賀三,羅斯琪,趙浩童,薛培強
碳鋼在CO2環(huán)境中無機垢下腐蝕研究進展
賀三1,羅斯琪1,趙浩童1,薛培強2
(1.西南石油大學(xué),成都 610500;2.中國石油青海油田井下作業(yè)公司,青海 茫崖 817400)
垢下腐蝕(UDC)是油氣管道失效的重要原因之一。垢層下腐蝕環(huán)境區(qū)別于無垢層覆蓋區(qū)域,可能產(chǎn)生嚴重的局部腐蝕,甚至引起管道穿孔。針對CO2環(huán)境下的無機物垢層,對油氣管道中碳鋼的垢下腐蝕研究進展進行了綜述,簡述了垢下腐蝕的作用機理、影響因素和控制方法。由于化學(xué)成分和環(huán)境的多樣性,垢下腐蝕的作用機制并不唯一,發(fā)現(xiàn)在CO2環(huán)境下電偶腐蝕機理被普遍討論,根據(jù)陰陽極的分布情況,從3個方面對電偶腐蝕機理進行了概括。垢下腐蝕速率主要與垢層性質(zhì)和介質(zhì)環(huán)境有關(guān),總結(jié)了無機物垢層性質(zhì)、pH值和不同工況條件對碳鋼垢下腐蝕的影響。概述了垢下腐蝕的主要控制方法,著重介紹了緩蝕劑的作用機理,發(fā)現(xiàn)緩蝕劑的效果很大程度上受到垢層性質(zhì)的影響。最后,對垢下腐蝕未來的研究方向及發(fā)展趨勢進行了展望,為進一步揭示無機鹽與CO2腐蝕產(chǎn)物混合層的保護性,有必要從半導(dǎo)體電子微觀的角度進行分析。同時,在高濃度CO2環(huán)境下探討垢下腐蝕的作用機制與影響規(guī)律,也是未來的研究方向之一。
垢下腐蝕;CO2環(huán)境;碳鋼;腐蝕機理;影響因素;控制方法
垢下腐蝕(Under-deposit Corrosion)是指金屬表面由于形成沉積物而導(dǎo)致的局部腐蝕,垢層下方或周圍的腐蝕會被加劇[1-2]。垢下腐蝕通常被認為是威脅油氣生產(chǎn)安全和運輸設(shè)施完整性的一個重要因素[3]。
在油氣工業(yè)中,形成垢層的沉積物通常有3種類型[4]:(1)無機沉積物,如地層中產(chǎn)生的砂粒、腐蝕產(chǎn)物(硫化鐵、氧化物和碳酸鹽等)、采出水中的沉積物(CaCO3、BaSO4和S沉淀等);(2)有機沉積物,如原油當(dāng)中常見的沉積物(瀝青質(zhì)、蠟)、微生物形成的生物膜;(3)有機沉積物和無機沉積物組成的混合沉積物。例如,在采出水設(shè)施中,可能會形成一種被稱為“Schmoo”的黑色混合沉積物,并覆蓋管道的整個內(nèi)表面[5]。
在已有的垢下腐蝕綜述中,對無機垢層的概述有限,但管道內(nèi)表面往往存在大量的無機物顆粒,包括開發(fā)過程帶來的砂粒和黏土,以及注水導(dǎo)致的無機鹽垢。同時CO2腐蝕作為油氣行業(yè)中非常嚴重且常見的問題,對其垢下腐蝕行為的研究卻相對較少。因此,本文重點討論CO2環(huán)境中無機垢下的腐蝕研究進展,總結(jié)了無機垢下腐蝕的作用機制、影響因素及控制方法。
根據(jù)溶液的pH值,垢下腐蝕通??梢苑譃樗嵝院蛪A性兩種[6-7]。堿性腐蝕是指腐蝕介質(zhì)中含有NaOH、pH值高于13的情況。NaOH的存在會破壞金屬表面生成的氧化膜,引發(fā)電化學(xué)腐蝕,并且生成Na2CO3等腐蝕產(chǎn)物。酸性腐蝕主要是因為腐蝕介質(zhì)中含有CaCl2和MgCl2等,Ca2+和Mg2+會水解形成Mg(OH)2、Ca(OH)2以及H+,這將進一步導(dǎo)致pH值降低,引起腐蝕。
垢層在金屬表面的堆積和不均勻分布,會引起垢層下嚴重腐蝕,表現(xiàn)形式包括點蝕、縫隙腐蝕、不同覆蓋度的垢層表面之間或與裸露金屬之間形成的電偶腐蝕,會對管輸設(shè)施造成威脅,甚至引發(fā)管道泄漏、堵塞和失效[8-9]。圖1所示的管道內(nèi)表面堆積大量腐蝕產(chǎn)物形成的銹垢,可能由于堵塞嚴重而造成管道報廢[10]。對無機垢層而言,其自身的物理和化學(xué)性質(zhì)對腐蝕的發(fā)展有重要影響,加之實際工況下溫度、介質(zhì)離子等環(huán)境影響,腐蝕行為的復(fù)雜性也隨之增加。
圖1 管線內(nèi)壁結(jié)垢[10]
因為涉及不同的金屬(被動的或主動的)、不同類型的垢層(活性的、惰性的)和不同的腐蝕性物質(zhì)(O2、CO2、H2S、H+、微生物),所以不存在一種單一的腐蝕機制適用于垢層下發(fā)生的所有腐蝕情況[11],即使只關(guān)注油氣行業(yè)中的碳鋼,也可能存在不同的機制來控制垢層下的局部腐蝕。垢層的物理化學(xué)性質(zhì)和外界條件決定了陰陽極的分布,腐蝕機制可分為以下3種類型[12-13]。
(1)僅在垢層下方表現(xiàn)出陽極和陰極,不存在外部陰極。由于垢層下方的腐蝕環(huán)境會隨時間推移而發(fā)生顯著變化,因此整個過程可以用沉積-溶解-局部腐蝕機制來解釋。
(2)垢層下方的內(nèi)部陽極和裸露金屬的外部陰極。垢層下的腐蝕將首先從靠近垢層邊緣的區(qū)域開始。這一機理類似于縫隙腐蝕,驅(qū)動力都來源于沉積層內(nèi)外的化學(xué)性質(zhì)差異。
以CO2環(huán)境下的砂粒沉積物為例,覆蓋電極作為陽極腐蝕區(qū),裸露電極作為陰極保護區(qū),砂粒覆蓋下電極的腐蝕加速且發(fā)生點蝕現(xiàn)象[15-16]。砂粒之間的孔隙允許腐蝕性物質(zhì)向鋼表面滲透,由于陰極區(qū)域遠大于陽極,點蝕坑易形成,并且Cl?的滲入又維持了坑內(nèi)的電中性和低pH值,坑的生長被進一步促進。
研究表明,裸金屬與垢層覆蓋金屬電極的極性會發(fā)生反轉(zhuǎn),受溫度和腐蝕時間的影響。Zhang等[17]研究了混合無機垢層(包括砂、黏土、腐蝕產(chǎn)物、單質(zhì)硫)包覆電極與裸鋼電極之間的電效應(yīng)(圖3),發(fā)現(xiàn)在25 ℃時,垢層覆蓋的電極始終作為陰極;60 ℃時,在大約22 h后,垢層覆蓋的電極由陰極轉(zhuǎn)變?yōu)殛枠O,這是由于裸電極表面形成了FeCO3,阻礙了腐蝕離子與電極之間的接觸,電位發(fā)生顯著正移。在25 ℃時,裸電極上沒有形成致密的FeCO3腐蝕產(chǎn)物膜,可能是因為FeCO3的生成速率小于溶解速率。
