国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

黑磷的力學(xué)及摩擦學(xué)性能研究進(jìn)展

2023-03-06 01:36王均帥武帥鄭婕楊波魏強(qiáng)胡寧
表面技術(shù) 2023年2期

王均帥,武帥,鄭婕,楊波,魏強(qiáng),2,胡寧,2,3

黑磷的力學(xué)及摩擦學(xué)性能研究進(jìn)展

王均帥1,武帥1,鄭婕1,楊波1,魏強(qiáng)1,2,胡寧1,2,3

(1.河北工業(yè)大學(xué) 機(jī)械工程學(xué)院,天津 300401;2.電工裝備可靠性與智能化國家重點實驗室,天津 300130;3.國家技術(shù)創(chuàng)新方法與實施工具工程技術(shù)研究中心,天津 300401)

歸納了黑磷在力學(xué)和摩擦學(xué)方面的理論計算和實驗研究進(jìn)展,重點總結(jié)了黑磷因其獨特的褶皺結(jié)構(gòu)而導(dǎo)致的負(fù)泊松比及力學(xué)性質(zhì)的各向異性,關(guān)注了厚度、缺陷、預(yù)應(yīng)變以及環(huán)境降解等因素對其力學(xué)性能的影響。黑磷優(yōu)異的力學(xué)性能為運動傳感器、柔性器件、安全裝備以及微機(jī)電系統(tǒng)等的設(shè)計與開發(fā)提供了新的選擇。應(yīng)變以及缺陷對其力學(xué)性能的調(diào)控可以為黑磷的應(yīng)用推廣提供新的思路。大氣環(huán)境條件下,黑磷的表面降解是阻礙其應(yīng)用的一大瓶頸,但其化學(xué)活性可以在摩擦學(xué)領(lǐng)域中加以利用,實現(xiàn)超潤滑。同時重點概述了近年來對黑磷的微觀摩擦學(xué)研究,主要集中在黑磷摩擦性能的各向異性、厚度和載荷的影響,以及表面降解對潤滑的貢獻(xiàn)。黑磷納米片、黑磷量子點等納米材料在油基潤滑、水基潤滑以及聚合物復(fù)合材料方面的摩擦學(xué)研究表明,高載下黑磷的潤滑性能優(yōu)異,有望推動工程領(lǐng)域超潤滑的實現(xiàn)。最后,對二維納米材料黑磷未來的研究與發(fā)展做了進(jìn)一步的展望。

黑磷;力學(xué);摩擦學(xué);泊松比;各向異性;超潤滑

19世紀(jì)60年代,法國化學(xué)家泰納爾將不經(jīng)意間發(fā)現(xiàn)的黑色磷單質(zhì)稱為黑磷(Black Phosphorus,BP)。直到2014年,隨著BP場效應(yīng)晶體管的制備,其獨特的微觀結(jié)構(gòu)和物理化學(xué)性質(zhì)才重新吸引了學(xué)者們的眼球。近些年來,二維材料因其獨特的性質(zhì)引起了研究者們的廣泛關(guān)注[1],作為一種新型的二維納米材料,BP在太陽能電池[2]、光學(xué)[3]、生物醫(yī)藥[4](如圖1a所示)、傳感器[5-7](如圖1b、c所示)等領(lǐng)域表現(xiàn)良好,尤其在半導(dǎo)體和光電等領(lǐng)域有出色的應(yīng)用能力和廣闊的應(yīng)用前景。例如,厚度僅為20個原子的超薄BP薄膜在納米尺度的光電路上可表現(xiàn)出優(yōu)異的高速數(shù)據(jù)通信能力[8]。相較于本身沒有帶隙的石墨烯,BP可調(diào)的能帶間隙使其具有半導(dǎo)體特性[9-10]。研究發(fā)現(xiàn),隨著BP層數(shù)的增加,能隙單調(diào)減小[11-12]。在軸向應(yīng)變下,BP的直接能隙和間接能隙可相互轉(zhuǎn)變[13]。垂直于平面的單軸應(yīng)力,可以使單層BP出現(xiàn)半導(dǎo)體到金屬的轉(zhuǎn)變[14]。

BP獨特的結(jié)構(gòu)是其具備眾多特性的原因之一。除常見的白磷、紅磷外,BP是磷單質(zhì)中最穩(wěn)定的一種同素異形體。BP有正交、菱形、簡單立方和無定形等4種常見的晶體結(jié)構(gòu)[15],常溫常壓下為正交晶型結(jié)構(gòu)。和石墨烯類似的是,BP平面由磷原子六圓環(huán)結(jié)構(gòu)組成,但同一層內(nèi)的原子不在同一平面上,呈一種蜂窩狀的褶皺結(jié)構(gòu),如圖2所示。單層BP有2個原子層和2種P—P鍵,沿鋸齒形(Zigzag)方向為較短的P—P鍵(層內(nèi)鍵),鍵長0.225 3 nm,相鄰3個P原子的鍵角為94.1°,稱為層內(nèi)鍵角(∠3和∠4);沿扶手椅(Armchair)方向為較長的P—P鍵(層間鍵),鍵長0.228 7 nm,連接著單層BP中頂部和底部的P原子[16],∠1和∠2稱為層間鍵角。塊體BP則為片層堆疊結(jié)構(gòu),層間由范德華力作用結(jié)合。

圖1 BP在不同領(lǐng)域中的應(yīng)用[6-7]

二維納米材料因其優(yōu)越的力學(xué)及摩擦學(xué)性能,在納米器件、微機(jī)電系統(tǒng)、潤滑減磨等領(lǐng)域有諸多應(yīng)用。如單晶石墨烯高強(qiáng)度的力學(xué)性能可以承受巨大的沖擊載荷,甚至優(yōu)于鋼鐵和防彈衣材料[18];具有原子厚度的二硫化鉬(MoS2),其良好的柔韌性和延展性為實現(xiàn)新型器件的應(yīng)用(如柔性可伸縮電子設(shè)備)提供了重要的可能性[19-20];由于獨特的結(jié)構(gòu)和負(fù)泊松比的性質(zhì),二維硼烯等在納米級微型傳感器的應(yīng)用上令人矚目。但隨著特征尺度的減小,微納尺度下二維納米材料的尺寸效應(yīng)、表面效應(yīng)以及斷裂失效非常明顯[21],對于器件性能和壽命有直接的影響,這對二維納米材料在力學(xué)性能方面的研究提出了嚴(yán)峻挑戰(zhàn)。同時,二維納米材料的片層結(jié)構(gòu)使其可以更大概率地進(jìn)入界面接觸區(qū),因此被廣泛應(yīng)用在摩擦潤滑領(lǐng)域。如二硫化鎢(WS2)納米片在摩擦面上形成的連續(xù)摩擦膜可以顯著減少摩擦磨損[22];六方氮化硼(h-BN)納米片水分散體能增強(qiáng)耐磨性,并降低摩擦系數(shù),有望成為“綠色”水基潤滑添加劑[23];金屬納米顆粒/石墨烯復(fù)合材料可顯著提高機(jī)械潤滑油的抗磨減摩性能,成為可以替代傳統(tǒng)潤滑添加劑的一種極具潛力的候選材料[24]。二維納米材料BP作為新型潤滑添加劑,在油基、水基潤滑劑以及聚合物復(fù)合材料的摩擦學(xué)研究中也表現(xiàn)出優(yōu)異的潤滑減磨特性[25]。

本文綜述了BP的微觀力學(xué)特性及其在摩擦學(xué)領(lǐng)域的研究現(xiàn)狀,從理論計算和實驗研究2方面總結(jié)了厚度、缺陷、預(yù)應(yīng)變以及環(huán)境降解對BP力學(xué)性能的影響,對BP的力學(xué)性能機(jī)理進(jìn)行了探討,并就BP在微觀和宏觀摩擦中的潤滑行為和機(jī)理研究進(jìn)行了總結(jié)。

