械合理”的蘋果園農(nóng)藥精準(zhǔn)高效使用技術(shù)新模式可減少蘋果園施藥次數(shù)與農(nóng)藥的使用量[13];以農(nóng)業(yè)、物理、生物防治為主,化學(xué)防治為輔的蘋果全生育期綠色防控技術(shù),可減少化學(xué)農(nóng)藥的使用[14-15];使用碳酸氫鉀、硅酸鉀等無機(jī)鹽替換常規(guī)有機(jī)殺菌劑防治蘋果黑星病與白粉病[16];在有機(jī)蘋果園中間作開花植物可保護(hù)害蟲天敵[17-18],采用物理隔離、害蟲監(jiān)測系統(tǒng)、昆蟲不育以及交配破壞等綠色防控技術(shù)等[19-21]。進(jìn)一步分析不難發(fā)現(xiàn),上述研究僅僅是對(duì)某一種或幾種病蟲害施行生物防治或采用生物農(nóng)藥,而對(duì)于整體生產(chǎn)過程中的病蟲害防治并未建立系統(tǒng)的防控技術(shù)體系,蘋果中仍然存在化學(xué)農(nóng)藥殘留問題[22]。鑒于上述,針對(duì)化學(xué)農(nóng)藥殘留問題,有必要加快蘋果園主要病蟲害非化學(xué)防控技術(shù)體系的構(gòu)建,以確保蘋果質(zhì)量安全。渭北旱塬地區(qū)屬于黃土高原蘋果產(chǎn)區(qū),其特殊的下墊面條件和氣候特點(diǎn)使得該地區(qū)成為我國優(yōu)質(zhì)蘋果生產(chǎn)區(qū)之一,極具有機(jī)蘋果生產(chǎn)潛力[23]。筆者研究室前期以陜西省渭南市澄城縣西北農(nóng)林科技大學(xué)旱塬生態(tài)農(nóng)業(yè)科技試驗(yàn)示范站的蘋果園為試驗(yàn)區(qū)域,調(diào)查明確了該區(qū)域蘋果主要病蟲害為山楂葉螨、蘋果黃蚜、桑天牛()以及銹病,并通過室內(nèi)外試驗(yàn)篩選出了一批高效生物源農(nóng)藥,初步構(gòu)建了蘋果園病蟲害全程生物防控技術(shù)體系,達(dá)到了較為滿意的防治效果[24]?!颈狙芯壳腥朦c(diǎn)】前期雖然從病蟲害防治的角度評(píng)價(jià)了所建立蘋果病蟲害全程生物防控技術(shù)體系的效果,但其綜合應(yīng)用效益尚不明確,其可行性以及應(yīng)用前景仍需進(jìn)一步評(píng)估。因此,本研究對(duì)該防控技術(shù)下的蘋果產(chǎn)量、果實(shí)品質(zhì)、農(nóng)藥殘留及果園昆蟲天敵種群變化等方面進(jìn)行考查和綜合分析。【擬解決的關(guān)鍵問題】通過與常規(guī)化學(xué)防控果園的比對(duì),綜合性地研判所構(gòu)建的蘋果園病蟲害全程生物防控技術(shù)體系的實(shí)際應(yīng)用效果,包括經(jīng)濟(jì)、環(huán)境和生態(tài)效益,為該技術(shù)體系的進(jìn)一步完善及推廣應(yīng)用提供依據(jù)。
西北農(nóng)林科技大學(xué)旱塬生態(tài)農(nóng)業(yè)科技試驗(yàn)示范站,位于陜西省渭南市澄城縣吳坡村,海拔525 m,年平均氣溫12.5℃,≥10℃的積溫3 935.6℃,年降雨量平均為532.8 mm,無霜期210 d,年日照時(shí)數(shù)為2 547 h。
試驗(yàn)地果園占地0.33 hm2,選擇試驗(yàn)地內(nèi)長勢一致的蘋果樹,品種為‘煙富三號(hào)’,樹齡為7年,株行距3 m×4 m。
蘋果主要病蟲害全程生物防控技術(shù)方案:3月中上旬,以施用劑量為9—12 L·hm-2的99%礦物油乳油和4.5—6 L·hm-2的0.3%苦參堿乳油混用進(jìn)行春季清園;4月下旬,施用劑量為3 333 mL·hm-2的0.5%小檗堿水劑和1.2—1.8 L·hm-2植物免疫蛋白水劑混用(含量)預(yù)防蘋果銹??;5月至6月上旬,施用劑量為3 333 mL·hm-2的0.3%苦參堿水劑或0.5%藜蘆堿可溶液劑防治蘋果黃蚜,施用劑量為3 333 mL·hm-2的0.5%小檗堿水劑和植物免疫蛋白混用防治蘋果銹?。?月中旬至7月下旬,施用劑量為3 333 mL·hm-2的0.3%苦參堿水劑或0.5%藜蘆堿可溶液劑防治山楂葉螨,施用濃度為1.25 g·L-1的5%除蟲菊素乳油注干防治桑天牛幼蟲;8月份根據(jù)山楂葉螨和桑天牛幼蟲危害情況可考慮二次施藥;11月上旬,以施用劑量為9—12 L·hm-2的99%礦物油乳油和4.5—6 L·hm-2的0.3%苦參堿乳油混用進(jìn)行秋季清園。上述用藥均由楊凌馥稷生物科技有限公司提供,除防治桑天牛幼蟲采用注干法之外,其余均采用常量噴霧。
蘋果主要病蟲害常規(guī)防控技術(shù)方案(參考當(dāng)?shù)噩F(xiàn)行防控方案):3月中上旬,以施用劑量為30 L·hm-2的29%石硫合劑水劑(購自陜西上格之路生物科學(xué)有限公司)進(jìn)行春季清園;4月下旬,以施用劑量為0.72—0.9 L·hm-2的10%苯醚甲環(huán)唑水乳劑(購自陜西標(biāo)正作物科學(xué)有限公司)和2.25—3 L·hm-2的45%戊唑·多菌靈水分散粒劑(購自陜西億田豐作物科技有限公司)預(yù)防蘋果銹病,待新梢長至5—10 cm以施用劑量為2 571—3 600 mL·hm-2的25%多效唑懸浮劑(購自上海禾本藥業(yè)股份有限公司)每 10 d噴一次,共3次,調(diào)節(jié)植物生長;5月至6月上旬,以施用劑量為225—360 mL·hm-2的10%啶蟲脒微乳劑(購自陜西省蒲城美爾果農(nóng)化有限責(zé)任公司)、502.5—622.5 mL·hm-2的40%毒死蜱乳油(購自河南遠(yuǎn)見農(nóng)業(yè)科技有限公司)和1.8—2.25 L·hm-2的20%氰戊菊酯乳油(購自湖南農(nóng)大海特農(nóng)化有限公司)防治蘋果黃蚜,以施用劑量為0.72—0.9 L·hm-2的10%苯醚甲環(huán)唑水乳劑和2.25—3 L·hm-2的45%戊唑·多菌靈水分散粒劑預(yù)防蘋果銹病;6月中旬至7月下旬,以施用劑量為0.6—0.8 L·hm-2的15%噠螨靈乳油(購自山東恒利達(dá)生物科技有限公司)和1.2 L·hm-2的5%高效氯氟氰菊酯水乳劑(購自河北威遠(yuǎn)生物化工有限公司)防治山楂葉螨;8月份根據(jù)山楂葉螨危害情況可考慮二次施藥;11月上旬,以0.9 L·hm-2的25%戊唑醇水乳劑(購自陜西標(biāo)正作物科學(xué)有限公司)進(jìn)行秋季清園。