(3)沒有陽極和陰極的局部分離,表現(xiàn)為垢層下的均勻腐蝕。例如,在裸露的鋼不會持續(xù)腐蝕的情況下,吸附鹽類物質(zhì)或黏土可能會誘發(fā)垢下腐蝕。
對垢下腐蝕的研究認為,沉積覆蓋區(qū)域與裸露區(qū)域之間的電偶效應(yīng)是導(dǎo)致局部腐蝕的重要原因[18]。金屬表面垢層,尤其是在CO2環(huán)境下形成的腐蝕產(chǎn)物層,通常具有n型半導(dǎo)體行為[19],在腐蝕介質(zhì)中的穩(wěn)定電位高于金屬本身,不管在垢層覆蓋部分或裸金屬區(qū)域,垢層都可以作為陰極加速垢下腐蝕的產(chǎn)生[20]。
除了電偶腐蝕,自催化反應(yīng)也是引發(fā)垢下腐蝕的重要原因[21]。垢層具有良好的封閉作用,導(dǎo)致垢層內(nèi)外腐蝕介質(zhì)的交換受阻,而垢層本身存在的孔隙或垢層與金屬基體表面形成的微孔,將成為腐蝕性介質(zhì)的擴散通道。通常垢層具有陰離子選擇透過性,導(dǎo)致內(nèi)部腐蝕產(chǎn)生的金屬陽離子(Fe2+、Fe3+)難以擴散,從而積聚造成過多正電荷,為維持內(nèi)部電荷平衡,Cl?不斷遷入,腐蝕進一步加劇。研究發(fā)現(xiàn),CO2的存在會加速穿孔速率,導(dǎo)致閉塞區(qū)環(huán)境惡化[22]。在這種條件下,盡管金屬表面被垢層完全覆蓋,但是垢下腐蝕仍以較高的速率進行。如果垢層表現(xiàn)出陽離子選擇性,金屬將不會產(chǎn)生明顯的腐蝕自催化作用[23]。
圖2 巖石層覆蓋電極在CO2飽和溶液中的腐蝕機理示意圖[14]
圖3 裸電極與垢層覆蓋電極的開路電位及其耦合電位在不同溫度下隨時間的變化[17]
垢下腐蝕的產(chǎn)生與發(fā)展除了與材料本身的性質(zhì)有關(guān),還與介質(zhì)組成(如腐蝕介質(zhì)中有機物的含量及組成、易結(jié)垢離子的濃度、Cl?濃度、無機物成分)、pH值大小和工況條件(溫度、壓力、介質(zhì)流速)等因素相關(guān)[24-25]。本節(jié)主要闡述垢層性質(zhì)、pH值大小和不同工況條件對垢下腐蝕的影響。
根據(jù)垢層是否參與基材的腐蝕電化學(xué)反應(yīng),可分為惰性與非惰性[26-27]。惰性垢層不參與電化學(xué)反應(yīng),只是作為物理屏障,以硅砂和水垢為主。而腐蝕產(chǎn)物(FeCO3)作為典型的非惰性垢層,具有電化學(xué)活性,被認為會極大地影響陽極和陰極反應(yīng)。
Alanazi等[28]研究表明,砂粒在鋼表面可形成有效保護膜,通過減少腐蝕產(chǎn)物的擴散來延緩腐蝕反應(yīng),有效降低了整體與局部腐蝕速率,但局部侵蝕的產(chǎn)生卻無法避免。Cheng等[29]研究了由CaCO3和少量MgCO3組成的垢層,發(fā)現(xiàn)鋼的腐蝕速率隨垢層覆蓋面積的增加而降低,但仍可觀察到明顯的腐蝕坑(圖4)。試驗表明[30],較小的硅砂顆粒(直徑小于44 μm)比較大的硅砂顆粒(直徑為250~750 μm)造成的局部腐蝕更?。▓D5),垢層孔隙度減少或厚度增加能減緩腐蝕物質(zhì)的擴散。
圖4 不同時間下去除腐蝕產(chǎn)物后的SEM形貌特征[29]
圖5 在大硅砂(直徑750 μm)和小硅砂(<44 μm)沉積下的局部腐蝕[30]
相對于硅砂和CaCO3,F(xiàn)eCO3與鋼有更好的附著力,抗腐蝕能力更強,因為Fe2+來自腐蝕鋼表面,在鋼表面Fe2+被釋放的地方會立即生成[21]。由于CaCO3與FeCO3同構(gòu),Ca2+易摻入FeCO3中,F(xiàn)eCO3的形態(tài)和保護性發(fā)生改變,結(jié)垢在一定程度上會導(dǎo)致金屬嚴重的局部腐蝕和完整性喪失。Ding等[31]發(fā)現(xiàn)Ca2+質(zhì)量濃度從256 mg/L增加到512 mg/L時,腐蝕速率隨之增加,因為新生成的(Fe,Ca)CO3結(jié)構(gòu)疏松且晶粒尺寸增大,并且鈣原子的比例隨Ca2+含量的增加而增加。Esmaely等[32]則認為在Ca2+濃度較低(0.01%)的情況下,形成的FeCO3或混合碳酸鹽(FeCa1?xCO3)具有保護性。只有當(dāng)高濃度(1%)Ca2+存在時,腐蝕速率才會增加。Esmaely等[33]發(fā)現(xiàn)CaFeCO3(+= 1)單位細胞中Ca2+的物質(zhì)的量分數(shù)接近1時,該層對鋼的保護作用會減弱。Ca2+的共同沉淀增加了FeCO3中陽離子和氧之間的鍵長,擴大了晶格體積。Zhao等[34]聲稱當(dāng)Ca2+和Mg2+存在時,腐蝕產(chǎn)物主要由Fe(Ca,Mg)(CO3)2組成,垢層變厚,基體腐蝕速率會在“短期內(nèi)”下降,但從長期來看差異并不顯著。另外,Jiang等[35]研究發(fā)現(xiàn)Cl?造成了點蝕,但Ca2+的存在可以推遲點蝕的開始。然而Esmaely等[33]卻發(fā)現(xiàn)局部腐蝕的產(chǎn)生與Ca2+有關(guān),與Cl?的存在無關(guān)。
從現(xiàn)有研究來看,對Fe和Ca構(gòu)成的混合層分析有限,其保護性與Ca2+濃度的關(guān)系尚無共識。造成這種現(xiàn)象的原因,有學(xué)者認為是在當(dāng)前研究中,常以初始Ca2+濃度為依據(jù),但溶液中CaCO3和FeCO3的飽和度是一個比單離子濃度更重要的參數(shù)[36]。固體CaCO3和FeCO3的沉淀動力學(xué)很大程度上受體積飽和度的影響,當(dāng)沉淀速率大于腐蝕速率時,垢層會變得致密,反之會變得多孔且無保護作用[37-38]。另外在油田條件下,鋇、鍶等其他垢的保護性能及其與碳酸亞鐵的相互作用鮮有研究,其對一般和局部腐蝕行為的影響缺少討論。在同一體系下同時考慮礦物結(jié)垢和腐蝕,有待深入分析。
