樊新建,董春海,王之君,陸亞楠,姚 薇
泵站正向進(jìn)水前池?cái)U(kuò)散角對(duì)池內(nèi)流場(chǎng)結(jié)構(gòu)的影響
樊新建,董春海,王之君,陸亞楠,姚 薇
(蘭州理工大學(xué)能源與動(dòng)力工程學(xué)院,蘭州 730050)
針對(duì)從多沙河流取水的大型泵站進(jìn)水前池內(nèi)水流流態(tài)較差,易在池內(nèi)產(chǎn)生大尺度回流區(qū)域,導(dǎo)致泥沙嚴(yán)重淤積等問(wèn)題,該研究以甘肅省景泰川電力提灌工程典型泵站的正向進(jìn)水前池為研究對(duì)象,構(gòu)建不同擴(kuò)散角體型結(jié)構(gòu)的正向進(jìn)水前池三維模型,基于Mixture多相流模型和Realizable模型開展數(shù)值模擬計(jì)算,闡明了正向進(jìn)水前池流場(chǎng)結(jié)構(gòu)特征,提出了有效改善正向進(jìn)水前池流場(chǎng)結(jié)構(gòu)的擴(kuò)散角范圍。結(jié)果表明:泵站機(jī)組全開時(shí),正向進(jìn)水前池內(nèi)流場(chǎng)結(jié)構(gòu)對(duì)稱分布,在進(jìn)水前池中央形成主流區(qū),兩側(cè)形成回流區(qū),中央主流區(qū)域水流流速遠(yuǎn)大于兩側(cè)回流區(qū),主流效應(yīng)顯著;隨著擴(kuò)散角的減小,兩側(cè)低流速區(qū)面積減小,主流區(qū)域流速呈下降的趨勢(shì),區(qū)域?qū)挾瘸尸F(xiàn)增加的趨勢(shì),進(jìn)入前池的水流擴(kuò)散效應(yīng)增加明顯;擴(kuò)散角在25°~30°之間時(shí),入池的水流沿流程發(fā)展和擴(kuò)散較為充分,有效改善多泥沙河流引水泵站前池的泥沙淤積,研究成果可為同類泵站的設(shè)計(jì)和更新改造提供指導(dǎo)和參考。
泵站;數(shù)值模擬;正向進(jìn)水前池;擴(kuò)散角;流場(chǎng)結(jié)構(gòu);泥沙淤積
前池作為泵站進(jìn)水建筑物中不可或缺的部分,具有平順、均勻擴(kuò)散水流的作用,為水泵取水提供良好的進(jìn)水條件[1-2]。對(duì)于從多泥沙河流提水的泵站,極易因進(jìn)水前池體型結(jié)構(gòu)不佳,在池內(nèi)形成漩渦、回流等不良流態(tài),導(dǎo)致泥沙嚴(yán)重淤積[3-4]。究其原因,進(jìn)水前池的體型結(jié)構(gòu)決定池內(nèi)流場(chǎng)結(jié)構(gòu),流場(chǎng)結(jié)構(gòu)紊亂不僅會(huì)在進(jìn)水前池內(nèi)產(chǎn)生泥沙淤積,還會(huì)惡化機(jī)組進(jìn)水條件、降低泵站運(yùn)行效率,嚴(yán)重制約灌區(qū)工程效益的發(fā)揮[5-8]。
隨著計(jì)算流體力學(xué)(computational fluid dynamics)理論與技術(shù)的發(fā)展,數(shù)值模擬和理論分析為研究泵站前池水流流態(tài)和泥沙淤積的主要方法,現(xiàn)階段該領(lǐng)域的專家學(xué)者已開展了大量研究工作。CONSTANTINESCU等[9]分別采用模型和模型模擬了泵站前池的漩渦分布特征,得出了選取合適的湍流模型對(duì)前池內(nèi)的旋渦分布有著重大影響的結(jié)論。資丹等[10]針對(duì)正向泵站進(jìn)水前池,采用CFD技術(shù)開展大型泵站組合式導(dǎo)流墩整流研究,結(jié)果表明“八字型導(dǎo)流墩+川字型導(dǎo)流墩+十字型消渦板”的組合式導(dǎo)流墩,可有效改善前池流態(tài),提高水泵運(yùn)行穩(wěn)定性。李顏雁等[11]采用數(shù)值模擬的方法,基于3種不同增設(shè)立柱方案對(duì)前池進(jìn)行整流,結(jié)果表明:增設(shè)非等間距雙排立柱可使前池流速分布較為均勻,改善前池水流流態(tài)。周濟(jì)人等[12]針對(duì)側(cè)向進(jìn)水泵站,采用CFD軟件,基于N-S方程和Standard湍流模型對(duì)前池流態(tài)進(jìn)行了數(shù)值模擬,結(jié)果表明加設(shè)“Y”型導(dǎo)流墩流速分布有所改善;加設(shè)底坎后,位于翼墻前方的旋渦消失,流場(chǎng)發(fā)生變化;加設(shè)導(dǎo)流墻有效優(yōu)化了前池的水流流態(tài)。雷鎮(zhèn)等[13-14]均對(duì)泵站前池內(nèi)的導(dǎo)流底坎進(jìn)行了研究,分別提出了組合底坎整流的合適參數(shù)及底坎的相對(duì)高度、相對(duì)距離參數(shù),從而改善前池內(nèi)水流流態(tài)。蔻元之等[15]通過(guò)物理模型試驗(yàn),分析了泵站的正向進(jìn)水前池在不同的泥沙含量和不同工況下的流態(tài)分布特征和泥沙淤積特點(diǎn)。高傳昌等[16]應(yīng)用數(shù)值計(jì)算方法,提出了在進(jìn)水池設(shè)置導(dǎo)流臺(tái)、水下消渦板和W型后墻導(dǎo)流墩的組合整流措施,結(jié)果表明,組合整流措施有效的改善了進(jìn)水池的水流流態(tài)和速度分布。