上述病蟲害的防控均采用常量噴霧。
1.3.1 蘋果產(chǎn)量測定 參照王秋萍[25]果樹測產(chǎn)方法進(jìn)行蘋果產(chǎn)量測定。
1.3.2 蘋果主要品質(zhì)指標(biāo)測定 單果質(zhì)量測定:隨機(jī)取10個(gè)蘋果,分別用電子天平稱量,計(jì)算平均單果質(zhì)量(g)。
果型指數(shù)測定:隨機(jī)取10個(gè)蘋果,用游標(biāo)卡尺分別測量最大橫徑(cm)和縱徑(cm),以此計(jì)算果型指數(shù),果型指數(shù)=縱徑?橫徑。
可食率測定:隨機(jī)取10個(gè)蘋果,先稱量單個(gè)蘋果整體質(zhì)量,去除果皮、果核后再次稱量,可食率(%)=去皮去核后質(zhì)量?單個(gè)果實(shí)質(zhì)量。
果實(shí)硬度測定:參照國家農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn)NY/T 2316—2013《蘋果品質(zhì)指標(biāo)評(píng)價(jià)規(guī)范》中果實(shí)硬度測定方法[26],采用Y-3果實(shí)硬度計(jì)測定。
可溶性固形物含量測定:取5 g蘋果樣品放入研缽中磨碎后,放置離心機(jī)離心(4 000 r/min,10 min)后取汁液,用手持式折光儀測定經(jīng)過離心后的蘋果汁液,直接讀數(shù),3次重復(fù),取平均值。
可滴定酸含量測定:參照國家標(biāo)準(zhǔn)GB/T 12456— 2008《食品中總酸的測定》中氫氧化鈉滴定法測定[27]。
抗壞血酸(VC)含量測定:參照國家標(biāo)準(zhǔn)GB/T 5009.86—2016《食品安全國家標(biāo)準(zhǔn)—食品中抗壞血酸的測定》中2,6-二氯靛酚滴定法測定[28]。
可溶性糖含量測定:參照國家農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn)NY/T 2742—2015《水果及制品中可溶性糖的測定》中3,5-二硝基水楊酸比色法測定[29]。
1.3.3 農(nóng)藥殘留檢測 在全程生物防控和常規(guī)防控蘋果園內(nèi)按5點(diǎn)取樣法掛牌標(biāo)記5株果樹作為采摘樣本株,每樣本株果樹隨機(jī)采2個(gè)蘋果和10片蘋果葉片,在每樣本株樹盤周圍20 cm范圍內(nèi)隨機(jī)挖取0.1 kg深度為0—5 cm處的土壤。2019年將所有樣本委托江蘇安舜技術(shù)服務(wù)有限公司進(jìn)行農(nóng)藥殘留檢測,檢測項(xiàng)目為465項(xiàng)化學(xué)農(nóng)藥。2020年委托蘇州歐陸分析技術(shù)服務(wù)有限公司進(jìn)行農(nóng)藥殘留檢測,檢測項(xiàng)目為461項(xiàng)化學(xué)農(nóng)藥。
1.3.4 果園天敵昆蟲調(diào)查 分別在全程生物防控和常規(guī)防控蘋果園調(diào)查,在園內(nèi)按5點(diǎn)取樣法隨機(jī)選擇5株果樹,每株果樹按東、南、西、北、中5個(gè)方向掛牌標(biāo)記調(diào)查,每個(gè)方向隨機(jī)選擇一根枝條,按從上至下的順序調(diào)查枝條上活動(dòng)的天敵昆蟲種類和數(shù)量。調(diào)查時(shí)間分別為2019年4月12日至2019年10月1日,2020年5月20日至2020年9月2日,每7 d調(diào)查一次。
1.3.5 數(shù)據(jù)處理 數(shù)據(jù)均采用Microsoft Excel軟件整理,用SPSS軟件進(jìn)行統(tǒng)計(jì)分析,Origin 2018軟件作圖。
全程生物防控蘋果園(簡稱生防果園)和常規(guī)防控蘋果園(簡稱常規(guī)果園)兩種不同管理模式的蘋果產(chǎn)量測定結(jié)果見表1,可以看出,全程生物防控蘋果園和常規(guī)防控蘋果園產(chǎn)量接近,無顯著差異。
表1 兩種防控技術(shù)果園的蘋果產(chǎn)量
數(shù)據(jù)后標(biāo)有相同小寫字母表示差異不顯著The same lowercases after the data indicate no significant difference (Student’s-test,<0.05)
WBTAP:蘋果病蟲害全程生物防控技術(shù)whole-process biological management technology of apple pests;CCTAP:常規(guī)防控技術(shù)conventional chemical management technology of apple pests。下同The same as below