pH值對CaCO3和FeCO3的沉淀速率有較大影響。CaCO3在pH值較大時容易生成,并且隨著pH值的增加,更易生成致密的垢層[39]。此外,H+的陰極還原會隨pH值的增加而減慢,鐵的陽極溶解速度會被降低[40]。但如果垢下腐蝕已經(jīng)發(fā)生,由于垢層對腐蝕介質(zhì)的阻隔作用,認為溶液pH值增加會加大閉塞區(qū)的內(nèi)外差異,進一步提高腐蝕驅(qū)動力,垢下腐蝕反而加劇[41]。
在裸鋼CO2腐蝕中,改變?nèi)芤簆H值將直接影響整體腐蝕速率。但Huang等[42]發(fā)現(xiàn)當(dāng)惰性沉積物硅砂存在時,不同溶液pH下的腐蝕速率無明顯差異(圖6)。進一步測量發(fā)現(xiàn)沉積物下的pH值明顯高于溶液pH值,但與沉積物類型、溶液pH值和溫度無關(guān)。這解釋了溶液pH和腐蝕速率的無關(guān)性。而Tavares等[43]對比研究了溶液中有無CaCO3時碳鋼的腐蝕情況,發(fā)現(xiàn)添加CaCO3后,碳鋼的均勻腐蝕速率明顯降低。Tavares認為這是由于CaCO3使溶液pH從2.7增加到4.7的緣故,與混合碳酸鹽晶體(FeCa1?xCO3)的保護性無關(guān),混合層反而因為孔隙增大而造成點蝕。
圖6 在不同溶液pH下裸鋼和有砂沉積鋼之間的一般CO2腐蝕速率比較[42]
3.3.1 溫度的影響
溫度對垢下腐蝕的影響主要反映在兩方面,一方面由電化學(xué)腐蝕動力學(xué)可知,溫度升高,電化學(xué)腐蝕速率增加;另一方面溫度也會對結(jié)垢過程產(chǎn)生影響,進而影響垢下腐蝕行為。
溫度是影響結(jié)垢的主要因素之一,包括垢層的形成速率、垢層的晶體結(jié)構(gòu)與穩(wěn)定性。由于碳酸鹽垢(CaCO3、MgCO3)具有反常的溶解度特性,因此在高溫下更易形成[44]。常溫下,水垢以方解石為主,結(jié)構(gòu)疏松,無阻礙作用;當(dāng)溫度增加到一定程度后,水垢以文石型為主,結(jié)構(gòu)致密,對金屬基體有一定的保護性[45]。
目前對FeCO3的保護性有許多研究,已經(jīng)證實溫度升高有利于形成更致密的腐蝕產(chǎn)物層。針對FeCaCO3混合層,Shamsa等[46]發(fā)現(xiàn)同樣在高溫下混合層能對鋼基體提供更好的保護。如圖7a所示,低溫80 ℃下腐蝕坑加速生長,且觀察到更高的均勻腐蝕速率。圖7b為高溫150 °C的情況,均勻和局部腐蝕所受影響明顯變小,證實了FeCaCO3混合層的保護性。
研究表明溫度對CO2腐蝕產(chǎn)物層的影響存在轉(zhuǎn)折點[47-48],只有達到一定溫度時,才會形成保護性腐蝕產(chǎn)物,進而降低腐蝕速率。Ueda和Ikeda的研究發(fā)現(xiàn)[40],溫度大約在60 ℃時,生成的腐蝕產(chǎn)物FeCO3較少,且附著能力差,以均勻腐蝕為主;當(dāng)溫度在100 ℃左右時,腐蝕產(chǎn)物膜增厚但也變得更加疏松多孔,造成嚴重的局部腐蝕,此時的腐蝕速率最大;溫度達到150 ℃后,生成的腐蝕產(chǎn)物FeCO3變得致密且附著能力強,腐蝕速率降低。當(dāng)存在CaCO3等無機垢時,混合層保護性與溫度的關(guān)系缺乏細化研究,敏感區(qū)間的確定有待進一步探討。
3.3.2 流速的影響
流速的影響主要體現(xiàn)在兩個方面,一方面是流速對腐蝕速率的影響,另一方面是流速對垢形成的影響。
當(dāng)流速較慢時,管道內(nèi)壁上的剪切力降低,介質(zhì)中的固體顆粒(砂、黏土)和易結(jié)垢的離子(Ca2+、Mg2+、Ba2+)會逐漸沉積在管道內(nèi)壁附近,形成較均勻的垢層,主要發(fā)生均勻腐蝕[49]。當(dāng)介質(zhì)流速較高時,固體不易沉積,導(dǎo)致垢層分布不均,根據(jù)閉塞區(qū)效應(yīng)及電偶效應(yīng),垢下局部腐蝕發(fā)生的可能性增大。如圖8所示,較高流速(1.5~2.5 m/s)下金屬表面腐蝕坑增大并產(chǎn)生裂紋,垢下腐蝕加劇[50]。當(dāng)鋼表面已覆有垢層時,溶液流速的增加會稀釋或破壞垢層,造成腐蝕性物質(zhì)滲透到鋼表面,加劇腐蝕[51-52]。
圖7 去除腐蝕產(chǎn)物后鋼表面在溶液中暴露96 h后的輪廓圖[46]
圖8 不同流速條件下試樣經(jīng)10 d腐蝕試驗后的表面SEM形貌(去除表面垢層)[50]
3.3.3 壓力的影響
目前的研究主要分析了壓力對裸鋼CO2腐蝕速率或結(jié)垢的影響。Schmitt等[53]認為CO2分壓是腐蝕產(chǎn)物膜形成的函數(shù),當(dāng)(CO2)<0.5 mpa時,試樣表面的腐蝕產(chǎn)物膜疏松,腐蝕速率較高;(CO2)>1 mPa時,腐蝕產(chǎn)物膜較致密,對基體保護性提高。Dyer和Graham評估了壓力對結(jié)垢的影響,發(fā)現(xiàn)壓力增加時,碳酸鈣的過飽和度降低,結(jié)垢傾向降低[40]。此外,壓力的影響在高溫(180 ℃)下比低溫(50 ℃)下更顯著,但未進一步分析不同結(jié)垢趨勢下的腐蝕情況。針對垢層下腐蝕,各學(xué)者多設(shè)定大氣壓條件,鮮有將壓力作為變量討論的情況,并較少有考慮高CO2壓力下的垢下腐蝕,特別是超過7.38 MPa的CO2超臨界壓力。
溫度、流速和壓力都會影響鋼基體的腐蝕與結(jié)垢過程,當(dāng)探討硅砂及CaCO3垢層下的腐蝕時,這3種因素的交互作用規(guī)律尚缺乏深入研究。