徐存東等[17]對(duì)多沙水源提水泵站引入逆向工程技術(shù),建立淤積狀態(tài)下和非淤狀態(tài)下的三維泵站前池模型進(jìn)行了水沙兩相流數(shù)值模擬,分析了開機(jī)組合對(duì)前池流場(chǎng)特性的影響,結(jié)果表明泵站機(jī)組對(duì)稱開啟時(shí),主流擴(kuò)散效果有所提高,泥沙淤積情況略有改善。上述研究表明,目前針對(duì)在前池內(nèi)設(shè)置導(dǎo)流墩、導(dǎo)流墻、底坎、立柱、壓水板等局部整流設(shè)施,改善開機(jī)組合來(lái)優(yōu)化前池內(nèi)含沙水流流態(tài)的方法居多,但對(duì)前池體型結(jié)構(gòu),尤其是前池邊墻擴(kuò)散角度對(duì)池內(nèi)水流流場(chǎng)結(jié)構(gòu)影響的研究還相對(duì)匱乏。
基于此,本文以甘肅省景泰川電力提灌工程(簡(jiǎn)稱“景電工程”)典型泵站的正向進(jìn)水前池作為研究對(duì)象,采用數(shù)值模擬與現(xiàn)場(chǎng)測(cè)試相結(jié)合的手段,開展大型泵站正向進(jìn)水前池邊墻擴(kuò)散角對(duì)池內(nèi)流場(chǎng)結(jié)構(gòu)的影響研究,以獲得前池水流流場(chǎng)結(jié)構(gòu)特征,提出有效改善多泥沙河流引水泵站正向進(jìn)水前池泥沙淤積的邊墻擴(kuò)散角范圍,擬為同類泵站的設(shè)計(jì)和更新改造提供參考。
1.1.1 泵站參數(shù)
“景電工程”是一項(xiàng)高揚(yáng)程、大流量、多梯級(jí)的大Ⅱ型電力提水灌溉工程,工程自黃河提水,共建有泵站40余座。典型泵站是該提水工程中前池泥沙淤積問(wèn)題較為突出的泵站,如圖1a所示,其前池結(jié)構(gòu)形式為正向直線擴(kuò)散型,包括引渠段、前池段、進(jìn)水池、出水管等,其中進(jìn)水前池長(zhǎng)度=33.83 m,入口端寬度B=11.7 m,末端寬度B=31.25 m,池深=3.97 m,邊墻擴(kuò)散角=46°,泵站設(shè)計(jì)提水流量23 m3/s,設(shè)計(jì)前池水位1 591.83 m,共布置裝備8臺(tái)機(jī)組,其中2#~7#機(jī)組為常開機(jī)組,1#、8#機(jī)組為備用機(jī)組,吸水管管徑為1.4 m,池底緩坡段坡度為1∶3,正向進(jìn)水前池結(jié)構(gòu)形式見(jiàn)圖1b。
注:α為進(jìn)水前池?cái)U(kuò)散角度,(°);L為進(jìn)水前池長(zhǎng)度,m;Bm為進(jìn)水前池入口端寬度,m;Bn為進(jìn)水前池末端寬度,m;h為進(jìn)水前池池深,m;1#~8#為機(jī)組編號(hào);X1~X7、Y1~Y7、Z1~Z3為觀測(cè)斷面。
1.1.2 泥沙特征
典型泵站正向進(jìn)水前池內(nèi)泥沙淤積形態(tài)基本呈對(duì)稱分布,中央?yún)^(qū)域泥沙淤積量少,兩側(cè)區(qū)域泥沙淤積較為集中,且越靠近邊墻,泥沙淤積量越多,淤積坡面平滑,形成了新的過(guò)流通道,嚴(yán)重影響泵站的正常取水。
對(duì)泵站引水泥沙含量及粒徑取樣分析,結(jié)果表明:泵站引水年均泥沙含量約為30 kg/m3,汛期最大泥沙含量達(dá)326 kg/m3,前池內(nèi)懸浮泥沙顆粒粒徑分布在0.02~1 mm之間,其中小于0.063 mm的泥沙粒徑占比達(dá)到90%以上,屬于極細(xì)顆粒沙土。可見(jiàn),該泵站提水水流具有含沙量高、泥沙粒徑小的特征,這也是導(dǎo)致進(jìn)水前池內(nèi)流場(chǎng)結(jié)構(gòu)紊亂,泥沙淤積問(wèn)題突出的根本原因。
由于前池水流中既存在流體介質(zhì),還存有懸浮泥沙等固體物質(zhì),在探析前池內(nèi)的流場(chǎng)結(jié)構(gòu)時(shí)不應(yīng)忽視多場(chǎng)耦合狀態(tài),故采用ANSYS 10.0-Fluent分析軟件,基于Mixture多相耦合控制方程[18-19]展開固液兩相流模擬。
Mixture模型連續(xù)性方程:
Mixture模型運(yùn)動(dòng)方程:
式中為混合流體密度,kg/m3;為第相的密度,kg/m3;為第相的體積分?jǐn)?shù);為質(zhì)量平均速度,m/s;為流場(chǎng)壓力;為相數(shù);為混合流體黏滯性系數(shù),Pa·s;為第相湍流運(yùn)動(dòng)粘性系數(shù),Pa·s;為重力加速度,N/kg;為體積力,N;為次相等相的流速,m/s。
由于前池尺寸較大,池內(nèi)水流流動(dòng)較為復(fù)雜,常常會(huì)發(fā)生回流及水流脫壁現(xiàn)象,故選擇Realizable[20-21]湍流模型進(jìn)行水沙運(yùn)動(dòng)數(shù)值模擬與實(shí)際更為接近。借助ICEM-CFD軟件對(duì)所建立的正向前池三維概化模型進(jìn)行非結(jié)構(gòu)化網(wǎng)格[22-23]劃分,對(duì)比5種網(wǎng)格劃分方案(全局最大單元尺寸分別為0.25、0.30、0.35、0.40、0.45 m),經(jīng)網(wǎng)格無(wú)關(guān)性檢驗(yàn),發(fā)現(xiàn)當(dāng)全局最大單元尺寸為0.35 m、計(jì)算域內(nèi)網(wǎng)格數(shù)為250.5萬(wàn)時(shí),網(wǎng)格質(zhì)量均達(dá)到0.3以上,保證了求解過(guò)程中的計(jì)算效率和精度。正向進(jìn)水前池網(wǎng)格劃分結(jié)果如圖2所示。