蘋果品質(zhì)是決定市場競爭力的主要因素。外觀上以果型指數(shù)和單果質(zhì)量作為評(píng)價(jià)要素;以果實(shí)硬度作為儲(chǔ)藏評(píng)價(jià)要素;營養(yǎng)風(fēng)味上常以可滴定酸、可溶性固形物及VC含量作為評(píng)價(jià)要素。
于2019和2020年測定了蘋果果實(shí)的一般物理性狀,結(jié)果見表2。以2019年數(shù)據(jù)為例,全程生物防控果園的果型、果型指數(shù)、果實(shí)硬度、單果質(zhì)量和可食率分別為橢圓形、0.85、11.76 kg·cm-2、342.89 g和85.07%;而常規(guī)防控果園蘋果的各項(xiàng)指標(biāo)對(duì)應(yīng)為橢圓形、0.86、10.28 kg·cm-2、277.73 g和82.64%;其中,僅單果質(zhì)量存在顯著差異,即全程生物防控果園蘋果單果質(zhì)量顯著大于常規(guī)防控果園蘋果。
于2019和2020年測定了蘋果主要品質(zhì)指標(biāo),結(jié)果見表3。以2019年數(shù)據(jù)為例,全程生物防控果園蘋果的可溶性固形物、pH、Vc含量、可溶性糖含量和可滴定酸含量品質(zhì)指標(biāo)分別為17.06%、4.69、9.23 mg/100 g、16.60%和0.26%,而常規(guī)防控果園蘋果的各項(xiàng)指標(biāo)對(duì)應(yīng)為14.78%、3.77、6.71 mg/100 g、12.61%和0.35%;全程生物防控果園蘋果的可滴定酸含量顯著低于常規(guī)防控果園蘋果,其他各項(xiàng)品質(zhì)指標(biāo)均顯著高于常規(guī)防控果園蘋果。兩年的結(jié)果均顯示全程生物防控果園蘋果和常規(guī)防控果園蘋果在主要品質(zhì)指標(biāo)上均存在顯著差異,且兩年的結(jié)果表現(xiàn)出相似性和一致性。
表2 兩種防控技術(shù)果園的蘋果一般物理性狀比較
*:差異顯著significant difference (Student’s-test,<0.05)。下同The same as below
表3 兩種防控技術(shù)果園的蘋果品質(zhì)指標(biāo)比較
于2019和2020年對(duì)全程生物防控和常規(guī)防控果園蘋果的果肉、葉片及土壤分別進(jìn)行了化學(xué)農(nóng)藥殘留檢測,結(jié)果表明全程生物防控果園的蘋果果實(shí)、葉片和土壤中均未發(fā)現(xiàn)農(nóng)藥殘留(表4)。常規(guī)防控果園2019和2020年的蘋果葉片及土壤中均有化學(xué)農(nóng)藥殘留,2019年蘋果果肉中無農(nóng)藥殘留,但2020年的蘋果果肉樣本中存在農(nóng)藥殘留(表5)。
于2019和2020年分別調(diào)查全程生物防控果園和常規(guī)防控果園的天敵昆蟲種類及動(dòng)態(tài),結(jié)果見圖1和圖2。由圖1可以看出,全程生物防控果園和常規(guī)防控果園天敵昆蟲種類無差別,但昆蟲天敵數(shù)量存在差異。全程生物防控果園天敵昆蟲數(shù)量顯著高于常規(guī)防控果園天敵昆蟲數(shù)量。2019年5月24日,全程生物防控果園七星瓢蟲、異色瓢蟲和草蛉分別為1.5、0.5和0.2頭/梢,而常規(guī)防控果園分別為0.5、0.3和0頭/梢。全程生物防控果園天敵昆蟲存在時(shí)間比常規(guī)防控果園長。2019年,全程生物防控果園七星瓢蟲5月3日出現(xiàn),7月12日消失,持續(xù)時(shí)間為71 d;常規(guī)防控果園七星瓢蟲5月3日出現(xiàn),6月21日消失,持續(xù)時(shí)間為50 d;全程生物防控果園異色瓢蟲4月26日出現(xiàn),8月9日消失,持續(xù)時(shí)間為106 d,常規(guī)防控果園異色瓢蟲5月3日出現(xiàn),6月21日消失,持續(xù)時(shí)間為50 d。
表4 全程生物防控果園農(nóng)藥殘留檢測
檢出限均為0.010 mg·kg-1The detection limit is 0.010 mg·kg-1。表5同The same as Table 5
表5 常規(guī)防控果園農(nóng)藥殘留檢測
最大殘留限量來源于中華人民共和國國家標(biāo)準(zhǔn)GB 2763—2021《食品安全國家標(biāo)準(zhǔn)—食品中農(nóng)藥最大殘留限量》[30],由于標(biāo)準(zhǔn)中并未區(qū)分果肉與植株葉片,故均采用此標(biāo)準(zhǔn);土壤無相關(guān)標(biāo)準(zhǔn)
The MRLs are derived from the “National food safety standard - Maximum residue limits for pesticides in food” (GB 2763—2021, National Standard of the People’s Republic of China)[30]. Since pulp and plant leaf are not distinguished in the standard, this standard is adopted for both. No relevant standards were found for soil
由圖2可以看出,2020年的結(jié)果與2019年相似,全程生物防控果園和常規(guī)防控果園天敵昆蟲種類無差別,但全程生物防控果園天敵昆蟲數(shù)量比常規(guī)防控果園天敵昆蟲數(shù)量要高,天敵昆蟲存在時(shí)間長。