垢下腐蝕的控制方法可分為兩類,機械清除和化學(xué)處理。實際情況下多種策略會被結(jié)合使用,以更高效地緩解垢層下腐蝕。
機械清除主要包括清管和沖洗兩種手段,適用于清除污泥、水垢以及與這些垢層相關(guān)的生物物質(zhì)。清管利用清管器進行工作,不僅可以收集沉積碎屑,還能掃描收集沿線管道腐蝕特征,為制定緩蝕方案提供依據(jù)。但清管器的使用受管道結(jié)構(gòu)特征限制,這種情況下沖洗具有不可替代性。沖洗旨在利用高速流體夾帶沉積物,從而防止垢層堆積,但若沖洗頻率不能滿足要求時,垢下腐蝕亦不能避免[4]。
利用阻垢劑防止垢層堆積是預(yù)防垢下腐蝕有效且經(jīng)濟的手段,分為含磷型、聚合物型、人工合成型及天然有機分子等。阻垢劑通過阻礙礦物的成核與結(jié)晶達到目的,對不同類型垢層表現(xiàn)出不同的適用性,如非聚合類磷酸鹽對CaCO3有更高的抑制作用[54]。隨著傳統(tǒng)阻垢劑導(dǎo)致的水體富營養(yǎng)化加劇,近年來綠色阻垢劑成為發(fā)展趨勢[55]。
若垢層已經(jīng)堆積并造成危害,緩蝕劑被大量采用。根據(jù)工作機理,可分為陽極型、陰極型和混合型3種。通過阻礙金屬與腐蝕性電解質(zhì)之間的接觸達到緩蝕目的,如圖9所示[56]。關(guān)于緩蝕劑的研究主要集中于裸金屬,而某些理論和研究并不完全適用于垢下腐蝕。Reus等[57]和wang等[58]提出,垢下腐蝕所需的緩蝕劑濃度和緩蝕時間要明顯高于一般腐蝕。因為緩蝕劑發(fā)揮緩蝕效果的前提是能穿透垢層到達金屬表面,而穿透性受垢層性質(zhì)影響,如顆粒大小、厚度、活性產(chǎn)物與固體之間的相互作用[59-61]。
圖9 混合有機緩蝕劑機理[56]
垢層對緩蝕劑有不同程度的運移或吸附作用[62],但不一定會影響緩蝕效果。Pandarinathan等[63]研究發(fā)現(xiàn),在無砂與沉積砂表面加入硫苯酰胺,可觀察到相近的腐蝕速率。認為硫苯酰胺在砂粒上的吸附量很小,這是因為帶負電荷的硅砂顆粒與電負性硫苯酰胺分子之間具有靜電斥力,利于緩蝕劑通過垢層。明確緩蝕劑與垢層之間的匹配性對預(yù)測其緩蝕行為有重要意義[64]。有機表面活性劑和含硫化合物是對CO2環(huán)境中碳鋼最有效的緩蝕劑[65]。
緩蝕劑不一定總是減輕局部腐蝕,可能反而加速腐蝕[66-67]。由于原電池的形成,緩蝕劑會進入未覆蓋區(qū)域成為陰極,因此增加垢層下的局部腐蝕。Hinds等[68]發(fā)現(xiàn),添加抑制劑會使未覆砂的電極相對于覆砂電極極化至更高的電勢,從而加劇砂層下腐蝕。Pedersen等[69]提出,在積砂前或積砂后添加緩蝕劑都不能避免電偶腐蝕的產(chǎn)生。Huang等[7]指出點蝕是由緩蝕劑無法為砂粒下的金屬表面提供全面保護而引起的。
垢下腐蝕已成為油氣田正常生產(chǎn)中不容忽視的問題,但垢下腐蝕行為難以監(jiān)測,且緩蝕劑效果受垢層阻礙的影響。因此,分析結(jié)垢特性和垢層下的腐蝕機制,有利于確定如何采用緩蝕劑以提高無機鹽垢下管道的耐蝕性。
近年來,油氣管道的垢下腐蝕已經(jīng)在垢層性質(zhì)和腐蝕機理等方面做了大量研究,取得了大量的成果,但以下幾個問題仍值得進一步探討:
1)表面垢層對陰離子的選擇透過性影響著腐蝕行為,這與其半導(dǎo)體特性息息相關(guān)。但目前關(guān)于CO2環(huán)境中碳鋼垢層半導(dǎo)體性能的研究較少,對腐蝕產(chǎn)物與無機鹽垢混合層的電子特性分析不足,從微觀角度進一步揭示混合層結(jié)構(gòu)特征與腐蝕行為的關(guān)系有重要意義。
2)因為采出水中陽離子的影響,垢層通常為無機鹽和腐蝕產(chǎn)物的混合物質(zhì),該混合層對腐蝕速率的影響尚未獲得共識,其影響機制與規(guī)律還不完善。
3)目前國內(nèi)CO2驅(qū)油技術(shù)已開展大量試驗,造成地面集輸系統(tǒng)中返回的CO2濃度較高,甚至高達25%以上,返回的高濃度CO2對垢層、腐蝕產(chǎn)物層的形貌特征及腐蝕行為的影響尚缺乏系統(tǒng)研究。
[1] YANG Yan, LUO Xuan, ELSAYED Y E A N, et al. Characteristics of Scales and Their Impacts on Under-Deposit Corrosion in an Oil Production Well[J]. Materials and Corrosion, 2021, 72(6): 1051-1064.
[2] 于航. 沉積物對產(chǎn)出水中Q235鋼腐蝕行為的影響[D]. 哈爾濱: 哈爾濱工程大學(xué), 2016.
YU Hang. Effect of Deposite to the Corrosion Behavior of Q235 Steel in Producted Water[D]. Harbin: Harbin Engineering University, 2016.
[3] XIONG Qi, HU Jun-ying, GU Chen-rong, et al. The Study of under Deposit Corrosion of Carbon Steel in the Flowback Water during Shale Gas Production[J]. Applied Surface Science, 2020, 523: 146534.
[4] OBOT I B. Under-Deposit Corrosion on Steel Pipeline Surfaces: Mechanism, Mitigation and Current Challe-nges[J]. Journal of Bio- and Tribo-Corrosion, 2021, 7(2): 49.