圖2 BP結(jié)構(gòu)以及磷原子共價鍵[16-17]

1 黑磷力學(xué)性能的研究現(xiàn)狀

1.1 負(fù)泊松比

泊松比是一種將橫向應(yīng)變與施加的軸向應(yīng)變聯(lián)系起來的基本力學(xué)性質(zhì),其定義為材料在應(yīng)力作用下橫向應(yīng)變與縱向應(yīng)變的比值。除一些超材料外,幾乎所有材料的泊松比都是正值。負(fù)泊松比在理論上是存在的,除少數(shù)人工塊體結(jié)構(gòu)外,任何天然材料中都沒有直接觀察到這種現(xiàn)象。2014年,Jiang等[26-27]對單層BP進(jìn)行了第一性原理計算,首次揭示了BP中負(fù)泊松比的存在,如圖3所示。當(dāng)單層BP在方向(鋸齒形方向)被拉伸或壓縮時,在方向(垂直于單層BP平面方向)上會產(chǎn)生膨脹或收縮變形。他們還從力學(xué)角度和鉸鏈結(jié)構(gòu)2方面分析了負(fù)泊松比產(chǎn)生的原因,如圖4所示。當(dāng)BP受到方向應(yīng)變時,磷原子沿方向和方向(扶手椅方向)的運動使得磷原子1和4的共價鍵與方向的夾角減小,表現(xiàn)為垂直于原子面方向的厚度增加,即泊松比為負(fù)。

圖3 單層BP沿y方向單軸變形的泊松比函數(shù)[26]

圖4 單軸拉伸過程中單層BP局部構(gòu)造的演化[26]

2016年,Du等[28]研究了單軸應(yīng)變下BP的拉曼光譜演化,單層BP的厚度變化在鋸齒形方向應(yīng)變下呈現(xiàn)負(fù)泊松比的現(xiàn)象,與Jiang等[26]的理論預(yù)測一致,而考慮多層BP時,層內(nèi)和層間均呈現(xiàn)正泊松比特征;沿扶手椅方向發(fā)生應(yīng)變時,多層BP的層內(nèi)和層間均呈現(xiàn)負(fù)泊松比特征。這是第一次在天然材料中通過實驗觀察到負(fù)泊松比,并通過理論模擬得到證實。

由于具有更高的韌性、抗剪切能力以及聲音和振動吸收的能力,負(fù)泊松比材料可增加結(jié)構(gòu)裝備的安全性能。如增加平面應(yīng)變斷裂韌性,增強(qiáng)材料的彈性模量,增大抗壓阻力,甚至可以在結(jié)構(gòu)損傷后實現(xiàn)自修復(fù)等[29-30]。BP負(fù)泊松比的特性在緊固件、復(fù)合材料、國防裝備等領(lǐng)域有較大的應(yīng)用潛力。

1.2 各向異性

在先進(jìn)的微型器件和集成系統(tǒng)中,晶體各向異性使微機(jī)電系統(tǒng)中重要的動態(tài)特性成為可能,如陀螺儀、轉(zhuǎn)速傳感器和加速度計等[31]。BP是具有強(qiáng)面內(nèi)各向異性的原子層晶體,理論上其面內(nèi)力學(xué)各向異性優(yōu)于單晶硅[13,26,32-33],可實現(xiàn)共振微機(jī)電系統(tǒng)的動態(tài)響應(yīng)[34],并為研究原子層中的載流子和晶格相互作用提供新的機(jī)會[14,35-38]。目前,BP的光學(xué)和電學(xué)性質(zhì)以及在器件中的各向異性得到了大量的研究[39],系統(tǒng)地研究BP在微型器件中力學(xué)的各向異性同樣具有重要意義。

根據(jù)模擬方法和溫度的不同,鋸齒形方向和扶手椅方向之間楊氏模量的各向異性比為2.2~4.4[17,40-43]。Jiang等[33]利用第一性原理計算得出了單層BP在單軸變形下沿鋸齒形方向的面內(nèi)楊氏模量為51.4 GPa,沿扶手椅方向的面內(nèi)楊氏模量為41.3 GPa。Yang等[41]使用分子動力學(xué)(MD)模擬得出,單層BP在4.2 K下沿鋸齒形和扶手椅方向單軸拉伸時,楊氏模量分別約為105、24 GPa。同樣采用MD模擬的方法,Hatam-Lee等[44]對比了單層BP在拉伸和剪切載荷下的力學(xué)性能,鋸齒形方向和扶手椅方向的楊氏模量之比為4.01。相較于大量的理論研究,BP力學(xué)性能的實驗報道較少[45]。目前,表征二維納米結(jié)構(gòu)力學(xué)性能最常用的方法是納米壓痕法[46]。實驗表明,BP薄片沿鋸齒形方向的彈性模量約是沿扶手椅方向的2倍,與理論結(jié)果[40]一致。Chen等[47]采用納米壓痕法研究了BP納米帶力學(xué)性能的各向異性,BP納米帶的彈性模量在鋸齒形方向最大,為扶手椅方向的2.4倍。Wang等[48]采用了一種新的方法——納米力學(xué)共振光譜技術(shù),結(jié)合有限元建模,確定了多層BP在鋸齒形方向和扶手椅方向上的楊氏模量分別為116.1、46.5 GPa,再次驗證了BP力學(xué)性能的各向異性。研究者們通過計算和實驗等方法得出BP的楊氏模量和抗拉強(qiáng)度見表1。

表1 基于分子動力學(xué)(MD)、密度泛函理論(DFT)、粗顆粒分子動力學(xué)(CG-MD)、原子力顯微鏡(AFM)和納米力學(xué)共振光譜(NMRS)等方法所得的BP力學(xué)性質(zhì)

Tab.1 Mechanical parameters of black phosphorus obtained based on molecular dynamics (MD), density functional theory (DFT), coarse particle molecular dynamics (CG-MD), atomic force microscopy (AFM), nanomechanical resonance spectroscopy (NMRS) and other methods

單層BP力學(xué)性能的強(qiáng)各向異性還體現(xiàn)在臨界應(yīng)變等方面。扶手椅和鋸齒形方向斷裂應(yīng)變的各向異性比為1.1~4.4[33,40-41,50,52]。扶手椅方向的斷裂機(jī)制是源自層間鍵角(圖4中∠1和∠2)的斷裂,而鋸齒形方向的斷裂是由于層內(nèi)鍵和鍵角(圖4中∠3和∠4)的斷裂[17]。Jiang等[33]計算出扶手椅和鋸齒形方向的理想應(yīng)變(即單層BP在0 K下失效的應(yīng)變)分別為0.48、0.11。在鋸齒形和扶手椅方向上[13],單層BP可以分別承受高達(dá)18、8 GPa的應(yīng)力,臨界軸向應(yīng)變分別為27%、30%(如圖5a所示);雙層BP可以承受高達(dá)16、7.5 GPa的應(yīng)力,臨界軸向應(yīng)變分別為24%、32%(如圖5b所示)。Kou等[53]通過第一性原理計算研究了單層BP在壓縮應(yīng)變作用下的起皺現(xiàn)象。壓縮應(yīng)變在10%內(nèi),起皺現(xiàn)象只發(fā)生在鋸齒形方向,而不發(fā)生在扶手椅方向。這是因為鋸齒形方向磷原子在壓縮作用下向內(nèi)移動,使得層內(nèi)鍵和鍵角減小,產(chǎn)生大的應(yīng)變能,這就需要通過起皺變形來有效釋放應(yīng)變能;另一方面,沿扶手椅方向的壓縮下,層間P—P鍵(圖3中1—4共價鍵)如同一個剛性,桿幾乎可以自由旋轉(zhuǎn),這種層間鍵角的變形可以有效地適應(yīng)壓縮應(yīng)變,而應(yīng)變能量的積累非常小。但他們研究的應(yīng)變范圍較小。同年,Wang等[54]采用經(jīng)典的MD模擬和第一性原理計算相結(jié)合的方法,發(fā)現(xiàn)單層BP沿扶手椅方向壓縮時,起皺彎曲的曲率隨著應(yīng)變的增加而線性增加。當(dāng)應(yīng)變高達(dá)0.8時,結(jié)構(gòu)仍保持完整,具有良好的柔韌性;而鋸齒形方向在壓縮應(yīng)變?yōu)?.47(0.1 K時),甚至是0.17(300 K時)時就發(fā)生了斷裂,如圖6所示。