圖2 前池網(wǎng)格劃分結(jié)果
前池進(jìn)口采用velocity-inlet(速度入口)[24]作為入口邊界條件;出口斷面設(shè)置在泵站壓力管道處,邊界條件設(shè)置為outflow(自由出流);前池自由液面浮動(dòng)變化較少采用剛蓋假定法來(lái)模擬計(jì)算自由液面;計(jì)算域其余壁面皆為固體邊界,采用wall-function method(壁面函數(shù))進(jìn)行處理。將水沙兩相流體設(shè)為本次計(jì)算介質(zhì),主相為水,密度水=998.2 kg/m3,次相為沙,密度水=2 500 kg/m3,泥沙粒徑為0.025 mm,體積分?jǐn)?shù)為1.2%,入口平均流速為1.71 m/s。在對(duì)前池內(nèi)的水沙運(yùn)動(dòng)進(jìn)行數(shù)值模擬計(jì)算過(guò)程中,采用二階迎風(fēng)格式的隱式求解以確保計(jì)算精度[25-26],選用基于分離求解器的SIMPLEC算法進(jìn)行流場(chǎng)耦合[27],迭代殘差精度不低于10-4,并對(duì)模擬結(jié)果做可視化處理。
為研究正向進(jìn)水前池邊墻擴(kuò)散角的改變對(duì)前池流場(chǎng)結(jié)構(gòu)的影響,保持進(jìn)水前池入口端寬度B、長(zhǎng)度以及進(jìn)水池和吸水管等結(jié)構(gòu)和放置方式不變,分別建立前池邊墻擴(kuò)散角為20°、25°、30°、35°、40°、46°6種體型的前池,其中=46°為工程原型前池邊墻擴(kuò)散角,模擬機(jī)組設(shè)計(jì)運(yùn)行工況為2#~7#機(jī)組開啟,1#、8#備用機(jī)組關(guān)閉,前池結(jié)構(gòu)示意圖詳見(jiàn)圖1。
為便于更直觀地分析前池內(nèi)流場(chǎng)結(jié)構(gòu)特征及水流流速分布規(guī)律,定義沿水流方向?yàn)榉较?,垂直水流方向?yàn)榉较?,沿水深方向?yàn)榉较?,確定觀測(cè)斷面,將面與面的相交線確定為觀測(cè)特征線,表述為+斷面名稱(如1與1觀測(cè)特征線為l1-Y1),觀測(cè)斷面位置如圖1所示,斷面相關(guān)參數(shù)見(jiàn)表1。設(shè)進(jìn)水前池入口斷面平均流速為0,池內(nèi)水流流速為,將池內(nèi)水流流速與入口斷面平均流速0相除作無(wú)量綱處理,繪制沿池內(nèi)相應(yīng)斷面的流速分布圖。
采用HXH03-1S型超聲波多普勒流速流向儀對(duì)景電灌區(qū)典型泵站正向進(jìn)水前池內(nèi)均勻布置的98個(gè)流速測(cè)點(diǎn)進(jìn)行現(xiàn)場(chǎng)測(cè)量。選取2斷面與3斷面相交的特征線l3-Z2與實(shí)測(cè)值進(jìn)行對(duì)比,并采用相對(duì)誤差、標(biāo)準(zhǔn)差[28]2個(gè)值進(jìn)行誤差分析,以驗(yàn)證數(shù)值模擬的準(zhǔn)確性。圖3b給出了特征直線l3-Z2上流速實(shí)測(cè)值與模擬值,由圖3b可知,l3-Z2上流速實(shí)測(cè)值與模擬值的整體變化趨勢(shì)基本一致,兩者相對(duì)誤差最大為0.226,標(biāo)準(zhǔn)差誤差為0.026,實(shí)測(cè)結(jié)果與模擬結(jié)果相近,表明采用數(shù)學(xué)模型對(duì)正向進(jìn)水前池內(nèi)流場(chǎng)的計(jì)算結(jié)果準(zhǔn)確可靠。
表1 觀測(cè)斷面參數(shù)
注:1~7為沿垂直水流方向觀測(cè)斷面,是觀測(cè)斷面距前池入口斷面的距離;1~7為沿水流方向的觀測(cè)斷面,是觀測(cè)斷面距前池中心線的距離;1~3為沿水深方向的觀測(cè)斷面,是觀測(cè)斷面距進(jìn)水前池池底的距離。
Note:1-7represents observation sections vertical the flow direction,represents the distance between the observation section to the inlet section of the forebay;1-7represents observation sections along the flow direction,represents the distance between the observation section and to the center line of the forebay;1-3represents observation sections along the water depth direction,represents the distance between the observation section and the bottom of the intake forebay.