蘋果品質(zhì)是決定市場競爭力的主要因素,主要有感官品質(zhì)、理化與營養(yǎng)品質(zhì)和加工品質(zhì)3個(gè)方面,感官品質(zhì)主要包括單果質(zhì)量、果形指數(shù)、果皮顏色和香氣成分含量等;理化與營養(yǎng)品質(zhì)指標(biāo)主要包括Vc、可溶性固形物、可溶性糖等;加工品質(zhì)指標(biāo)主要包括果實(shí)硬度、出汁率和可食率等[31]。本研究發(fā)現(xiàn)生物防控果園的有機(jī)蘋果單果質(zhì)量、Vc含量、可溶性糖含量、可溶性固形物含量、pH均顯著高于常規(guī)蘋果,而有機(jī)蘋果可滴定酸含量顯著低于常規(guī)蘋果。由此表明全程生物防控技術(shù)可有效改善蘋果果實(shí)品質(zhì)。另外,農(nóng)藥殘留問題涉及到食品安全性問題,經(jīng)檢驗(yàn),全程生物防控果園的蘋果、葉片及土壤均無化學(xué)農(nóng)藥殘留,果品健康、綠色、優(yōu)質(zhì)?,F(xiàn)有文獻(xiàn)暫無關(guān)于使用生物農(nóng)藥改善蘋果品質(zhì)的報(bào)道,但在其他農(nóng)作物上有相關(guān)報(bào)道。劉新社等[32]研究表明,蛇床子素、枯草芽孢桿菌()和哈茨木霉()等能夠提高黃瓜的可溶性固形物、可溶性總糖和Vc含量,顯著改善黃瓜品質(zhì);徐靜等[33]研究表明,使用6.003%的氨基·蕓苔素內(nèi)酯水劑使芒果可溶性固形物含量、含糖量和Vc含量增加,降低了可滴定酸含量,顯著改善了芒果果實(shí)品質(zhì);Xiong等[34]研究表明,苦參堿能提高番茄風(fēng)味及改善果實(shí)品質(zhì);Sharma等[35]使用高嶺土顆粒劑防治蘋果黑星病和白粉病,使發(fā)病率分別降低了87% 與78%,同時(shí)顯著改善了果實(shí)性狀,蘋果硬度、含鈣量、可溶性固形物和Vc含量分別提高了35.4%、49.9%、10.5%和10.8%。綜上,對(duì)蘋果病蟲害采用全程生物防控技術(shù),可有效改善其品質(zhì),且無農(nóng)藥殘留。
A:七星瓢蟲Coccinella septempunctata;B:異色瓢蟲Harmonia axyridis;c:草蛉Chrysopa。圖2同The same as Fig. 2
圖2 2020年兩種防控技術(shù)果園天敵昆蟲種群動(dòng)態(tài)
化學(xué)農(nóng)藥過量使用及殘留均會(huì)導(dǎo)致果園生態(tài)環(huán)境惡化,而生物防控可有效改善果園生態(tài)環(huán)境。如,傅麗君[36]研究發(fā)現(xiàn),在枇杷園使用殺滅菊酯、敵百蟲、吡蟲啉防治蚜蟲后草蛉與瓢蟲幼蟲也遭受到了毀滅性的打擊;化學(xué)農(nóng)藥不合理的使用還會(huì)導(dǎo)致土壤與地下水的污染,從而對(duì)人類以及水生生物產(chǎn)生潛在的毒性危害[37]。肖云麗等[38]研究表明,采用生物防控果園的天敵數(shù)量高于化學(xué)防治果園,在一定程度上可降低害蟲危害;果園種植紫花苜蓿能促進(jìn)天敵昆蟲繁育和有機(jī)肥積累[39]。本研究中,經(jīng)第三方檢測,全程生物防控果園果實(shí)、蘋果葉片、土壤均無農(nóng)藥殘留,且全程生物防控果園的天敵昆蟲數(shù)量高于常規(guī)防控果園,天敵昆蟲存在時(shí)間長于常規(guī)防控果園,表明全程生物防控對(duì)生態(tài)環(huán)境友好,符合綠色發(fā)展理念。綜上,本研究實(shí)施的全程生物防控技術(shù)可顯著提高果園的生態(tài)效益和環(huán)境效益。
本研究中供試實(shí)驗(yàn)地未發(fā)現(xiàn)蘋果斑點(diǎn)落葉病、蘋果腐爛病、食心蟲類等其他重要病蟲害,僅涉及到蘋果銹病、蘋果黃蚜、山楂葉螨和蘋果桑天牛的防控。已有文獻(xiàn)顯示,50%木焦油涂膜劑防治蘋果腐爛病具較高防治效果[40];0.3%丁子香酚可溶液劑對(duì)蘋果斑點(diǎn)落葉病具有良好的抑菌活性,5%香芹酚水劑對(duì)接種斑點(diǎn)落葉病菌的葉片有較好的保護(hù)效果[41];性誘劑對(duì)蘋果食心蟲具有良好的誘集防治效果[42]。因此,本技術(shù)方案尚需進(jìn)一步完善。另外,應(yīng)提倡一地一方案,根據(jù)不同蘋果產(chǎn)區(qū)病蟲害的種類及發(fā)生規(guī)律,構(gòu)建出更為系統(tǒng)、科學(xué)的地域性蘋果病蟲害全程生物防控技術(shù),以推動(dòng)我國蘋果產(chǎn)業(yè)的健康發(fā)展。
構(gòu)建的蘋果病蟲害全程生物防控技術(shù)可有效保障蘋果產(chǎn)量、質(zhì)量安全及生態(tài)環(huán)境安全,與常規(guī)防控技術(shù)相比,采用全程生物防控技術(shù)果園的蘋果品質(zhì)更好,果實(shí)、葉片和土壤中均未發(fā)現(xiàn)農(nóng)藥殘留,果園中七星瓢蟲、異色瓢蟲和草蛉等天敵昆蟲種群數(shù)量顯著提高且持續(xù)時(shí)間更長。本研究顯示對(duì)于蘋果病蟲害采用全程生物防控技術(shù)是可行的,其經(jīng)濟(jì)、社會(huì)及生態(tài)效益均較為顯著,符合食品安全和環(huán)境安全的國家戰(zhàn)略需求,具有進(jìn)一步推廣應(yīng)用的價(jià)值。
[1] FAOSTAT. http://www.fao.org/faostat/en/#data.