[5] LY K T, CHAN A, BOHON W, et al. Novel Chemical Dispersant for Removal of Organic/Inorganic "Schmoo" Scale in Produced Water Injection Systems[j]. Corrosion, 1998, 41: 785.
[6] MOHAMMED M. Assessment of Underdeposit Corrosion and Mitigation Using Chemicals[J]. NACE – Interna-tional Corrosion Conference Series, 2016, 5: 3412-3424.
[7] 韓霞, 楊軍, 王子明, 等. Q235鋼在油田污水處理系統(tǒng)中的垢下腐蝕行為[J]. 腐蝕與防護, 2020, 41(2): 14-18, 64.
HAN Xia, YANG Jun, WANG Zi-ming, et al. Under- Deposit Corrosion Behavior of Q235 Steel in Oilfield Water Treatment System[J]. Corrosion & Protection, 2020, 41(2): 14-18, 64.
[8] HAN D, JIANG R J, CHENG Y F. Mechanism of Electrochemical Corrosion of Carbon Steel under Deoxy-genated Water Drop and Sand Deposit[J]. Electrochimica Acta, 2013, 114: 403-408.
[9] KETRANE R, SAIDANI B, GIL O, et al. Efficiency of Five Scale Inhibitors on Calcium Carbonate Precipitation from Hard Water: Effect of Temperature and Concen-tration[J]. Desalination, 2009, 249(3): 1397-1404.
[10] 葉倩玉. 碳鋼垢下腐蝕中緩蝕劑的作用機理[D]. 武漢: 華中科技大學(xué), 2018.
YE Qian-yu. Study on the Mechanism of Inhibitor in Under-Deposit Corrosion of Carbon Steel[D]. Wuhan: Huazhong University of Science and Technology, 2018.
[11] HUANG Jin. Mechanistic Study of under Deposit Corrosion of Mild Steel in Aqueous Carbon Dioxide Solution[D]. Athens: Ohio University, 2013.
[12] VERA J, DANIELS D, ACHOUR M. Under Deposit Corrosion (UDC) in the Oil and Gas Industry: A Review of Mechanisms, Testing and Mitigation[j]. NACE - Intern-ational Corrosion Conference Series, 2012,4: 3028- 3040.
[13] 王準(zhǔn)章. 超臨界CO2環(huán)境中N80碳鋼與13Cr不銹鋼電偶腐蝕及緩蝕機理[D]. 武漢: 華中科技大學(xué), 2019.
WANG Zhun-zhang. Galvanic Corrosion and Inhibition Mechanism of N80 Carbon Steel-13Cr Stainless Steel under Supercritical CO2Conditions[D]. Wuhan: Huazhong University of Science and Technology, 2019.
[14] ZHANG Yuan-na, WANG Tian-li, HAN Xia, et al. Corrosion of Artificial Rock Layer Covered Steel Electrodes in a CO2Environment: The Influence of Permeability[J]. Corrosion Science, 2016, 105: 190-201.
[15] XU Y Z, YANG L J, HE L M, et al. The Monitoring of Galvanic Corrosion Behaviour Caused by Mineral Deposit in Pipeline Working Conditions Using Ring Form Electronic Resistance Sensor System[J]. Corrosion Engineering, Science and Technology, 2016, 51(8): 606-620.
[16] XUE H, CHENG F, ZHU Zhen-jin, et al. Internal Pitting Corrosion of X80 Pipeline Steel under Deposited Sand Bed in Co2-Saturated Solutions[J]. NACE - International Corrosion Conference Series, 2011, 43: 211.