圖4給出了不同擴(kuò)散角下正向進(jìn)水前池2斷面流場(chǎng)分布。由圖4可見(jiàn),泵站機(jī)組全開時(shí)(2#~7#機(jī)組開啟),正向進(jìn)水前池內(nèi)流場(chǎng)結(jié)構(gòu)對(duì)稱分布,水流自引水渠進(jìn)入前池后逐漸擴(kuò)散,在進(jìn)水前池中央形成主流區(qū),兩側(cè)形成回流區(qū)。主流區(qū)內(nèi)水流流態(tài)均勻,水流流速高,入池水流表現(xiàn)出的攜沙運(yùn)動(dòng)能力突出,區(qū)域內(nèi)泥沙濃度低,沿水流方向主流區(qū)寬度在擴(kuò)散型池身的作用下不斷增大;兩側(cè)回流區(qū)內(nèi)產(chǎn)生兩個(gè)近似對(duì)稱的立軸漩渦,呈橢圓形形態(tài)分布,渦心位于進(jìn)水前池末端,漩渦的存在一方面限制了主流的擴(kuò)散,導(dǎo)致入池水流擴(kuò)散效果不理想,另一方面降低了區(qū)域內(nèi)水流流速,削弱了水流的攜沙運(yùn)動(dòng)能力,泥沙出現(xiàn)懸浮、停滯現(xiàn)象,泥沙濃度上升,同時(shí)懸浮、停滯的泥沙在自身重力的作用下向下層沉降輸移,致使泥沙在進(jìn)水前池兩側(cè)產(chǎn)生淤積。
圖4 不同擴(kuò)散角下Z2斷面流速分布流線圖
由圖4a可見(jiàn),工程原型前池(=46°)主流區(qū)最大寬度為1.46B,僅為前池對(duì)應(yīng)斷面寬度的31.98%,漩渦回流區(qū)面積約為進(jìn)水前池面積的45%,進(jìn)水前池內(nèi)流場(chǎng)結(jié)構(gòu)較為紊亂。擴(kuò)散角為40°、35°、30°、25°、20°時(shí),主流區(qū)最大寬度分別為1.50B、1.66B、1.71B、1.75B、1.70B,為前池對(duì)應(yīng)斷面寬度的33.07%、39.65%、41.13%、42.76%、42.55%,漩渦回流區(qū)面積相對(duì)于工程原型前池分別減少了27.75%、42.69%、50.47%、62.49%、86.25%??梢?jiàn),大擴(kuò)散角進(jìn)水前池邊墻對(duì)水流的約束能力較弱,水流產(chǎn)生嚴(yán)重的脫壁現(xiàn)象,在主流區(qū)兩側(cè)產(chǎn)生大尺度的旋渦回流區(qū),在兩側(cè)大面積立軸漩渦的擠壓作用下,主流區(qū)寬度和其占前池對(duì)應(yīng)寬度比值均較小;而減小前池?cái)U(kuò)散角后主流區(qū)寬度和其占前池對(duì)應(yīng)寬度比值均有所增大,漩渦回流區(qū)面積被大大削減,入池水流得到充分?jǐn)U散。
經(jīng)對(duì)不同擴(kuò)散角體型下的正向進(jìn)水前池內(nèi)水流流態(tài)分析,發(fā)現(xiàn)不能通過(guò)不斷減小進(jìn)水前池?cái)U(kuò)散角的方式來(lái)改善進(jìn)水前池內(nèi)流場(chǎng)結(jié)構(gòu),過(guò)小擴(kuò)散角的進(jìn)水前池會(huì)受自身較小體型結(jié)構(gòu)的約束,限制主流的擴(kuò)散,導(dǎo)致水泵機(jī)組進(jìn)水條件的惡化。計(jì)算結(jié)果表明,擴(kuò)散角在25°~30°時(shí),前池主流區(qū)最大寬度和其占前池對(duì)應(yīng)斷面寬度比值較大,回流區(qū)面積占比進(jìn)水前池面積較小,入池水流擴(kuò)散效果較佳、流場(chǎng)結(jié)構(gòu)穩(wěn)定,可以有效地改善前池內(nèi)泥沙淤積狀況,提升泵站的運(yùn)行效率。
2.2.1 水流流速沿垂直水流方向分布規(guī)律
圖5給出了泵站進(jìn)水前池內(nèi)水流流速沿垂直水流方向典型分布。由圖可見(jiàn),正向進(jìn)水前池內(nèi)水流流速沿垂直水流方向呈中間大兩側(cè)小的分布,兩側(cè)存在低流速區(qū),且在池前導(dǎo)流墩的作用下中央主流區(qū)域流速出現(xiàn)一定幅度的波動(dòng);入池水流的主流區(qū)兩側(cè)明顯存在一個(gè)流速驟降區(qū),在靠近邊墻附近略有回升。沿水流流動(dòng)方向,入池水流得到有效擴(kuò)散,水流流速不斷減小,導(dǎo)流墩的作用被削弱,中央主流區(qū)域流速波動(dòng)幅度自斷面1至斷面6逐漸減小,同時(shí)低流速區(qū)內(nèi)漩渦對(duì)水流的影響增強(qiáng),主流區(qū)域兩側(cè)流速曲線驟降區(qū)與回升區(qū)域面積增加。
圖5 水流流速沿垂直水流方向分布
由圖5a、圖5b可見(jiàn),正向進(jìn)水前池中央主流區(qū)域流速平均值約前池進(jìn)口平均流速的70%~95%,兩側(cè)回流區(qū)內(nèi)流速平均值約為前池進(jìn)口平均流速的15%~30%,中央主流區(qū)域水流流速遠(yuǎn)大于兩側(cè)回流區(qū),中央?yún)^(qū)域主流效應(yīng)顯著;進(jìn)水前池內(nèi)的流速分布不均勻?qū)е鲁貎?nèi)泥沙濃度呈中間低、兩側(cè)高的分布,自前池中央向兩側(cè)泥沙濃度遞增。由圖5c、圖5d可見(jiàn),不同擴(kuò)散角下前池內(nèi)水流流速沿垂直水流方向分布特征相似,中央?yún)^(qū)域?yàn)橹髁鲄^(qū),兩側(cè)為低流速區(qū);當(dāng)前池邊墻擴(kuò)散角較大時(shí),主流區(qū)兩側(cè)回流區(qū)域面積大,進(jìn)水前池內(nèi)產(chǎn)生的漩渦尺度及強(qiáng)度較大,對(duì)中央主流區(qū)域產(chǎn)生的擠壓效應(yīng)嚴(yán)重,水流有效過(guò)流面積減??;隨著擴(kuò)散角的減小,主流區(qū)域兩側(cè)流速曲線驟降區(qū)與回升區(qū)域面積減小,主流區(qū)域流速下降,區(qū)域?qū)挾仍黾樱砻鬟M(jìn)入前池的水流擴(kuò)散效應(yīng)增加明顯。
2.2.2 水流流速沿水流方向分布規(guī)律