[2] 譚明天, 查茜, 黃思瑜, 許晶冰, 黃先亮, 楊小珊. 2019年重慶市水果類監(jiān)督抽檢情況分析. 食品安全質(zhì)量檢測學(xué)報(bào), 2021, 12(9): 3849-3853.
TAN M T, ZHA X, HUANG S Y, XU J B, HUANG X L, YANG X S. Analysis for fruits supervision and sampling of Chongqing in 2019. Journal of Food Safety and Quality, 2021, 12(9): 3849-3853. (in Chinese)
[3] 段夏菲, 曾雅, 李映霞, 李沙沙, 凌東輝. 2016年-2018年廣州市海珠區(qū)果品中41種有機(jī)磷類農(nóng)藥殘留監(jiān)測與分析. 中國衛(wèi)生檢驗(yàn)雜志, 2018, 28(17): 2152-2155, 2159.
DUAN X F, ZENG Y, LI Y X, LI S S, LING D H. Monitoring and analysis of 41 organophosphorus pesticide residues in fruits in Haizhu District of Guangzhou, 2016-2018. Chinese Journal of Health Laboratory Technology, 2018, 28(17): 2152-2155, 2159. (in Chinese)
[4] 蘭豐, 劉傳德, 周先學(xué), 王志新, 鹿?jié)蓡? 姚杰, 柳璇, 姜蔚. 山東省主產(chǎn)區(qū)蘋果農(nóng)藥殘留水平及累積急性膳食攝入風(fēng)險(xiǎn)評(píng)估. 食品安全質(zhì)量檢測學(xué)報(bào), 2015, 6(7): 2595-2602.
LAN F, LIU C D, ZHOU X X, WANG Z X, LU Z Q, YAO J, LIU X, JIANG W. Residue levels and cumulative acute risk assessment of pesticides in apples of main fruits area in Shandong province. Journal of Food Safety and Quality, 2015, 6(7): 2595-2602. (in Chinese)
[5] 李保華, 王彩霞, 董向麗. 我國蘋果主要病害研究進(jìn)展與病害防治中的問題. 植物保護(hù), 2013, 39(5): 46-54.
LI B H, WANG C X, DONG X L. Research progress in apple diseases and problems in the disease management in China. Plant Protection, 2013, 39(5): 46-54. (in Chinese)
[6] 閆淼. 洛川蘋果產(chǎn)區(qū)主要病蟲害發(fā)生規(guī)律及生物防治方法研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2019.
YAN M. Occurrence rule and biological control measure of main diseases and insect pests in Luochuan[D]. Yangling: Northwest A&F University, 2019. (in Chinese)
[7] ZHOU H X, YU Y, TAN X M, CHEN A D, FENG J G. Biological control of insect pests in apple orchards in China. Biological Control, 2014, 68: 47-56.
[8] 張文軍, 呼麗萍, 薛應(yīng)鈺, 梁巧蘭, 孫朝華, 張樹武, 徐秉良. 甘肅省蘋果產(chǎn)區(qū)農(nóng)藥使用現(xiàn)狀調(diào)查與分析. 甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào), 2018, 53(4): 68-73.
ZHANG W J, HU L P, XUE Y Y, LIANG Q L, SUN C H, ZHANG S W, XU B L. Investigation and analysis of the current status of chemical fungicides and pesticides application in apple production areas of Gansu Province. Journal of Gansu Agricultural University, 2018, 53(4): 68-73. (in Chinese)
[9] 朱小瓊, 東保柱, 國立耘, 付學(xué)池, 董民. 京津地區(qū)蘋果園農(nóng)藥使用情況調(diào)查. 中國植保導(dǎo)刊, 2017, 37(12): 72-74.
ZHU X Q, DONG B Z, GUO L Y, FU X C, DONG M. Investigation on pesticide application in apple orchards in Beijing and Tianjin. China Plant Protection, 2017, 37(12): 72-74. (in Chinese)
[10] 范昆, 李穎芳, 曲健祿, 付麗, 陶吉寒. 山東省蘋果園農(nóng)藥使用情況調(diào)查與分析. 落葉果樹, 2020, 52(1): 19-21.