[17] ZHANG G A, YU N, YANG L Y, et al. Galvanic Corrosion Behavior of Deposit-Covered and Uncovered Carbon Steel[J]. Corrosion Science, 2014, 86: 202-212.
[18] WU Yu-le, ZHANG De-ping, CAI Guang-yi, et al. Effects of Temperature on Polarity Reversal of under Deposit Corrosion of Mild Steel in Oilfield Produced Water[J]. Corrosion Engineering, Science and Technology, 2020, 55(8): 708-720.
[19] REN Cheng-qiang, WANG Wan-guo, JIN Xing, et al. Physicochemical Performance of FeCO3Films Influenced by Anions[J]. RSC Advances, 2015, 5(26): 20302-20308.
[20] SHAMSO A. Under-Deposit Corrosion (UDC): The Hidden Cause of Major Asset Failures in the Oil and Gas Industry[J]. ECS Meeting Abstracts, 2018(Z1): 2074.
[21] ZHU Yuan-liang, QIU Yu-bing, GUO Xing-peng. Under-scale Corrosion Behavior of Carbon Steel in a NaCl Solution Using a New Occluded Cavity Cell for Simula-tion[J]. Journal of Applied Electrochemistry, 2009, 39(7): 1017-1023.
[22] 朱元良. 碳鋼垢下腐蝕行為與緩蝕機理研究[D]. 武漢: 華中科技大學(xué), 2008.
ZHU Yuan-liang. Study on Corrosion Behavior and Corrosion Inhibition Mechanism of Carbon Steel under Scale[D]. Wuhan: Huazhong University of Science and Technology, 2008.
[23] 佟慧妍. 給水管網(wǎng)閉塞水中鑄鐵腐蝕機理研究[D]. 天津: 天津大學(xué), 2015.
TONG Hui-yan. Corrosion Mechanism of Cast Iron in Occluded Water in Drinking Water Distribution Systems[D]. Tianjin: Tianjin University, 2015.
[24] SLIEM M H, FAYYAD E M, ABDULLAH A M, et al. Monitoring of under Deposit Corrosion for the Oil and Gas Industry: A Review[J]. Journal of Petroleum Science and Engineering, 2021, 204: 108752.
[25] MANSOORI H, BROWN B, YOUNG D, et al. Effect of FeCayCO3and CaCO3Scales on the CO2Corrosion of Mild Steel[J]. Corrosion, 2019, 75(12): 1434-1449.
[26] PANG Lin, WANG Zheng-bin, EMORI W, et al. Under-Deposit Corrosion of Carbon Steel Beneath Full Coverage of CaCO3Deposit Layer under Different Atmospheres[J]. Journal of Materials Engineering and Performance, 2021, 30(10): 7552-7563.
[27] SUAREZ L M, LEPKOVA K, SUáREZ E. The Role of Bacteria in Under-Deposit Corrosion in Oil and Gas Facilities: A Review of Mechanisms, Test Methods and Corrosion Inhibition[J]. Corrosion and Materials, 2019, 44(1): 80.
[28] ALANAZI N M, EL-SHERIK A M. Sour Environment Underdeposit Corrosion Behavior of a Carbon Steel[J]. Materials Performance, 2018, 57(12): 50-53.
[29] CHENG Qing-li, TAO Bin, SONG Li-ying, et al. Corrosion Behaviour of Q235B Carbon Steel in Sediment Water from Crude Oil[J]. Corrosion Science, 2016, 111: 61-71.
[30] HASSANI S, HUANG J, VICTOR A C, et al. Inhibited Under-deposit CO2Corrosion: Small Particle Silica Sand and Eicosane Paraffin Deposits[j]. NACE - International Corrosion Conference Series, 2017, 4:2340-2351.
[31] 丁晨. Ca2+對X65管線鋼CO2腐蝕性質(zhì)的影響[D]. 北京: 北京科技大學(xué), 2009.
DING Chen. Effect of Ca2+on CO2Corrosion Properties of X65 Pipeline Steel[D]. Beijing: University of Science and Technology Beijing, 2009.
[32] NAVABZADEH ESMAEELY S, CHOI Y S, YOUNG D, et al. Effect of Calcium on the Formation and Protec-tiveness of Iron Carbonate Layer in CO2Corrosion[J]. Corrosion, 2013, 69(9): 912-920.
[33] ESMAEELY S N, YOUNG D, BROWN B, et al. Effect of Incorporation of Calcium into Iron Carbonate Protective Layers in CO2Corrosion of Mild Steel[J]. Corrosion, 2017, 73(3): 238-246.
[34] ZHAO Guo-xian, LI Jian-ping, HAO Shi-ming, et al. Effect of Ca2+and Mg2+on CO2Corrosion Behavior of Tube Steel[J]. Journal of Iron and Steel Research (Interna-tional), 2005, 12(1): 38-42.
[35] JIANG X, ZHENG Y G, QU D R, et al. Effect of Calcium Ions on Pitting Corrosion and Inhibition Performance in CO2Corrosion of N80 Steel[J]. Corrosion Science, 2006, 48(10): 3091-3108.
[36] INGHAM B, KO M, LAYCOCK N, et al.Synchrotron X-Ray Diffraction Study of Scale Formation during CO2Corrosion of Carbon Steel in Sodium and Magnesium Chloride Solutions[J]. Corrosion Science, 2012, 56: 96-104.
[37] 李佳蒙. P110SS鋼腐蝕產(chǎn)物膜結(jié)構(gòu)與性能的研究[D]. 成都: 西南石油大學(xué), 2017.
LI Jia-meng. Study on the Structure and Properties of Corrosion Products of P110SS Steel[D]. Chengdu: Southwest Petroleum University, 2017.
[38] GAO M, PANG X, GAO K. The Growth Mechanism of CO2Corrosion Product Films[J]. Corrosion Science, 2011, 53(2): 557-568.
[39] 王磊. CO2腐蝕產(chǎn)物膜微觀結(jié)構(gòu)與離子選擇性研究[D]. 北京: 中國石油大學(xué)(北京), 2007.
WANG Lei. CO2Study on Microstructure and Ion Selectivity of Corrosion Product Film[D]. Beijing: China University of Petroleum (Beijing), 2007.