BP獨特的力學(xué)各向異性可用于諸如納米機(jī)械諧振器、熱電裝置和各向同性材料無法實現(xiàn)的可調(diào)功能運動傳感器等場合。但隨著器件的不斷縮小,尤其是納米尺度的微型器件,由于晶格缺陷和表面效應(yīng)[55-56],各向異性的力學(xué)特性在微型器件上不易保持,因此BP力學(xué)各向異性的研究仍然需要更多的探索。

圖5 單層、雙層BP的應(yīng)變–應(yīng)力關(guān)系[13]

圖6 在0.1、300 K沿扶手椅和鋸齒形方向壓縮應(yīng)變下單層BP的最大平均曲率[54]

1.3 力學(xué)性能的影響因素

1.3.1 厚度

二維納米材料的厚度(即層數(shù))被證明是決定其性能的一個重要變量。Li等[57]研究了在壓縮作用力下BP內(nèi)部結(jié)構(gòu)與厚度的相關(guān)性,發(fā)現(xiàn)厚度的減小增強(qiáng)了BP的結(jié)構(gòu)穩(wěn)定性(如圖7所示),在13~71 nm尤為明顯。另外,厚度的減小也增強(qiáng)了壓縮變形的各向異性,為調(diào)整層間和鋸齒形結(jié)構(gòu)的剛度提供了驅(qū)動力。這一系統(tǒng)的研究不僅為BP結(jié)構(gòu)性質(zhì)的厚度依賴提供了證明,而且為BP器件的可調(diào)控設(shè)計與制造奠定了基礎(chǔ)。

Wang等[58]采用AFM納米壓痕法測定了懸浮在圓孔上的BP納米片的力學(xué)性能,研究發(fā)現(xiàn),BP納米片的彈性模量隨厚度的增大而減小,如圖8所示。當(dāng)厚度達(dá)到34 nm時,BP的彈性模量與塊體BP趨于一致。BP納米片的斷裂應(yīng)變在8%~17%,最大應(yīng)力在25 GPa以上,有望在柔性電子器件上獲得應(yīng)用。

圖7 BP的壓力–厚度關(guān)系[57]

圖8 BP納米片的有效模量與厚度的關(guān)系[58]

1.3.2 缺陷

原子缺陷在二維納米材料中普遍存在,如空位和其他點缺陷等。這些缺陷可能在二維納米材料的制造過程中形成,也可能由離子或電子輻照產(chǎn)生[59-61]。BP含有各種類型的缺陷,包括2種單空位(SV1和SV2)、3種雙空位(DV1、DV2和DV3)、2種Stone-Wales缺陷(SW1和SW2)[62-64]。缺陷對石墨烯、硅和二硫化鉬的電子、力學(xué)和熱性能有很大的影響[59-60,65-70]。最近的研究表明,這些缺陷對BP的電子和力學(xué)性能也有顯著影響[63-64]。

2016年,Hao等[71]利用DFT計算表明,在鋸齒形方向上,單層BP的楊氏模量由于單空位SV2缺陷而降低約11.7%,由于雙空位DV1缺陷而降低約6.6%,而在扶手椅方向上的楊氏模量幾乎不變,但斷裂應(yīng)變有較大幅度的降低。同年,Sha等[72]利用Stillinger-Weber(SW)勢進(jìn)行MD模擬,研究了單空位SV2缺陷的濃度和分布對單層BP力學(xué)響應(yīng)的影響,發(fā)現(xiàn)楊氏模量、斷裂強(qiáng)度和斷裂應(yīng)變都隨著缺陷濃度的增加而降低,溫度從10 K升高到400 K會使斷裂強(qiáng)度進(jìn)一步下降60%。如果缺陷形成一條線,隨著加載方向傾斜角從0°增加到90°,斷裂強(qiáng)度會產(chǎn)生更大幅度的下降。當(dāng)載荷在扶手椅方向時,雙空位比單空位導(dǎo)致的斷裂強(qiáng)度的降幅更大。當(dāng)載荷沿鋸齒形方向時,雙空位和單空位導(dǎo)致的斷裂強(qiáng)度的降幅幾乎相等。2017年,Xiao等[73]利用ReaxFF勢進(jìn)行MD模擬,結(jié)果表明,由于SV2、DV1、SW2缺陷,單層BP的斷裂應(yīng)變在鋸齒形方向上減少了約50%。同年,Nguyen等[74]進(jìn)一步研究了7種缺陷對BP力學(xué)性能的影響,他們發(fā)現(xiàn),拉伸方向和缺陷類型影響B(tài)P的斷裂性能。在鋸齒形方向,DV2缺陷使BP的斷裂應(yīng)力和應(yīng)變最?。辉诜鍪忠畏较?,DV3缺陷使BP的斷裂應(yīng)力和應(yīng)變最小。Hatam-Lee等[44]采用MD模擬的方法預(yù)測了在拉伸和剪切載荷作用下BP中點缺陷和線性缺陷與力學(xué)性能的相關(guān)性,結(jié)果表明,沿扶手椅方向的線性缺陷能顯著降低楊氏模量的各向異性,而對剪切模量的各向異性影響不大。事實上,缺陷可以作為裂紋擴(kuò)展的中心點,從而降低抗拉強(qiáng)度。不同缺陷的應(yīng)力應(yīng)變曲線如圖9所示。晶界較晶內(nèi)原子能量更大、更不穩(wěn)定,是二維晶體中一種主要的缺陷類型,但第一性原理研究顯示,BP中晶界對結(jié)構(gòu)的穩(wěn)定性幾乎沒有影響。與sp2結(jié)構(gòu)不同,由于固有的褶皺結(jié)構(gòu),sp3結(jié)構(gòu)更具彈性,能夠容納更多的晶格變形和位錯,因此晶界對BP力學(xué)性能(如模量和強(qiáng)度)的影響微不足道[75]。

圖9 不同缺陷數(shù)的單層缺陷BP在扶手椅和鋸齒形方向剪切載荷下的應(yīng)力–應(yīng)變曲線[44]

這些結(jié)果可用于預(yù)測原始形態(tài)和缺陷形態(tài)的二維BP在拉伸和剪切載荷下的力學(xué)性能,為缺陷BP的力學(xué)性質(zhì)提供了重要的信息,有助于BP在未來納米器件應(yīng)用中的結(jié)構(gòu)設(shè)計。然而,通過缺陷工程降低楊氏模量各向異性的可能性仍未得到確定。