圖6給出了不同擴(kuò)散角下前池內(nèi)水流流速沿水流方向典型分布。圖6a、圖6b為主流區(qū)域水流流速沿水流方向分布,區(qū)域內(nèi)的水流流速沿流程逐漸減小。擴(kuò)散角在25°~46°之間時(shí),主流區(qū)沿縱向流速隨擴(kuò)散角的減小而逐漸降低;擴(kuò)散角為20°時(shí),主流區(qū)的縱向流速比擴(kuò)散角比25°、30°的大,在5斷面與直線l4-Z2交匯處,=20°時(shí)的流速分別約為=25°、=30°的1.20、1.10倍,這表明當(dāng)擴(kuò)散角過(guò)小時(shí),入池水流受前池較小體型結(jié)構(gòu)的約束而未能得到有效的擴(kuò)散,擴(kuò)散角為25°~30°間的前池入池水流沿流程發(fā)展和擴(kuò)散較為充分,有利于形成穩(wěn)定的前池流場(chǎng)結(jié)構(gòu),減少因進(jìn)水前池泥沙淤積而導(dǎo)致泵站運(yùn)行效率下降的問(wèn)題。
圖6c為主流區(qū)與回流區(qū)之間過(guò)渡區(qū)域水流流速沿水流方向分布,區(qū)域內(nèi)水流流速自邊墻起在主流的擴(kuò)散和帶動(dòng)作用下,沿流程逐漸增大;水流行進(jìn)至進(jìn)水前池末端和進(jìn)水池段時(shí),過(guò)水?dāng)嗝嫱辉觯瑫r(shí)受泵站機(jī)組吸水作用,水流迅速向兩端擴(kuò)散,使得水流流速快速增加,在/m=3.5附近達(dá)到最大值。圖6d為低流速區(qū)域水流流速沿水流方向分布,可見(jiàn),回流區(qū)內(nèi)流速較低,渦心處流速接近為0,最大逆向流速出現(xiàn)在擴(kuò)散角為46°前池回流區(qū)內(nèi)/B=3.12位置,其流速值為-0.330;隨著擴(kuò)散角的減小,前池內(nèi)逆向流速值減小,最小逆向流速出現(xiàn)在擴(kuò)散角為30°前池回流區(qū)內(nèi)/B=3.35位置,其流速值為?0.230;當(dāng)擴(kuò)散角小于25°時(shí),該特征直線所在的斷面回升區(qū)位于邊墻附近,逆向流速基本消失。
圖6 水流流速沿水流方向分布
2.2.3 水流流速沿水深方向分布規(guī)律
圖7給出了泵站進(jìn)水前池內(nèi)水流流速沿水深方向典型分布。由圖7a可見(jiàn),正向進(jìn)水前池水流流速沿水深方向分布形式為常見(jiàn)的指數(shù)型,在水深00.09B內(nèi)水流流速呈突增的趨勢(shì),自水深0.09B斷面處至水流表層流速增長(zhǎng)率迅速減小至接近于零,流速達(dá)到最大值后趨于穩(wěn)定,穩(wěn)定的水流流速保證了進(jìn)水前池內(nèi)上層水體的良好入池流態(tài);受水流流速對(duì)泥沙輸運(yùn)的影響,表層水流泥沙濃度低,下層水體泥沙濃度高,自水流表層至池底處泥沙濃度逐漸增加,使得泥沙在回流區(qū)影響范圍內(nèi)出現(xiàn)淤積現(xiàn)象。沿水流流動(dòng)方向,進(jìn)水前池內(nèi)沿水深方向水流流速不斷減小,進(jìn)一步展現(xiàn)了水流在流動(dòng)過(guò)程中的擴(kuò)散成效。
圖7b給出了正向進(jìn)水前池不同擴(kuò)散角下典型特征線上水流流速沿水深方向分布。可見(jiàn),不同擴(kuò)散角下前池內(nèi)水流流速沿水深方向分布特征基本保持不變,均為指數(shù)型分布;原型前池?cái)U(kuò)散角較大為46°,沿水深方向水流趨于穩(wěn)定后的流速值最大,隨著擴(kuò)散角的減小,趨于穩(wěn)定的流速呈不斷遞減趨勢(shì),說(shuō)明水流得到良好的擴(kuò)散。
圖7 水流流速沿水深方向分布
采用數(shù)值模擬和現(xiàn)場(chǎng)實(shí)測(cè)相結(jié)合的方法,研究了大型泵站正向進(jìn)水前池不同擴(kuò)散角體型結(jié)構(gòu)下池內(nèi)的流場(chǎng)結(jié)構(gòu)及水流流速特征,主要結(jié)論如下:
1)泵站機(jī)組全開時(shí),正向進(jìn)水前池內(nèi)流場(chǎng)結(jié)構(gòu)對(duì)稱分布,在進(jìn)水前池中央形成主流區(qū),兩側(cè)形成回流區(qū),回流區(qū)內(nèi)產(chǎn)生漩渦;前池?cái)U(kuò)散角較大時(shí),兩側(cè)回流區(qū)對(duì)主流區(qū)的擠壓作用明顯;縮小前池?cái)U(kuò)散角能夠有效減小兩側(cè)回流區(qū)的擠壓作用,進(jìn)入前池的水流擴(kuò)散效應(yīng)增加明顯,縮小回流區(qū)和漩渦的尺度,優(yōu)化池內(nèi)水流流態(tài),提升了池內(nèi)流場(chǎng)結(jié)構(gòu)的穩(wěn)定性。
2)泵站正向進(jìn)水前池內(nèi)水流流速沿垂直水流方向呈中間大兩側(cè)小的分布,入池水流的主流區(qū)兩側(cè)明顯存在一個(gè)流速驟降區(qū),在靠近邊墻附近略有回升;中央主流區(qū)域流速平均值約為前池進(jìn)口平均流速的70%~95%,兩側(cè)回流區(qū)內(nèi)流速平均值約為前池進(jìn)口平均流速的15%~30%,中央?yún)^(qū)域主流效應(yīng)顯著。沿水流流動(dòng)方向主流區(qū)水流流速由于水流的擴(kuò)散作用沿流程逐漸減小,擴(kuò)散角在25°~46°之間時(shí),主流區(qū)沿水流方向流速隨擴(kuò)散角的減小而逐漸降低;擴(kuò)散角過(guò)小時(shí),入池水流受前池較小體型結(jié)構(gòu)的約束而未能得到有效的擴(kuò)散。沿水深方向水流流速呈指數(shù)型分布,在水深0~0.09B范圍內(nèi)流速增加速度快,隨后變化梯度小。
3)泵站正向進(jìn)水前池?cái)U(kuò)散角在25°~30°之間時(shí),入池的水流沿流程發(fā)展和擴(kuò)散較為充分,可以有效改善多泥沙河流引水泵站前池的泥沙淤積,提升泵站的運(yùn)行效率。
[1] 張校文,劉超,榮迎春,等. 多機(jī)組泵站正向進(jìn)水陣列式隔板整流模擬及試驗(yàn)驗(yàn)證[J]. 排灌機(jī)械工程學(xué)報(bào),2022,40(4):378-384.