FAN K, LI Y F, QU J L, FU L, TAO J H. Investigation and analysis of pesticide application in apple orchards of Shandong Province. Deciduous Fruits, 2020, 52(1): 19-21. (in Chinese)
[11] 王江柱, 周宏宇, 李鐵旺. 我國蘋果樹病蟲害防治用藥與登記狀況分析及探討. 中國果樹, 2022(7): 1-9, 15.
WANG J Z, ZHOU H Y, LI T W. Analysis and discussion of the pesticide utilization and registration for the apple tree pests and diseases in China. China Fruits, 2022(7): 1-9, 15. (in Chinese)
[12] 馬杰, 王盛琦, 胡同樂, 王亞南, 王樹桐, 曹克強(qiáng). 蘋果園病蟲害綠色防控技術(shù)應(yīng)用效果評(píng)價(jià). 河南農(nóng)業(yè)科學(xué), 2018, 47(12): 90-95.
MA J, WANG S Q, HU T L, WANG Y N, WANG S T, CAO K Q. Evaluation of application effect of green pest control technique in apple orchard. Journal of Henan Agricultural Sciences, 2018, 47(12): 90-95. (in Chinese)
[13] 閆文濤, 岳強(qiáng), 張懷江, 孫麗娜, 仇貴生. 蘋果園農(nóng)藥精準(zhǔn)高效使用技術(shù). 中國果樹, 2020(5): 117-119.
YAN W T, YUE Q, ZHANG H J, SUN L N, QIU G S. Apple orchard pesticide precision and efficient application technology. China Fruits, 2020(5): 117-119. (in Chinese)
[14] 李鵬, 周真. 淄博市蘋果全生育期有害生物綠色防控技術(shù)示范與推廣. 中國植保導(dǎo)刊, 2019, 39(8): 85, 86-88.
LI P, ZHOU Z. Demonstration and promotion of green prevention and control technology of pests during the whole growth stage of apple in Zibo. China Plant Protection, 2019, 39(8): 85, 86-88. (in Chinese)
[15] 王亞紅, 吳鋒, 嚴(yán)攀. 蘋果全生育期主要病蟲害綠色防控集成技術(shù). 中國果樹, 2014(1): 71-74.
WANG Y H, WU F, YAN P. Integrated technology of green prevention and control of main diseases and pests during the whole growth stage of apple. China Fruits, 2014(1): 71-74. (in Chinese)
[16] MITRE V, BUTA E, LUKACS L, MITRE I, TEODORESCU R, HOZA D, SESTRAS A F, STANICA F. Management of apple scab and powdery mildew using bicarbonate salts and other alternative organic products with fungicide effect in apple cultivars. Notulae Botanicae Horti Agrobotanici Cluj-napoca, 2017, 46(1): 115-121.
[17] Zhang X R, OUYANG F, Su J W, Li Z, Yuan Y Y, Sun Y C, Sarkar S C, Xiao Y L, Ge F. Intercropping flowering plants facilitate conservation, movement and biocontrol performance of predators in insecticide-free apple orchard. Agriculture, Ecosystems & Environment, 2022, 340: 108157.
[18] Cahenzli F, Sigsgaard L, Daniel C, Herz A, Jamar L, Kelderer M, Jacobsen S K, Kruczyńska D, Matray S, Porcel M, Sekrecka M, ?wiergiel W, Tasin M, Telfser J, Pfiffner L. Perennial flower strips for pest control in organic apple orchards - A pan-European study. Agriculture, Ecosystems & Environment, 2019, 278: 43-53.
[19] Chouinard G, Firlej A, Cormier D. Going beyond sprays and killing agents: Exclusion, sterilization and disruption for insect pest control in pome and stone fruit orchards. Scientia horticulturae, 2016, 208: 13-27.
[20] Walker J T, Suckling D M, Wearing C H. Past, present, and future of integrated control of apple pests: The New Zealand experience. Annual Review of Entomology, 2017, 62: 231-248.
[21] Delate K, Friedrich H. Organic apple and grape performance in the Midwestern U.S.. Acta Horticulturae, 2004, 638: 309-320.
[22] 楊勤民, 趙中華, 王亞紅, 張東霞, 張秋萍, 張萬民. 我國蘋果園病蟲害防治用藥情況及減量增效對(duì)策. 中國植保導(dǎo)刊, 2018, 38(4): 57-61.
YANG Q M, ZHAO Z H, WANG Y H, ZHANG D X, ZHANG Q P, ZHANG W M. The situation of drug use for pest and disease control in Chinese orchards and the strategy of reducing quantity and increasing efficiency. China Plant Protection, 2018, 38(4): 57-61. (in Chinese)
[23] 馬延慶, 劉長民, 朱海利, 劉玲珠, 馬文, 王維. 陜西咸陽渭北旱塬地區(qū)優(yōu)質(zhì)蘋果基地生態(tài)氣候特征分析. 干旱地區(qū)農(nóng)業(yè)研究, 2008, 26(1): 146-153.
MA Y Q, LIU C M, ZHU H L, LIU L Z, MA W, WANG W. The analysis of ecosystem characteristic of high-quality apple producing base on Weibei arid plain region in Xianyang of Shaanxi Province. Agricultural Research in the Arid Areas, 2008, 26(1): 146-153. (in Chinese)
[24] 趙曉敏, 賴忠曉, 陳平強(qiáng), 江志利, 馬志卿. 幾種植物源農(nóng)藥對(duì)蘋果主要害蟲的生物活性. 中國生物防治學(xué)報(bào), 2022, 38(6): 1385-1392.