1.3.3 預(yù)應(yīng)變

施加預(yù)應(yīng)變是改善合金[76]、鋼[77-78]和聚合物[79]等塊體材料力學(xué)性能的重要方法。二維納米材料在應(yīng)力的作用下會因壓縮和拉伸產(chǎn)生形變,在壓縮過程中,通常會伴隨著波紋狀的起伏,這種現(xiàn)象引起了越來越多的關(guān)注。研究人員對BP開展了一系列關(guān)于預(yù)應(yīng)變的探索研究,發(fā)現(xiàn)BP的力學(xué)特性可以被預(yù)應(yīng)變所調(diào)控[17,40-42,80]。

2017年,Li等[49]通過MD模擬研究了預(yù)應(yīng)變對單層BP在扶手椅和鋸齒形方向的拉伸和壓縮行為的影響。結(jié)果表明,隨著壓縮預(yù)應(yīng)變的增加,單層BP的整體力學(xué)性能(包括楊氏模量、拉伸強(qiáng)度、壓縮強(qiáng)度和屈服強(qiáng)度)提高,但隨著拉伸預(yù)應(yīng)變的增加,單層BP的整體力學(xué)性能下降。在預(yù)應(yīng)變值相同的情況下,單層BP表現(xiàn)出單向均勻的拉伸和壓縮變形特性。與鋸齒形方向的預(yù)應(yīng)變相比,扶手椅方向的預(yù)應(yīng)變對整體力學(xué)性能的改善更為顯著。同年,Li等[81]進(jìn)一步研究了不同溫度下預(yù)應(yīng)變的影響,隨著溫度的升高,壓縮預(yù)應(yīng)變對力學(xué)性能的增強(qiáng)作用逐漸減弱。可見,施加壓縮預(yù)應(yīng)變是改善BP模量和強(qiáng)度的有效途徑之一。

1.3.4 環(huán)境因素

BP在大氣環(huán)境下的不穩(wěn)定性[82]是目前阻礙BP器件應(yīng)用進(jìn)一步發(fā)展的瓶頸之一。Favron等[83]指出,光照可以誘使氧分子在BP表面生成超氧根離子,該離子會和BP反應(yīng),生成磷氧化合物,進(jìn)而與水反應(yīng)生成磷酸,使得BP不斷被氧化分解,而且BP被氧化的過程是不可逆的[84]。

Island等[82]研究了暴露于環(huán)境條件下的少層BP的不穩(wěn)定性。研究表明,BP對水的強(qiáng)親和力不僅使空氣中的水分凝結(jié)而引起自身體積的變化,而且通過逐層蝕刻極大地改變了BP基場效應(yīng)晶體管的性能。Moreno-Moreno等[85]使用AFM進(jìn)行壓痕實驗,對比研究了空氣環(huán)境和高真空條件對BP力學(xué)性能的影響。暴露在空氣中,厚度在6 nm以下的BP薄片的彈性模量明顯下降,暴露在環(huán)境中24 h后,彈性模量下降了近66%,但厚度大于7 nm的BP薄片的力學(xué)性能變化很小,這可能是由于BP薄片外層鈍化導(dǎo)致的,如圖10所示。

圖10 不同厚度的BP片暴露在環(huán)境條件下的力學(xué)性能[85]

針對BP的環(huán)境不穩(wěn)定性,研究者們提出了一些保護(hù)策略,如鈍化層保護(hù)[86-87]、有機(jī)化合物修飾[88-89]、金屬納米粒子修飾[90-94]等。Lei等[91]研究證明,用銀納米粒子修飾的BP表面活性提高了20倍。Hu等[92]研究證實,由于銀納米粒子的修飾,BP場效晶體管中紅外吸收得到顯著改善。通常,少層BP的操作和應(yīng)用是在惰性環(huán)境或暴露在空氣中進(jìn)行[95-97],惰性氣體(如氬氣)是少層BP試樣制備的普遍操作環(huán)境[96-97]。

環(huán)境中的另一個影響因素就是溫度。鑒于BP在納米機(jī)電器件中的應(yīng)用需求,為實現(xiàn)其在器件中的工作可靠性,必須明確BP力學(xué)性能的溫度依賴性。用MD模擬研究溫度對BP拉伸行為的影響,發(fā)現(xiàn)BP的楊氏模量、拉伸強(qiáng)度和極限應(yīng)變等力學(xué)性能都隨溫度的升高而降低[50]。2015年,Yang等[41]采用MD模擬的方法研究了單層BP應(yīng)力–應(yīng)變的溫度依賴關(guān)系(如圖11所示),應(yīng)力隨溫度的升高而降低,通過MD模擬預(yù)測的強(qiáng)度和模量與第一性原理法的計算結(jié)果[52]吻合較好。Li等[81]用MD模擬研究了單層BP在不同溫度下的力學(xué)行為,發(fā)現(xiàn)隨著溫度的升高,壓縮預(yù)應(yīng)變對力學(xué)性能的增強(qiáng)作用逐漸減弱。Wang等[98]利用MD模擬的方法,在考慮溫度和氣體吸附的情況下,研究了少層帶狀BP的拉伸強(qiáng)度。結(jié)果表明,高溫下BP帶的拉伸強(qiáng)度減弱,而當(dāng)BP帶在拉伸前充分弛豫,由于其表面氬氣的吸收,其強(qiáng)度會略有提高,300 K時的拉伸強(qiáng)度提高明顯。然而,溫度對BP力學(xué)性能影響的實驗研究仍有待深入。

圖11 單軸拉伸下扶手椅和鋸齒形方向不同溫度下的應(yīng)力–應(yīng)變曲線[41]

2 黑磷在摩擦學(xué)領(lǐng)域的研究現(xiàn)狀

2.1 微納摩擦學(xué)

2.1.1 摩擦的各向異性

近年來,無論是實驗還是MD模擬都表明,單層BP的摩擦呈現(xiàn)原子級各向異性,確切地說,沿扶手椅方向的摩擦力大于鋸齒形方向的摩擦力[99-100]。

BP可以通過機(jī)械或化學(xué)方法剝落成1層,但目前單層BP的制備和摩擦實驗非常困難,而MD模擬可以提供納米尺度滑動過程中內(nèi)層界面的直接信息。 Gong等[101]采用MD模擬研究單層BP摩擦行為的各向異性,對單層BP在不同晶格方向上的摩擦力進(jìn)行了詳細(xì)的模擬和分析。研究發(fā)現(xiàn),摩擦力沿單層BP不同晶格取向存在顯著的各向異性,其變化呈“M”形(如圖12所示),即相對于單層BP鋸齒形方向,沿15°和75°方向的局部摩擦力最大,且摩擦的各向異性與接觸面積無關(guān),即使發(fā)生摩擦磨損,摩擦的各向異性仍保持不變。通過Tomlinson模型的計算,他們還分析了沿不同晶格方向的勢能分布,證明了這種新型摩擦特性是單層BP的褶皺結(jié)構(gòu)與基體–試樣間非均質(zhì)相互作用的耦合效應(yīng)造成的。

圖12 鋸齒形方向與滑動方向間不同角度的摩擦力[101]

2.1.2 厚度和載荷對摩擦的影響

Cui等[100]對少層BP片的基本結(jié)構(gòu)和物理性質(zhì)進(jìn)行了表征,利用橫向力顯微鏡(LFM)研究了摩擦系數(shù)與BP片厚度的關(guān)系。不同層數(shù)BP的摩擦力與施加載荷的關(guān)系如圖13所示。對于厚度小于5層的BP,摩擦力隨著層數(shù)的減少呈單調(diào)增加的趨勢,且大于塊體BP的摩擦力。然而,對于5層以上的BP,其摩擦力接近于塊體BP表面的摩擦力。隨著針尖前后掃描運動,4層BP片的受力增大,導(dǎo)致摩擦環(huán)傾斜,而在BP塊體上卻沒有出現(xiàn)這種現(xiàn)象,這是不同層數(shù)BP的剛度不同造成的,證實了不同層數(shù)下的摩擦力差異與強(qiáng)化機(jī)制有關(guān)[102-103]。由于BP沿不同晶格取向的變形抗力不同,當(dāng)施加載荷時,不同晶格方向上的彎曲變形不同導(dǎo)致摩擦的各向異性。Cui等[100]還研究了載荷對摩擦性能各向異性的影響,發(fā)現(xiàn)載荷的增加會在一定程度上弱化摩擦的各向異性,如圖14、15所示。