ZHANG Xiaowen, LIU Chao, RONG Yingchun, et al. Numerical simulation and experimental verification of forward feed array diaphragm rectifier for multi-unit pumping station[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(4) : 378-384. (in Chinese with English abstract)
[2] 付輝,牛華寺,毛雨佳,等. 超窄聯(lián)合泵房前池水力性能優(yōu)化:實(shí)例研究[J]. 水利學(xué)報(bào),2020,51(7):788-795,804.
FU Hui, NIU Huasi, MAO Yujia, et al. Hydraulic performance optimization of the ultra narrow union pumping forebay: A case study[J]. Journal of Hydraulic Engineering, 2020, 51(7): 788-795, 804. (in Chinese with English abstract)
[3] 營(yíng)佳瑋,俞曉東,賀蔚,等. 基于流體體積模型的泵站前池流態(tài)及組合式整流方案[J]. 排灌機(jī)械工程學(xué)報(bào),2020,38(5):476-480,493.
YING Jiawei, YU Xiaodong, HE Wei, et al. Volume of fluid model-based flow pattern in forebay of pump station and combined rectification scheme[J]. Journal of Drainage And Irrigation Machinery Engineering, 2020, 38(5): 476-480, 493. (in Chinese with English abstract)
[4] 資丹,王本宏,王福軍,等. 開機(jī)組合對(duì)泵站進(jìn)水系統(tǒng)泥沙濃度分布的影響[J].農(nóng)業(yè)工程學(xué)報(bào),2022,38(7):59-68.
ZI Dan, WANG Benhong, WANG Fujun, et al. Influences of start-up pump units on the sediment concentration for the intake system of a pumping station[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(7): 59-68. (in Chinese with English abstract)
[5] 田俊姣. 多梯級(jí)揚(yáng)水工程更新改造效果評(píng)價(jià)研究[D]. 鄭州:華北水利水電大學(xué),2019.
TIAN Junjiao. Study on Evaluation of Renewal and Reconstruction Effect of Multi-Cascade Water-Lifting Project[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2019. (in Chinese with English abstract)
[6] 徐存東,王國(guó)霞,劉輝,等. 大型泵站正向前池防淤優(yōu)化模擬研究[J]. 武漢大學(xué)學(xué)報(bào)(工學(xué)版),2018,51(7):577-588.
XU Cundong, WANG Guoxia, LIU Hui, et al. Simulation study of preventing sedimentation in front intake forebay at large-scale pumping station[J]. Engineering Journal of Wuhan University, 2018, 51(7): 577-588. (in Chinese with English abstract)
[7] 王福軍,唐學(xué)林,陳鑫,等. 泵站內(nèi)部流動(dòng)分析方法研究進(jìn)展[J]. 水利學(xué)報(bào),2018,49(1):47-61,71.
WANG Fujun, TANG Xuelin, CHEN Xin, et al. A review on flow analysis method for pumping stations[J]. Journal of Hydraulic Engineering, 2018, 49(1): 47-61, 71. (in Chinese with English abstract)
[8] 李明,王勇,熊偉,等. 泵站側(cè)向進(jìn)水前池幾何參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(19):69-77.
LI Ming, WANG Yong, XIONG Wei, et al. Optimizing the geometric parameters for the lateral inflow forebay of the pump sump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(19): 69-77. (in Chinese with English abstract)
[9] CONSTANTINESCU S G, PATE V C. Role of turbulence model in prediction of pump-bay vortices[J]. Journal of Hydraulic Engineering, 2000, 126(5): 387-391.