ZHAO X M, LAI Z X, CHEN P Q, JIANG Z L, MA Z Q. Biological activities of several plant pesticides against apple pests. Chinese Journal of Biological Control, 2022, 38(6): 1385-1392. (in Chinese)
[25] 王秋萍. 蘋果等5種果樹測產(chǎn)方法. 果樹實(shí)用技術(shù)與信息, 2014(12): 37-38.
WANG Q P. The yield measurement method of apple and other four kinds of fruit tree. Practical Technology and Information on Fruit Trees, 2014(12): 37-38. (in Chinese)
[26] 中華人民共和國農(nóng)業(yè)部. 蘋果品質(zhì)指標(biāo)評(píng)價(jià)規(guī)范: NY/T 2316—2013. 北京: 中國標(biāo)準(zhǔn)出版社, 2013.
Ministry of Agriculture of the People’s Republic of China. Evaluation specification for quality indexes of apple: NY/T 2316—2013. Beijing: Standards Press of China, 2013. (in Chinese)
[27] 中華人民共和國國家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局. 食品中總酸的測定: GB/T 12456—2008. 北京: 中國標(biāo)準(zhǔn)出版社, 2008.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Determination of total acid in foods: GB/T 12456—2008. Beijing: Standards Press of China, 2008. (in Chinese)
[28] 中華人民共和國國家衛(wèi)生和計(jì)劃生育委員會(huì).食品安全國家標(biāo)準(zhǔn)—食品中抗壞血酸的測定: GB/T 5009.86—2016. 北京: 中國標(biāo)準(zhǔn)出版社, 2016.
National Health and Family Planning Commission of the People’s Republic of China. National food safety standard—Determination of ascorbic acid in food: GB/T 5009.86—2016. Beijing: Standards Press of China, 2016. (in Chinese)
[29] 中華人民共和國農(nóng)業(yè)部. 水果及制品可溶性糖的測定—3,5-二硝基水楊酸比色: NY/T 2742—2015. 北京: 中國標(biāo)準(zhǔn)出版社, 2015.
Ministry of Agriculture of the People’s Republic of China. Determination of soluble sugar in fruits and derived products—3, 5-dinitrosalicylic acid colorimetry: NY/T 2742—2015. Beijing: Standards Press of China, 2015. (in Chinese)
[30] 中華人民共和國國家衛(wèi)生健康委員會(huì). 食品安全國家標(biāo)準(zhǔn)—食品中農(nóng)藥最大殘留限量: GB 2763—2021. 北京: 中國農(nóng)業(yè)出版社, 2021.
National Health Commission of the People’s Republic of China. National food safety standard—Maximum residue limits for pesticides in food: GB 2763—2021. Beijing: China Agriculture Press, 2021. (in Chinese)
[31] 白沙沙, 畢金峰, 方芳, 王沛, 公麗艷. 蘋果品質(zhì)評(píng)價(jià)技術(shù)研究現(xiàn)狀及展望. 食品科學(xué), 2011, 32(3): 286-290.
BAI S S, BI J F, FANG F, WANG P, GONG L Y. Current research progress and prospects of technologies for apple quality evaluation. Food Science, 2011, 32(3): 286-290. (in Chinese)
[32] 劉新社, 陳妍. 生物農(nóng)藥對(duì)設(shè)施和露地黃瓜白粉病的防效及其品質(zhì)和產(chǎn)量的影響. 河南農(nóng)業(yè)科學(xué), 2019, 48(3): 95-99, 114.
LIU X S, CHEN Y. Effects of biological fungicides on powdery mildew, quality and yield of protected and field cucumber. Journal of Henan Agricultural Sciences, 2019, 48(3): 95-99, 114. (in Chinese)
[33] 徐靜, 王曉雙, 李佳穎, Shaukat A, 吳建輝. 6.003%氨基·蕓苔素內(nèi)酯水劑對(duì)芒果樹生長、品質(zhì)和產(chǎn)量的影響. 農(nóng)藥, 2018, 57(3): 232-234.
XU J, WANG X S, LI J Y, SHAUKAT A, WU J H. Effects of amino-brassinolide 6.003% AS on growth, quality and yield of mango tree. Agrochemicals, 2018, 57(3): 232-234. (in Chinese)
[34] XIONG X, YAO M, FU L L, MA Z Q, ZHANG X. The botanical pesticide derived fromfor controlling insect pests can also improve growth and development of tomato plants. Industrial Crops and Products, 2016, 92: 13-18.
[35] Sharma R R, Datta S C, Varghese E. Kaolin-based particle film sprays reduce the incidence of pests, diseases and storage disorders and improve postharvest quality of ‘Delicious’ apples. Crop Protection, 2020, 127(3): 104950.
[36] 傅麗君. 農(nóng)藥對(duì)枇杷園生態(tài)系的影響與主要害蟲生態(tài)控制研究[D]. 福州: 福建農(nóng)林大學(xué), 2005.
FU L J. Effect of pesticide on loquat orchard ecosystem and ecological control of major pests[D]. Fuzhou: Fujian Agriculture and Forestry University, 2005. (in Chinese)
[37] Soheilifard F, Marzban A, Raini M g, Taki M, Van Zelm R. Chemical footprint of pesticides used in citrus orchards based on canopy deposition and off-target losses. Science of the Total Environment, 2020, 732: 139118.
[38] 肖云麗, 郭煒, 唐文穎, 蔡志平, 于凱, 劉同先. 不同生態(tài)措施蘋果園主要害蟲及天敵發(fā)生特征.應(yīng)用昆蟲學(xué)報(bào), 2020, 57(1): 113-123.