[40] SANDERS L. An Integrated Study of Corrosion and Scale Interactions in the Absence and Presence of Combined Chemicals[D]. Leeds: University of Leeds, 2014.
[41] 朱元良, 趙艷娜. N80鋼沉積物下閉塞電池腐蝕影響因素研究[J]. 南陽理工學(xué)院學(xué)報, 2009, 1(6): 46-50.
ZHU Yuan-liang, ZHAO Yan-na. Study on the Influential Factors of Underscale Local Corrosion of N80 Steel[J]. Journal of Nanyang Institute of Technology, 2009, 1(6): 46-50.
[42] HUANG Jin, BROWN B, JIANG Xiu, et al. Internal CO2Corrosion of Mild Steel Pipelines under Inert Solid Deposits[j].NACE - International Corrosion Conference Series, 2010, 210: 426.
[43] TAVARES L M, COSTA E M D, DE OLIVEIRA ANDRADE J J, et al. Effect of Calcium Carbonate on Low Carbon Steel Corrosion Behavior in Saline CO2High Pressure Environments[J]. Applied Surface Science, 2015, 359: 143-152.
[44] 張希海. 高含水集輸管道原油與碳酸鈣混合污垢沉積特性研究[D]. 北京: 中國石油大學(xué)(北京), 2018.
ZHANG Xi-hai. Study on Deposition Characteristics of Composite Fouling of Crude Oil and Calcium Carbonate in High Water Cut Gathering Pipeline[D]. Beijing: China University of Petroleum (Beijing), 2018.
[45] PANG Lin, WANG Zheng-bin, ZHENG Yu-gui, et al. On the Localised Corrosion of Carbon Steel Induced by theLocal Damage of Porous Corrosion Products[J]. Journal of Materials Science & Technology, 2020, 54: 95-104.
[46] SHAMSA A, BARKER R, HUA Yong, et al. The Role of Ca2+Ions on Ca/Fe Carbonate Products on X65 Carbon Steel in CO2Corrosion Environments at 80 and 150?℃[J]. Corrosion Science, 2019, 156: 58-70.
[47] SALIMI F, SEFTIE M V, AYATOLLAHIA S. Experimental Investigation of the Effects of Different Parameters on the Rate of Asphaltene Deposition in Laminar Flow and Its Prediction Using Heat Transfer Approach[J]. Journal of Dispersion Science and Technology, 2013, 34(12): 1690-1696.
[48] ZHU S D, FU A Q, MIAO J, et al. Corrosion of N80 Carbon Steel in Oil Field Formation Water Containing CO2in the Absence and Presence of Acetic Acid[J]. Corrosion Science, 2011, 53(10): 3156-3165.
[49] CASSINERI S, DUFF J, CIONCOLINI A, et al. Deposition of Corrosion Products under Pressurised Water Nuclear Reactor Conditions: The Effect of Flow Velocity and Dissolved Hydrogen[J]. Corrosion Science, 2019, 159: 108113.
[50] 范金福, 劉猛, 張曉辰, 等. 流速對垢下腐蝕的影響及其腐蝕機理[J]. 腐蝕與防護, 2019, 40(11): 810-815.
FAN Jin-fu, LIU Meng, ZHANG Xiao-chen, et al. Effect of Velocity on the Under-Deposit Corrosion and Its Corrosion Mechanism[J]. Corrosion & Protection, 2019, 40(11): 810-815.
[51] 蔣華義, 張定周, 梁愛國, 等. 材料類型對CaCO3析晶污垢生長特性的影響機理研究[J]. 表面技術(shù), 2018, 47(12): 255-262.
JIANG Hua-yi, ZHANG Ding-zhou, LIANG Ai-guo, et al. Effect Mechanism of Material Type on Crystallization Growth of CaCO3-based Scale[J]. Surface Technology, 2018, 47(12): 255-262.
[52] ZHANG G A, CHENG Y F. Electrochemical Charac-terization and Computational Fluid Dynamics Simulation of Flow-Accelerated Corrosion of X65 Steel in a CO2-Saturated Oilfield Formation Water[J]. Corrosion Science, 2010, 52(8): 2716-2724.
[53] 陳長風(fēng). 油套管鋼CO2腐蝕電化學(xué)行為與腐蝕產(chǎn)物膜特性研究[D]. 西安: 西北工業(yè)大學(xué), 2002.
CHEN Chang-feng. Research on Electrochemical Behavior and Corrosion Scale Characteristics of CO2Corrosion for Tubing and Casing Steel[D]. Xi'an: Northwestern Polyt-echnical University, 2002.
[54] LI Jian-bo, TANG Ming-jin, YE Zheng-rong, et al. Scale Formation and Control in Oil and Gas Fields: A Review[J]. Journal of Dispersion Science and Techn-ology, 2017, 38(5): 661-670.
[55] 賀三, 徐慧蘭, 張劍雄, 等. CO2環(huán)境中植物緩蝕劑研究進展[J]. 表面技術(shù), 2021, 50(1): 187-195, 220.
HE San, XU Hui-lan, ZHANG Jian-xiong, et al. Research Progress of Plant Corrosion Inhibitors in CO2Enviro-nment[J]. Surface Technology, 2021, 50(1): 187-195, 220.
[56] SHEN Chen, ALVAREZ V, KOENIG J D B, et al. Gum Arabic as Corrosion Inhibitor in the Oil Industry: Experi-mental and Theoretical Studies[J]. Corrosion Engineering, Science and Technology, 2019, 54(5): 444-454.
[57] DE REUS H, HENDRIKSEN L, WILMS M, et al. Test Methodologies and Field Verification of Corrosion Inhibitors to Address under Deposit Corrosion in Oil and Gas Production Systems[J]. Plasma Processes & Polym-ers, 2005, 3(3): 316-321.
[58] WANG Xiang, MELCHERS R E. Long-Term Under- Deposit Pitting Corrosion of Carbon Steel Pipes[J]. Ocean Engineering, 2017, 133: 231-243.
[59] ALANAZI N M, EL-SHERIK A M, RASHEED A H, et al. Corrosion of Pipeline Steel X-60 under Field-Collected Sludge Deposit in a Simulated Sour Environment[J]. Corrosion, 2015, 71(3): 305-315.