[10] 資丹,王福軍,姚志峰,等. 大型泵站進(jìn)水流場(chǎng)組合式導(dǎo)流墩整流效果分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(16):71-77.
ZI Dan, WANG Fujun, YAO Zhifeng, et al. Effects analysis on rectifying intake flow field for large scale pumping station with combined diversion piers[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 71-77. (in Chinese with English abstract)
[11] 李顏雁,郭鵬程,孫龍剛,等. 立柱對(duì)大型泵站前池和進(jìn)水池流態(tài)影響的數(shù)值分析[J]. 排灌機(jī)械工程學(xué)報(bào),2021,39(9):929-936.
LI Yanyan, GUO Pengcheng, SUN Longgang, et al. Numerical analysis on influence of vertical column on flow pattern in forebay and intake of large pumping station[J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(9): 929-936. (in Chinese with English abstract)
[12] 周濟(jì)人,仲召偉,梁金棟,等. 側(cè)向進(jìn)水泵站前池整流三維數(shù)值計(jì)算[J]. 灌溉排水學(xué)報(bào),2015,34(10):52-55,80.
ZHOU Jiren, ZHONG Zhaowei, LIANG Jindong, et al. Three-dimensional numerical simulation of side-intake forebay of pumping station[J]. Journal of Irrigation and Drainage, 2015, 34(10): 52-55, 80. (in Chinese with English abstract)
[13] 雷鎮(zhèn). 多機(jī)組泵站前池流動(dòng)特征和組合整流[D]. 揚(yáng)州:揚(yáng)州大學(xué),2020.
LEI Zhen. Study on the Influence of the Start-Up Combinations on the Characteristics of the Water-Sediment Flow Field in Forebay of Pumping Station[D]. Yangzhou: Yangzhou University, 2020. (in Chinese with English abstract)
[14] 李志祥,馮建剛,錢尚拓,等. 排水泵站整流底坎參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(3):56-63.
LI Zhixiang, FENG Jiangang, QIAN Shangtuo, et al. Optimization of rectification bottom sill parameters in drainage pumping stations[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(3): 56-63. (in Chinese with English abstract)
[15] 竇元之,顧靖超,陸立國(guó),等. 高含沙水泵站前池?cái)U(kuò)散角試驗(yàn)與分析[J]. 中國(guó)農(nóng)村水利水電,2020(5):114-119,127.
KOU Yuanzhi, GU Jingchao, LU Liguo, et al. Test and analysis of diffusion angle of front pool of high sand water pumping station[J]. China Rural Water and Hydropower, 2020(5): 114-119, 127. (in Chinese with English abstract)
[16] 高傳昌,曾新樂(lè),解克宇,等. 泵站進(jìn)水池超低水位下組合整流方案與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(23):101-108.
GAO Chuanchang, ZENG Xinle, XIE Keyu, et al. Combined rectification scheme of pump intake sump in ultra-low water level and its verification[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 101-108. (in Chinese with English abstract)
[17] 徐存東,李嘉明,王榮榮,等. 開機(jī)組合對(duì)泵站前池水沙流場(chǎng)特性的影響[J]. 河海大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,50(2):11-16,91.
XU Cundong, LI Jiaming, WANG Rongrong, et al. Study on the influence of the start-up combinations on the characteristics of the water-sediment flow field in forebay of pumping station[J]. Journal of Hohai University (Natural Sciences), 2022, 50(2): 11-16, 91. (in Chinese with English abstract)
[18] 趙斌娟,袁壽其,劉厚林,等. 基于Mixture多相流模型計(jì)算雙流道泵全流道內(nèi)固液兩相湍流[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(1):7-12.
ZHAO Binjuan, YUAN Shouqi, LIU Houlin, et al. Simulation of solid-liquid two-phase turbulent flow in double-channel pump based on mixture model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(1): 7-12. (in Chinese with English abstract)
[19] 徐磊,夏斌,施偉,等. 中隔墩長(zhǎng)度對(duì)斜式軸伸泵裝置出水流道水力特性的影響[J].農(nóng)業(yè)工程學(xué)報(bào),2020,36(1):74-81.
XU Lei, XIA Bin, SHI Wei, et al. Influence of middle pier lengths on hydraulic characteristic of outlet conduit in pump system with slanted extension shaft[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 74-81. (in Chinese with English abstract)
[20] TOMAS C R, ROGER L. Mathematical and Numerical Foundations of Turbulence Models and Applications[M]. New York: Birkh?user, 2014.
[21] CHIPONGO Kudzai, KHIADANI Mehdi, Sookhak Lari Kaveh. Comparison and verification of turbulence Reynolds- averaged Navier-Stokes closures to model spatially varied flows[J]. Scientific Reports, 2020, 10(1): 19059-19059.
[22] 唐學(xué)林,王武昌,王福軍,等. 泵站前池水沙流的數(shù)值模擬[J]. 排灌機(jī)械工程學(xué)報(bào),2011,29(5):411-417.
TANG Xuelin, WANG Wuchang, WANG Fujun, et al. Numerical simulation of slit-laden flows in pumping station forebay[J]. Journal of Drainage and Irrigation Machinery Engineering, 2011, 29(5): 411-417. (in Chinese with English abstract)
[23] 司喬瑞,唐亞靜,甘星城,等. 立式管道泵進(jìn)水彎管和葉輪的參數(shù)化分析與驗(yàn)證[J].農(nóng)業(yè)工程學(xué)報(bào),2020,36(17):54-63.
SI Qiaorui, TANG Yajing, GAN Xingcheng, et al. Parametric analysis and verification of curved inlet pipe and impeller of
vertical inline pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 54-63. (in Chinese with English abstract)
[24] 王苗,李琳,楊海華,等. 梭錐管混濁流體分離裝置水沙兩相流數(shù)值模擬[J]. 水動(dòng)力學(xué)研究與進(jìn)展(A輯),2013,28(3):291-298.