XIAO Y L, GUO W, TANG W Y, CAI Z P, YU K, LIU T X. Comparison of the main pest insects and their natural enemies in apple orchards with different pest control methods. Chinese Journal of Applied Entomology, 2020, 57(1): 113-123. (in Chinese)
[39] 王艷廷, 冀曉昊, 吳玉森, 毛志泉, 姜遠(yuǎn)茂, 彭福田, 王志強(qiáng), 陳學(xué)森. 我國果園生草的研究進(jìn)展. 應(yīng)用生態(tài)學(xué)報(bào), 2015, 26(6): 1892-1900.
WANG Y T, JI X H, WU Y S, MAO Z Q, JIANG Y M, PENG F T, WANG Z Q, CHEN X S. Research progress of cover crop in Chinese orchard. Chinese Journal of Applied Ecology, 2015, 26(6): 1892-1900. (in Chinese)
[40] CHEN Y, LV M, ZHOU J, HUANG K, SUN Y, FENG J T. Potential value of wood tar as a natural fungicide against. Molecules, 2022, 27(5): 1531.
[41] 趙國康, 李焰, 張樹武, 徐秉良, 劉佳. 5種植物源農(nóng)藥對(duì)蘋果斑點(diǎn)落葉病的防效評(píng)價(jià). 中國果樹, 2020(5): 46-49.
ZHAO G K, LI Y, ZHANG S W, XU B L, LIU J. Evaluation the control effects of five botanical fungicides on apple Alternaria leaf spot (). China Fruits, 2020(5): 46-49. (in Chinese)
[42] 唐永清. 伊犁墾區(qū)蘋果、桃園食心蟲種類調(diào)查及綜合防治技術(shù)研究[D]. 石河子: 石河子大學(xué), 2016.
TANG Y Q. Research on species and integrated control technique of fruit-borer in Yili reclamation area[D]. Shihezi: Shihezi University, 2016. (in Chinese)
Application Evaluation of the whole-process biological management scheme for apple pests in the Weibei Dry Highland
SUN Zheng1, LAI ZhongXiao1, ZHAO XiaoMin1, JIANG ZhiLi1,2, CHEN Guangyou1,2, MA ZhiQing1,2
1College of Plant Protection, Northwest A&F University; Yangling 712100, Shaanxi;2Shaanxi Engineering Research Center of Biopesticide, Yangling 712100, Shaanxi
【Objective】One of the key problems restricting the green development of apple industry in China lies in the lack of green prevention and control technology of pests. In this paper, the application effect of the whole-process biological management technology for apple pests (WBTAP) in Weibei Dry Highland was comprehensively evaluated, hoping to provide a basis for the extension of the technology system.【Method】In the apple orchards of Ecological Agriculture Science and Technology Experiment and Demonstration Station in the highland of Northwest A&F University (Chengcheng County, Weinan City), the biological management area and the conventional management area were set up. The biological management area adopted WBTAP (from March to the end of November, all biopesticides were applied according to the occurrence of pests), while the conventional management area adopted the current local control technology which mainly based on chemical pesticides. The yield and quality of apple and the dynamics of natural enemy insects in orchard were determined by publicly reported methods, and pesticide residues in apple leaf, fruit and orchard soil were detected by third-party organizations. The experiment has been carried out for two consecutive years in 2019 and 2020.【Result】The apple yields of orchards with WBTAP in 2019 and 2020 were 51 585 and 53 639 kg·hm-2, respectively, which were not significantly different from those of conventional chemical management technology of apple pests (CCTAP). There was no significant difference in the general physical properties of apples, such as fruit shape, firmness and edible rate between the two management technologies, but the single fruit weight of WBTAP orchard was better than that of CCTAP orchard, reaching 342.89 and 377.89 g in two years, respectively. In 2019, the soluble solid, pH, Vc content and soluble sugar content of apples in the WBTAP orchard were significantly higher than those in the CCTAP orchard, while the titratable acid content was significantly lower than that in the CCTAP orchard, and the indexes were 17.06%, 4.69, 9.23 mg/100 g, 16.60% and 0.26%, respectively. The results of two years showed similarity and consistency. No pesticide residue was found in apple fruits, leaves and soil in the WBTAP orchard during the two years, while many chemical pesticide residues such as tebuconazole, lambda-cyhalothrin and chlorpyrifos were detected in the CCTAP orchard. In addition, the number of natural enemy insects in the WBTAP orchard was significantly higher than that in the CCTAP orchard. Takingas an example, on May 24th, 2019, there were 1.5 ladybirds per shoot in the WBTAP orchard, while there was only 0.5 ladybird in the CCTAP orchard. The natural enemy insects in the WBTAP orchard also existed longer than in the CCTAP orchard. From May 3rd to July 12th, 2019,appeared for 71 days in the WBTAP orchard, but only for 50 days in the CCTAP orchard.【Conclusion】There was no significant difference in apple yield between the WBTAP orchard and CCTAP orchard, but the apple quality of WBTAP orchard was better. No pesticide residues were found in apple fruits, leaves and soil in the WBTAP orchard, and the number of natural enemy insects (,and) in the WBTAP orchard was significantly higher than that in the CCTAP orchard. The technology system shows excellent economic, environmental and ecological benefits, and the fruit quality reaches the requirements of food safety. It can provide technical reference for organic apple production, and has the value of further popularization and application.
organic apple; biological management; food safety; biopesticide
10.3864/j.issn.0578-1752.2023.06.007
2022-11-08;
2022-12-05
陜西省重點(diǎn)研發(fā)計(jì)劃(2019ZDLNY03-04,2021NY03-122)
孫政,E-mail:Sunzheng12139@163.com。通信作者馬志卿,E-mail:zhiqingma@nwsuaf.edu.cn
(責(zé)任編輯 岳梅)