圖13 不同厚度BP薄片摩擦與載荷的關(guān)系[100]

圖14 沿不同方向的平均摩擦力與載荷的關(guān)系[100]

圖15 不同載荷下扶手椅和之字形方向的摩擦比[100]

2.1.3 表面降解

BP遇氧氣和水分容易發(fā)生降解而產(chǎn)生缺陷[28]。Wang等[25]為了研究氧化對BP摩擦性能的影響,研究了不同暴露時間下BP的摩擦性能,如圖16所示。結(jié)果表明,由于室溫氧化過程的影響,微觀尺度上的摩擦增大。不同空氣暴露時間的拉曼強(qiáng)度下降,隨后由于氧化層的形成而保持穩(wěn)定。Wu等[104]利用AFM研究了表面降解后的BP納米片微區(qū)與氮化硅針尖的納米摩擦行為,并從摩擦化學(xué)的角度考慮其化學(xué)反應(yīng)對潤滑性能的貢獻(xiàn)。結(jié)果表明,BP納米片降解區(qū)域的摩擦力明顯減小,環(huán)境降解顯著促進(jìn)了BP納米片的潤滑行為。特別是,水的結(jié)合以及氧化表面形成的化學(xué)基團(tuán)被認(rèn)為是摩擦減小的原因之一,闡明了BP作為潤滑劑的一種作用機(jī)理。

圖16 BP摩擦與空氣暴露時間的關(guān)系[25]

Wu等[105]通過AFM和光譜研究相結(jié)合的方式,證實了降解后的BP納米片與SiO2/Si基底界面水層的形成,并論證了界面水層在BP/SiO2界面實現(xiàn)超低剪切行為的作用機(jī)制,如圖17所示。環(huán)境降解導(dǎo)致BP納米片下水分子的界面擴(kuò)散,導(dǎo)致P—OH基團(tuán)的形成和親水SiO2表面Si—OH基團(tuán)的增強(qiáng)。因此,附著在BP片層上的穩(wěn)定水層和SiO2表面基團(tuán)極大地削弱了其界面相互作用,流動的液態(tài)水層顯著降低了界面的剪切強(qiáng)度(低至0.029 MPa),與超潤滑狀態(tài)相當(dāng)。這一發(fā)現(xiàn)闡明了降解后的BP與水分子之間的強(qiáng)相互作用,為少層BP納米材料在低界面粘附和生物潤滑中的應(yīng)用提供了支持。

圖17 降解BP/SiO2界面的界面結(jié)構(gòu)[105]

2.2 宏觀摩擦學(xué)研究

2.2.1 油基潤滑添加劑

少層BP具有較低的剪切強(qiáng)度和良好的熱穩(wěn)定性,是一種潛在的潤滑添加劑。2017年,Wang等[25]研究了BP納米片作為油基潤滑添加劑的潤滑效果。均勻分散在十六烷中(BP-16C)的BP納米片,在低負(fù)荷時表現(xiàn)出與其他二維納米材料相似的潤滑性能,而在高負(fù)荷時具有出色的抗極壓能力和承載能力。在最低濃度下,BP的潤滑性能最好,是氧化石墨烯(GO)的50倍,是MoS2的5倍(如圖18所示)。經(jīng)過對潤滑機(jī)理的分析,認(rèn)為極低濃度均勻分散的BP納米片可以生成BP摩擦薄膜,有效降低摩擦,保護(hù)滑動界面(如圖19所示),這為通過在潤滑油添加BP來降低摩擦和減少磨損這一潤滑方式提供了應(yīng)用前景。

圖18 3種油基潤滑添加劑在超低濃度下的比較[25]

圖19 BP作為潤滑添加劑的潤滑機(jī)理[25]

2019年,Xu等[106]在聚α烯烴(PAO6)基礎(chǔ)油中加入BP納米片,發(fā)現(xiàn)可使鋼與鋼接觸的摩擦系數(shù)顯著降低,最大可降低20%,如圖20所示。BP納米片層的滑動以及吸附在接觸表面與基礎(chǔ)油中的有機(jī)物形成摩擦膜,起到了抗磨潤滑的效果,但高含量的BP納米片團(tuán)聚,使?jié)櫥阅軠p低。另外,減摩效果隨載荷的增加減弱。2020年,Wang等[107]研究了在液體石蠟油中加入BP納米片(BP-LP)的潤滑效果,結(jié)果表明,BP納米片的加入可使鈦合金與鋼接觸的磨損率降低45.2%,摩擦系數(shù)降低30%,強(qiáng)調(diào)了界面吸附和BP納米片的層間低剪切應(yīng)力的協(xié)同作用。2021年,Tang等[108]通過實驗和反應(yīng)力場分子動力學(xué)模擬(RMD)揭示了BP納米片分散在油酸中的超潤滑機(jī)理,0.1%(質(zhì)量分?jǐn)?shù))BP納米添加劑的油酸(BP-OA)可使鋼與鋼接觸的摩擦系數(shù)達(dá)到0.006(如圖21所示)。在高接觸壓力和高溫下,油酸分解釋放出鈍化物質(zhì),并重新結(jié)合,形成非晶態(tài)碳,與BP形成固體摩擦膜,從而產(chǎn)生宏觀超潤滑性。這些發(fā)現(xiàn)為深入研究BP的摩擦化學(xué)機(jī)理提供了思路,并為實現(xiàn)工業(yè)材料的宏觀超潤滑提供了新的途徑。

圖20 不同含量BP納米片的PAO6潤滑油在不同載荷下的平均摩擦系數(shù)[106]

圖21 純OA與BP-OA的摩擦系數(shù)[108]

表面摻雜銀納米粒子不僅可以改善BP的環(huán)境不穩(wěn)定性,而且可以提高光活性和近紅外吸收性能。同時,銀納米粒子還具有優(yōu)異的潤滑性能[109-110]。Tang等[111]合成了Ag/BP納米復(fù)合材料,研究了其在PAO6油中的潤滑效果,如圖22、23所示。與PAO6油相比,添加了0.075%(質(zhì)量分?jǐn)?shù))的Ag/BP納米復(fù)合材料可使鋼與鋼之間接觸的摩擦系數(shù)降低高達(dá)73.4%,磨損率降低高達(dá)92.0%。這歸結(jié)于銀納米粒子、BP納米片和摩擦產(chǎn)生的化學(xué)反應(yīng)膜。2020年,Luo等[112]還研究了TiO2/BP和TiL4/BP這2種納米復(fù)合材料分別作為添加劑分散在PAO6中的摩擦性能。對于鋼與鋼之間的潤滑,2種添加劑在PAO6中的最佳質(zhì)量分?jǐn)?shù)為0.01%,過高的濃度會導(dǎo)致添加劑的聚集和潤滑效果的惡化。在相同條件下,與TiL4/BP相比,TiO2的承載和滾動作用、摩擦膜的形成以及BP納米片的層間滑動使得TiO2/BP納米復(fù)合材料具有更好的潤滑效果。

圖22 摩擦系數(shù)與滑動距離的關(guān)系[111]

圖23 添加不同納米添加劑的純油和油類樣品的平均摩擦磨損系數(shù)[111]