WANG Miao, LI Lin, YANG Haihua, et al. Numerical simulation of the water-sediment two phase in turbid fluid separation device of shuttle-conical tube[J]. Chinese Journal of Hydrodynamics(Part A), 2013, 28(3): 291-298. (in Chinese with English abstract)
[25] VERSTEEG H, MALALASEKERA W. An introduction to Computational Fluid Dynamics:The Finite Volume Method[M]. 2nd edition . Upper Saddle Rive: Prentice Hall, 2007 .
[26] 高傳昌,劉新陽(yáng),石禮文,等. 泵站前池與進(jìn)水池整流方案數(shù)值模擬[J]. 水力發(fā)電學(xué)報(bào),2011,30(2):54-59.
GAO Chuanchang, LIU Xinyang, SHI Wenli, et al. Numerical simulation of flow pattern modification schemes for the forebay and suction sump of pumping station[J]. Journal of Hydroelectric Engineering, 2011, 30(2): 54-59. (in Chinese with English abstract)
[27] 吳修廣,沈永明,鄭永紅,等. 非正交曲線坐標(biāo)下二維水流計(jì)算的SIMPLEC算法[J]. 水利學(xué)報(bào),2003(2):25-30,37.
WU Xiuguang, SHEN Yongming, ZHENG Yonghong, et al.
2-D flow SIMPIC algorithm in non-orthogonal curvilinear coordinates[J]. Journal of Hydraulic Engineering, 2003(2): 25-30, 37. (in Chinese with English abstract)
[28] SCHUBERT A L, HAGEMANN D, VOSS A, et al . Evaluating the model fit of diffusion models with the root mean square error of approximation[J]. Journal of Mathematical Psychology, 2017, 77: 29-45.
Influence of diffusion angle on flow field structure in forward intake forebay of pumping station
FAN Xinjian, DONG Chunhai, WANG Zhijun, LU Ya’nan, YAO Wei
(730050,)
A pumping station is widely used in a water distribution system for the efficient and reliable transportation. However, the sediment deposition can pose an outstanding decrease in the operating efficiency of pump station. Particularly, the water is taken from the river with the high content of sand, such as in the Yellow River Basin. More importantly, the low flow pattern and large-scale backflow area can often occur in the forward intake forebay of a large-scale pumping station. The current anti-siltation measures cannot effectively improve the intake field structure in large-scale pumping station, due to the multiple dimensions, and single rectification. In this study, a systematic investigation was made to clarify the influence of diffusion angle on the flow field structure in the forward intake forebay of a pumping station. The typical research object was taken as the forward intake forebay of large-scale pumping station in Jingtaichuan Electric Power Irrigation Project in Gansu Province of China. A field investigation was firstly performed on the sediment deposition in the forward intake forebay of pumping station. The sampling was then implemented to analyzed the variation characteristics of sediment concentration and sediment particle size in the water flow from pumping station. A three-dimensional model was also established for the forward intake forebay with the different diffusion angle. Numerical simulation was carried out using the Mixture multiphase, and Realizable-model. The actual flow measurement was utilized to verify the accuracy of the numerical calculation. The characteristics of flow field structure were clarified in the forward intake forebay, together with the variation under the diffusion angle of the forebay. The mechanism of sediment deposition was revealed to propose the diffusion angle range for the optimal flow field structure in the forward intake forebay. The results show that the flow field structure was symmetrically distributed in the forward intake forebay of pumping station under the design operation conditions of the unit. The mainstream area was formed in the center of the intake forebay, whereas, the backflow area was formed on both sides. The flow velocity and the ability of current to carry sediment in the central mainstream area were much higher and stronger than those in the backflow area on both sides. The sediment deposition decreased significantly from the both sides to the center, indicating the significant mainstream effect. Furthermore, the squeezing effect of vortices was weakened in the backflow areas on both sides of the intake forebay on the mainstream area, as the diffusion angle of forebay decreased, while the area of low flow velocity on both sides also decreased significantly. At the same time, there was an increasing trend in the width of the central mainstream area, whereas, a downward trend was found in the flow velocity in the mainstream area. The ability of current to carry sediment increased to promote the performance of the flow diffusion entering the forebay. Once the diffusion angle was between 25°and 30°, the flow entering the pool was well developed to diffuse sufficiently along the pipeline, indicating the better flow pattern with the much more stable structure of flow field . The sediment deposition was effectively reduced in the forebay of the diversion pumping station on the sandy river. As such, the operating efficiency of pumping units was improved to guarantee the realistic benefit of irrigation project. The research findings can also provide the strong reference to design and update the large-scale pumping stations.
pumping station; numerical simulation; forward intake forebay; diffusion angle; flow field structure; sediment deposition
10.11975/j.issn.1002-6819.202208112
TV675
A
1002-6819(2023)-01-0092-08
樊新建,董春海,王之君,等. 泵站正向進(jìn)水前池?cái)U(kuò)散角對(duì)池內(nèi)流場(chǎng)結(jié)構(gòu)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2023,39(1):92-99.doi:10.11975/j.issn.1002-6819.202208112 http://www.tcsae.org
FAN Xinjian, DONG Chunhai, WANG Zhijun, et al. Influence of diffusion angle on flow field structure in forward intake forebay of pumping station[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(1): 92-99. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202208112 http://www.tcsae.org
2022-08-15
2022-11-23
國(guó)家自然科學(xué)基金(42167043);甘肅省自然科學(xué)基金(21JR7RA238);甘肅省水利科學(xué)試驗(yàn)研究及技術(shù)推廣項(xiàng)目(甘水建管發(fā)[2020]46號(hào)第70)
樊新建,博士,副教授,研究方向?yàn)樗W(xué)及河流動(dòng)力學(xué)。Emaill:fanxj008@163.com