[60] PANDARINATHAN V, LEPKOVA K, BAILEY S, et al. Impact of Mineral Deposits on CO2Corrosion of Carbon Steel[j]. NACE-International Corrosion Conference Series, 2013, 6: 5055-5069.
[61] ALLAN K, OBEYESEKERE N, FELL D, et al. Field Sidestream Testing to Evaluate the Effectiveness of Chemicals to Mitigate under Deposit Corrosion[j]. NACE-International Corrosion Conference Series, 2012, 6: 5055-5069.
[62] MENENDEZ C M, JOVANCICEVIC V, RAMACHA-NDRAN S, et al. Assessment of Corrosion under Iron Sulfide Deposits and CO2/H2S Conditions[J]. Corrosion, 2013, 69(2): 145-156.
[63] PANDARINATHAN V, LEPKOVA K, GUBNER R. Inhibition of CO2Corrosion of 1030 Carbon Steel beneath Sand-Deposits[J]. NACE - International Corrosion Conference Series, 2011, 52: 589.
[64] PANDARINATHAN V, LEPKOVá K, BAILEY S I, et al. Evaluation of Corrosion Inhibition at Sand-Deposited Carbon Steel in CO2-Saturated Brine[J]. Corrosion Science, 2013, 72: 108-117.
[65] PANDARINATHAN V, LEPKOVá K, BAILEY S I, et al. Inhibition of Under-Deposit Corrosion of Carbon Steel by Thiobenzamide[J]. Journal of the Electrochemical Soc-iety, 2013, 160(9): C432-C440.
[66] XU Y Z, YI Huang, HE Li-min, et al. Experimental Study on Under-Deposit Corrosion and Its Inhibition Using Electrochemical Methods and Electronic Coupon Tech-nique[J]. Anti-Corrosion Methods and Materials, 2017, 64(2): 148-161.
[67] BROWN B, MOLONEY J, SALEH A. A Comparison of Mono- to Di- Phosphate Ester Ratio in Inhibitor Formula-tions in the Mitigation of under Deposit Corrosion[J]. Corrosion, 2015, 71(12): 4795-4809.
[68] HINDS G, TURNBULL A. Novel Multi-Electrode Test Method for Evaluating Inhibition of Underdeposit Corrosion—Part 1: Sweet Conditions[J]. Corrosion, 2010, 66(4): 46001.
[69] PEDERSEN A, BILKOVA K, GULBRANDSEN E, et al. CO2Corrosion Inhibitor Performance in the Presence of Solids: Test Method Development[J]. NACE – Interna-tional Corrosion Conference Series, 2008, 457: 086321- 0863229.
Review of Carbon Steel Under Deposit Corrosion in CO2Environment
1,1,1,2
(1. Southwest Petroleum University, Chengdu 610500, China; 2. PetroChina Qinghai Oilfield Downhole Operation Company, Qinghai Mangya 817400, China)
Under-deposit corrosion (UDC) is one of the important reasons for the failure of oil and gas pipelines. The corrosion environment under the scale layer is different from the area covered by the non-scale layer, which may cause serious local corrosion and even cause pipe perforation. Aiming at the inorganic scale layer in CO2environment, the research progress of carbon steel under-deposit corrosion in oil and gas pipelines is reviewed. The mechanism, influencing factors, and control methods of under-deposit corrosion are briefly described.
Because different types of metals, scale layers and corrosive media are involved, the mechanism of corrosion under scale is not unique, and it is found that the mechanism of galvanic corrosion in the CO2environment is widely discussed. According to the distribution of cathode and anode, the mechanism of galvanic corrosion can be summarized from three aspects, including the coexistence of cathode and anode under the scale layer, the dispersion of cathode and anode inside and outside the scale layer, and the absence of partial separation of cathode and anode. It is also pointed out that the corrosion product layer formed in CO2environment usually has n-type semiconductor behavior, which can be used as cathode to accelerate the generation of corrosion under scale. The corrosion rate under scale is mainly related to the properties of the scale layer and the medium environment. Among them, silica sand and scale, as typical inert scale layers, do not participate in the corrosion electrochemical reaction of the substrate, but only serve as physical barriers, while the corrosion product (FeCO3) is a non-inert scale layer with electrochemical activity, which will greatly affect the cathodic and anode reactions. The pH value, temperature, flow rate, pressure and other working conditions will affect the properties of the scale layer or the internal and external environment of the scale layer, thereby causing different degrees of corrosion. At present, the prevention and control of corrosion under scale mainly adopts different types of corrosion inhibitors. The corrosion inhibitor achieves its purpose by hindering the contact between the metal and the corrosive electrolyte, but the scale layer has different degrees of migration or adsorption to the corrosion inhibitor. And if the corrosion inhibitor enters the bare metal area and becomes a cathode, it will even aggravate local corrosion. Therefore, analyzing the fouling characteristics and the corrosion mechanism under the scale layer is helpful to determine how to use the corrosion inhibitor correctly.
At present, there have been many studies on the mixed layer of inorganic salts and CO2corrosion products, but there is no consensus on the relationship between its protection and the concentration of salt ions, and few scholars have analyzed it from the perspective of semiconductor electronics. At the same time, due to the development of CO2flooding technology, the concentration of CO2returned in the surface gathering and transportation system is relatively high. It is also one of the future research directions and development trends to explore the mechanism and influence of subscale corrosion in this environment.
under deposit corrosion; CO2environment; carbon steel; corrosion mechanism; influence factors; control methods
TG174
A
1001-3660(2023)02-0148-10
10.16490/j.cnki.issn.1001-3660.2023.02.013
2021–10–07;
2022–03–08
2021-10-07;
2022-03-08
賀三(1975—),男,博士,教授,主要研究方向為油氣管道腐蝕與防護、油氣流動保障技術(shù)。
HE San (1975-), Male, Doctor, Professor, Research focus: oil and gas pipeline corrosion and protection, oil and gas flow assurance technology.
賀三, 羅斯琪, 趙浩童, 等. 碳鋼在CO2環(huán)境中無機垢下腐蝕研究進展[J]. 表面技術(shù), 2023, 52(2): 148-157.
HE San, LUO Si-qi, ZHAO Hao-tong, et al. Review of Carbon Steel Under Deposit Corrosion in CO2Environment[J]. Surface Technology, 2023, 52(2): 148-157.
責(zé)任編輯:萬長清