2.2.2 水基潤滑添加劑

為進(jìn)一步提高BP在水溶液中的分散性,Wang等[113]用氫氧化鈉高能球磨法改性了少層BP納米片,將羥基嫁接到少層BP納米片表面,并研究了其作為水基潤滑添加劑的摩擦性能。Wang等比較了超純水、0.06%的BP分散液、3%的NaOH水溶液和3%的BP-OH溶液在Si4N3/SiO2接觸表面的摩擦系數(shù)隨時間的變化規(guī)律,4 000 s后,3%的BP-OH溶液進(jìn)入超潤滑狀(摩擦系數(shù)COF<0.001),如圖24所示。當(dāng)添加劑濃度、接觸壓力和滑動速度發(fā)生顯著變化時,氫氧化鈉改性BP納米片(BP-OH)加入水中可以產(chǎn)生強(qiáng)大的超潤滑性,通過氫鍵附著在BP-OH納米片上的水層起到了非常有效的潤滑作用(如圖25所示)。為實現(xiàn)高效的鈦合金加工,Wang等[114]研究了BP納米片作為鈦合金加工中的水基潤滑添加劑,結(jié)果表明,70 mg/L的BP試樣的潤滑性能最佳,其摩擦系數(shù)和球磨損率比純水分別降低了32.4%和61.1%,如圖26所示。這主要歸因于BP納米片較低的層間剪切力,以及由于吸附所形成的保護(hù)膜。2021年,Ren等[115]使用雙氧水氧化后的黑磷(OBP)納米片作為水基潤滑劑添加劑,在氮化硅(Si3N4)與藍(lán)寶石界面處1 193 MPa的超高接觸壓力下實現(xiàn)了穩(wěn)定的超潤滑狀態(tài)(摩擦系數(shù)約為0.004)。他們通過MD模擬闡明了其潤滑機(jī)理,這是由于氧化過程中形成的P==O和P—OH鍵可以吸附和保留OBP表面的水分子,有助于在超高接觸壓力下實現(xiàn)和保持超潤滑性。

圖24 4種不同潤滑劑的摩擦系數(shù)比較[113]

圖25 BP-OH納米片作為水基分散體的超潤滑機(jī)理[113]

圖26 GCr15鋼在純水和不同濃度BP-WL中的摩擦系數(shù)曲線和磨損率[114]

Ren等[116]將黑磷量子點(BPQDs)均勻分散在乙二醇(EG)水溶液中,實現(xiàn)了Si3N4與藍(lán)寶石摩擦界面在高接觸壓力下的超潤滑。經(jīng)過約900 s的磨合期,摩擦系數(shù)從0.045逐漸下降到0.002(如圖27所示),即使在336 MPa的高接觸壓力下,也能實現(xiàn)穩(wěn)定的宏觀超潤滑狀態(tài)(如圖28所示)。由于BPQDs 的滾動效應(yīng)和層間的低剪切強(qiáng)度,BPQDs顯示出更優(yōu)異的潤滑和抗磨性能。同年,Tang等[117]分別對比了BP粉末和BPQDs作為水基潤滑添加劑在鋼與鋼接觸表面的摩擦性能(如圖29所示),BPQDs的減摩抗磨效果明顯優(yōu)于BP粉末。BPQDs可以與摩擦表面反應(yīng),形成平均厚度約為90 nm的堅固摩擦化學(xué)膜,從而防止摩擦表面之間的直接接觸來降低摩擦和磨損。此外,BPQDs還可以充當(dāng)“滾珠軸承”,以進(jìn)一步降低摩擦表面的摩擦和磨損。

圖27 BPQDs-EGaq的摩擦系數(shù)曲線[116]

圖28 超潤滑期間不同載荷下的COF平均值和相應(yīng)的接觸壓力[116]

另外,含BP的復(fù)合納米材料作為水基潤滑添加劑也有優(yōu)異表現(xiàn)。2019年,Guo等[118]合成了黑磷–氧化石墨烯(BP-GO)復(fù)合納米材料,與BP和GO相比,BP-GO復(fù)合納米材料作為水基添加劑具有更好的潤滑性能。復(fù)合納米材料的親水性有助于水分子的表面吸附和層間滲透,降低層間剪切力。此外,微觀二維非公度的層狀結(jié)構(gòu)進(jìn)一步降低了層間剪切強(qiáng)度,有助于材料在水環(huán)境中的低摩擦行為。

2.2.3 聚合物復(fù)合材料

BP作為聚合物復(fù)合材料潤滑劑也表現(xiàn)出優(yōu)異的潤滑減摩特性。Wang等[25]制備了黑磷/聚偏氟乙烯(BP/PVDF)復(fù)合材料,在相同的載荷下,摩擦系數(shù)隨BP含量的增加而增加,在BP質(zhì)量分?jǐn)?shù)約為10%時達(dá)到最大值,但隨著BP含量的進(jìn)一步升高,摩擦系數(shù)迅速下降,如圖30a所示。對于這一現(xiàn)象,Wang等[25]使用拉曼光譜進(jìn)行了分析驗證,推斷復(fù)合材料潤滑性能的改善歸結(jié)于一定量的BP及其潤滑效果。BP含量相同時,BP/PVDF復(fù)合材料的摩擦系數(shù)隨著外加載荷的增加而降低,不同載荷下BP/PVDF復(fù)合材料的磨損率隨BP含量的變化如圖30b所示,表明BP的加入可以提高BP/PVDF復(fù)合材料的耐磨性。

圖29 不同溶液的摩擦系數(shù)曲線以及與之對應(yīng)的平均磨損體積[117]

Lv等[119]研究了含BP納米片的聚醚醚酮/聚四氟乙烯(PEEK/PTFE)和炭纖維/聚四氟乙烯(CF/PTFE)復(fù)合材料的摩擦學(xué)性能,以及摩擦副表面磨損軌跡的形貌。結(jié)果表明,添加BP納米片后,PEEK/PTFE和CF/PTFE復(fù)合材料的摩擦系數(shù)均顯著降低,復(fù)合材料的最小摩擦系數(shù)為0.04,如圖31所示。PTFE/PEEK復(fù)合材料的磨損率隨著BP含量的增加而顯著降低,而CF/PTFE復(fù)合材料的磨損率隨著填料濃度的增加而顯著提高,如圖32所示。對含BP納米片的PTFE復(fù)合材料的潤滑機(jī)理進(jìn)行分析可知,BP納米片在接觸表面逐漸形成由氧化磷和磷酸組成的BP潤滑膜,促進(jìn)了摩擦減小和粘著磨損的消失。

圖30 不同載荷下BP/PVDF復(fù)合材料的平均摩擦系數(shù)和磨損速率與BP含量的關(guān)系[25]

圖31 純PTFE及其與PEEK、BP和CF、BP復(fù)合材料的平均摩擦系數(shù)[119]

圖32 純PTFE及其與PEEK、BP和CF、BP復(fù)合材料的磨損率[119]

Peng等[120]分別比較了用BP和石墨(BMG)納米顆粒增強(qiáng)PTFE薄膜涂層的摩擦學(xué)性能,結(jié)果表明,BP/PTFE涂層比純PTFE或BMG/PTFE涂層具有更好的抗磨減摩性能。添加BMG和BP顆粒的復(fù)合涂層,摩擦系數(shù)分別降低了26%和61%,并推測保護(hù)膜中BP層之間的弱范德華力和負(fù)泊松比可以有效降低摩擦系數(shù),提高基體的耐磨性。

3 結(jié)語

理論與實驗研究結(jié)果表明,黑磷(BP)是具有優(yōu)越的力學(xué)和摩擦學(xué)性能的一種新型二維納米材料。主要表現(xiàn)在:

1)BP的負(fù)泊松比特性、力學(xué)各向異性以及缺陷與應(yīng)變對BP性能的調(diào)控在微機(jī)電系統(tǒng)和傳感器的開發(fā)研究中備受關(guān)注。在天然晶體材料中,目前僅在BP中觀察到負(fù)泊松比特性。BP晶體結(jié)構(gòu)和力學(xué)性質(zhì)均表現(xiàn)出各向異性,沿鋸齒形方向和扶手椅方向之間楊氏模量的各向異性比為2.2~4.4。拉伸應(yīng)變下的晶格振動、壓縮應(yīng)變下的起皺現(xiàn)象以及臨界應(yīng)變也呈現(xiàn)出各向異性,且BP納米片的彈性模量隨厚度的增大而減小,薄層BP在壓縮時變形的各向異性明顯。缺陷結(jié)構(gòu)和環(huán)境氧化對BP的力學(xué)性能均產(chǎn)生不利影響。在鋸齒形方向上,單空位和雙空位缺陷均可降低BP的楊氏模量和斷裂應(yīng)變;在扶手椅方向的楊氏模量幾乎不變,但斷裂應(yīng)變有較大幅度的降低。厚度在6 nm以下的BP薄片暴露在環(huán)境中24 h后,彈性模量下降了近66%。施加壓縮預(yù)應(yīng)變是提高單層BP模量和強(qiáng)度的有效途徑之一。應(yīng)變以及缺陷對材料力學(xué)性能的調(diào)控可以為BP的應(yīng)用推廣提供新的思路。

2)作為油基、水基以及聚合物基體的潤滑添加劑,BP的潤滑減摩作用明顯,展現(xiàn)出工程領(lǐng)域的應(yīng)用價值。微觀摩擦學(xué)研究表明,BP沿扶手椅方向的摩擦力大于鋸齒形方向的摩擦力。對于厚度小于5層的BP,摩擦力隨著層數(shù)的減少呈單調(diào)增加的趨勢。載荷的增加會在一定程度上削弱摩擦的各向異性。水分子的結(jié)合以及氧化表面形成的化學(xué)基團(tuán)是BP表面摩擦減小的主要原因之一。低濃度的BP添加在潤滑油中,潤滑性能優(yōu)于GO和MoS2。Ag/BP納米復(fù)合材料添加在PAO6油中,可使鋼與鋼接觸的摩擦系數(shù)降低高達(dá)73.4%,磨損率降低高達(dá)92.0%。0.1% BP納米添加劑的油酸可使鋼與鋼之間接觸的摩擦系數(shù)達(dá)到0.006的超滑狀態(tài)。作為水基潤滑添加劑,相較于純水來說,BP能使摩擦系數(shù)和磨損率得到明顯改善。添加OBP納米片的水基潤滑液在接觸壓力1 193 MPa下也能實現(xiàn)穩(wěn)健的超滑狀態(tài)。與BP和GO相比,BP-GO復(fù)合納米材料作為水基添加劑具有更好的潤滑性能。添加BP納米片后,PEEK/PTFE和CF/PTFE復(fù)合材料的摩擦系數(shù)可以達(dá)到0.04,添加了BP顆粒的復(fù)合材料PTFE涂層摩擦系數(shù)可降低61%。

目前,黑磷的應(yīng)用研究仍在不斷擴(kuò)展,所帶來的基礎(chǔ)性問題還有待進(jìn)一步研究。黑磷力學(xué)性能的調(diào)控以及環(huán)境下的實驗測試有待進(jìn)一步探索。相較于黑磷在液體潤滑中的表現(xiàn),作為固體潤滑劑的應(yīng)用仍缺乏系統(tǒng)研究??紤]到其優(yōu)異的力學(xué)特性,對高載下黑磷的超潤滑機(jī)制的揭示仍需要新的視角。

[1] 陳貴鋒, 劉春峰, 陶俊光. 表面缺陷促進(jìn)SnO微板在中性電解質(zhì)中的電催化性能[J]. 河北工業(yè)大學(xué)學(xué)報, 2018, 47(6): 13-18.

CHEN Gui-feng, LIU Chun-feng, TAO Jun-guang. Sur-face Defects Promoted Electrocatalytic Performance of SnO Microplates in Neutral Electrolyte[J]. Journal of Hebei University of Technology, 2018, 47(6): 13-18.

[2] MUDULI S K, VARRLA E, KULKARNI S A, et al. 2D Black Phosphorous Nanosheets as a Hole Transporting Material in Perovskite Solar Cells[J]. Journal of Power Sources, 2017, 371: 156-161.

[3] WEN Wei, SONG Yang, YAN Xu, et al. Recent Adva-nces in Emerging 2D Nanomaterials for Biosensing and Bioimaging Applications[J]. Materials Today, 2018, 21(2): 164-177.

[4] WANG Xiao-mu, JONES A M, SEYLER K L, et al. Highly Anisotropic and Robust Excitons in Monolayer Black Phosphorus[J]. Nature Nanotechnology, 2015, 10(6): 517-521.

[5] LI Peng, ZHANG Dong-zhi, JIANG Chuan-xing, et al. Ultra-Sensitive Suspended Atomically Thin-Layered Black Phosphorus Mercury Sensors[J]. Biosensors & Bioelec-tronics, 2017, 98: 68-75.

[6] VENKATARAO S, AMOGH B S, PARIKSHIT S. Highly Air-Stabilized Black Phosphorus on Disposable Paper Substrate as a Tunnelling Effect-Based Highly Sensitive Piezoresistive Strain Sensor[J]. Medical Devices & Sensors, 2020, 3(4): 10099.

[7] LI Peng, ZHANG Dong-zhi, WU Jun-feng, et al. Flexible Integrated Black Phosphorus Sensor Arrays for High Performance Ion Sensing[J]. Sensors and Actuators B: Chemical, 2018, 273: 358-364.

[8] YOUNGBLOOD N, CHEN Che, KOESTER S J, et al. Waveguide-Integrated Black Phosphorus Photodetector with High Responsivity and Low Dark Current[J]. Nature Photonics, 2015, 9(4): 247-252.

[9] ZILETTI A, CARVALHO A, TREVISANUTTO P E, et al. Phosphorene Oxides: Bandgap Engineering of Phospho-rene by Oxidation[J]. Physical Review B, 2015, 91(8): 085407.

[10] LU Jun-peng, WU Jing, CARVALHO A, et al. Bandgap Engineering of Phosphorene by Laser Oxidation Toward Functional 2D Materials[J]. ACS Nano, 2015, 9(10): 10411-10421.

[11] TRAN V, SOKLASKI R, LIANG Yu-feng, et al. Layer- Controlled Band Gap and Anisotropic Excitons in Few- Layer Black Phosphorus[J]. Physical Review B, 2014, 89(23): 235319.

[12] APPALAKONDAIAH S, VAITHEESWARAN G, LEBèGUE S, et al. Effect of van Der Waals Interactions on the Structural and Elastic Properties of Black Phosp-horus[J]. Physical Review B, 2012, 86(3): 035105.

[13] WEI Qun, PENG Xi-hong. Superior Mechanical Flexibi-lity of Phosphorene and Few-Layer Black Phosphorus[J]. Applied Physics Letters, 2014, 104(25): 251915.

[14] RODIN A S, CARVALHO A, CASTRO NETO A H. Strain-Induced Gap Modification in Black Phosphorus[J]. Physical Review Letters, 2014, 112(17): 176801.

[15] JAMIESON J C. Crystal Structures Adopted by Black Phosphorus at High Pressures[J]. Science, 1963, 139(3561): 1291-1292.

[16] KOU Liang-zhi, CHEN Chang-feng, SMITH S C. Phosp-horene: Fabrication, Properties, and Applications[J]. The Journal of Physical Chemistry Letters, 2015, 6(14): 2794- 2805.

[17] LIU Ning, HONG Jia-wang, PIDAPARTI R, et al. Frac-ture Patterns and the Energy Release Rate of Phosp-horene[J]. Nanoscale, 2016, 8(10): 5728-5736.

[18] LEE J H, LOYA P E, LOU Jun, et al. Dynamic Mec-hanical Behavior of Multilayer Graphene via Supersonic Projectile Penetration[J]. Science, 2014, 346(6213): 1092- 1096.

[19] PU Jiang, LI L J, TAKENOBU T. Flexible and Stretc-hable Thin-Film Transistors Based on Molybdenum Disu-lphide[J]. Physical Chemistry Chemical Physics: PCCP, 2014, 16(29): 14996-15006.

[20] 張豪, 林櫟陽, 吳博, 等. 復(fù)合材料在柔性電化學(xué)儲能裝置中的應(yīng)用及研究進(jìn)展[J]. 河北工業(yè)大學(xué)學(xué)報, 2020, 49(3): 1-20.

ZHANG Hao, LIN Li-yang, WU Bo, et al. Research Pro-gress on the Application of Composite Materials in Fle-xible Electrochemical Energy Storage Devices[J]. Journal of Hebei University of Technology, 2020, 49(3): 1-20.

[21] 張紅衛(wèi), 劉帥磊, 張?zhí)O. 石墨烯層間摩擦的面內(nèi)局部應(yīng)變調(diào)控[J]. 表面技術(shù), 2021, 50(3): 270-275.

ZHANG Hong-wei, LIU Shuai-lei, ZHANG Ping. Inter-layer Friction Regulation of Graphene by In-Plane Local Strain Engineering[J]. Surface Technology, 2021, 50(3): 270-275.

[22] ZHANG Xiang-hua, XU Hong-xiang, WANG Jiang-tao, et al. Synthesis of Ultrathin WS2Nanosheets and Their Tribological Properties as Lubricant Additives[J]. Nano-scale Research Letters, 2016, 11(1): 1-9.

[23] CHO D H, KIM J S, KWON S H, et al. Evaluation of Hexagonal Boron Nitride Nano-Sheets as a Lubricant Additive in Water[J]. Wear, 2013, 302(1-2): 981-986.

[24] 蘇峰華, 張欣博, 孫建芳. 功能化石墨烯及石墨烯基納米復(fù)合材料潤滑添加劑的研究進(jìn)展[J]. 表面技術(shù), 2021, 50(4): 1-17.

SU Feng-hua, ZHANG Xin-bo, SUN Jian-fang. Research Progress of Functionalized Graphene and Graphene- Based Nanocomposites Lubricant Additives[J]. Surface Technology, 2021, 50(4): 1-17.

[25] WANG Wei, XIE Guo-xin, LUO Jian-bin. Black Phosp-horus as a New Lubricant[J]. Friction, 2018, 6(1): 116-142.

[26] JIANG Jin-wu, PARK H S. Negative Poisson’s Ratio in Single-Layer Black Phosphorus[J]. Nature Communica-tions, 2014, 5: 4727.

[27] JIANG Jin-wu, RABCZUK T, PARK H S. A Stillinger- Weber Potential for Single-Layered Black Phosphorus, and the Importance of Cross-Pucker Interactions for a Negative Poisson's Ratio and Edge Stress-Induced Ben-ding[J]. Nanoscale, 2015, 7(14): 6059-6068.

[28] DU Yu-chen, MAASSEN J, WU Wang-ran, et al. Auxetic Black Phosphorus: A 2D Material with Negative Poisson's Ratio[J]. Nano Letters, 2016, 16(10): 6701-6708.

[29] EVANS K E, NKANSAH M A, HUTCHINSON I J, et al. Molecular Network Design[J]. Nature, 1991, 353(6340): 124.

[30] PRAWOTO Y. Seeing Auxetic Materials from the Mechanics Point of View: A Structural Review on the Negative Poisson’s Ratio[J]. Computational Materials Science, 2012, 58: 140-153.

[31] NESTERENKO T G, VTORUSHIN S E, BARBIN E S, et al. Effect of the Anisotropy of Monocrystalline Silicon Mechanical Properties on the Dynamic Characteristics of a Micromechanical Gyroscope[J]. IOP Conference Series: Materials Science and Engineering, 2015, 81: 012096.

[32] JIANG Jin-wu. The Third Principal Direction Besides Armchair and Zigzag in Single-Layer Black Phosp-horus[J]. Nanotechnology, 2015, 26(36): 365702.

[33] JIANG Jin-wu, PARK H S. Mechanical Properties of Single-Layer Black Phosphorus[J]. Journal of Physics D: Applied Physics, 2014, 47(38): 385304.

[34] WANG Zeng-hui, FENG P X L. Design of Black Phos-phorus 2D Nanomechanical Resonators by Exploiting the Intrinsic Mechanical Anisotropy[J]. 2D Materials, 2015, 2(2): 021001.

[35] FEI Rui-xiang, YANG Li. Strain-Engineering the Anisot-ropic Electrical Conductance of Few-Layer Black Phosp-horus[J]. Nano Letters, 2014, 14(5): 2884-2889.

[36] ELAHI M, KHALIJI K, TABATABAEI S M, et al. Modulation of Electronic and Mechanical Properties of Phosphorene through Strain[J]. Physical Review B, 2015, 91(11): 115412.

[37] LI Yan, YANG Sheng-xue, LI Jing-bo. Modulation of the Electronic Properties of Ultrathin Black Phosphorus by Strain and Electrical Field[J]. The Journal of Physical Chemistry C, 2014, 118(41): 23970-23976.

[38] HAN Xiao-yu, STEWART H M, SHEVLIN S A, et al. Strain and Orientation Modulated Bandgaps and Effective Masses of Phosphorene Nanoribbons[J]. Nano Letters, 2014, 14(8): 4607-4614.

[39] CAO Pin-qiang, WU Jian-yang, ZHANG Zhi-sen, et al. Mechanical Properties of Monocrystalline and Polycrys-talline Monolayer Black Phosphorus[J]. Nanotechnology, 2017, 28(4): 045702.

[40] TAO Jin, SHEN Wan-fu, WU Sen, et al. Mechanical and Electrical Anisotropy of Few-Layer Black Phosphorus[J]. ACS Nano, 2015, 9(11): 11362-11370.

[41] YANG Zhao-yao, ZHAO Jun-hua, WEI Ning. Temperature- Dependent Mechanical Properties of Monolayer Black Phosphorus by Molecular Dynamics Simulations[J]. App-lied Physics Letters, 2015, 107(2): 023107.

[42] WANG Lu-qing, KUTANA A, ZOU Xiao-long, et al. Electro-Mechanical Anisotropy of Phosphorene[J]. Nano-scale, 2015, 7(21): 9746-9751.

[43] SHA Zhen-dong, PEI Qing-xiang, DING Zhi-wei, et al. Mechanical Properties and Fracture Behavior of Single- Layer Phosphorene at Finite Temperatures[J]. Journal of Physics D: Applied Physics, 2015, 48(39): 395303.

[44] HATAM-LEE S M, PEER-MOHAMMADI H, RAJABPOUR A. Tuning Shear Mechanical Properties and Tensile Stre-ngth Anisotropy of Monolayer Black Phosphorene: A Molecular Dynamics Study[J]. Materials Today Commu-nications, 2021, 26: 101796.

[45] CASTELLANOS-GOMEZ A, VICARELLI L, PRADA E, et al. Isolation and Characterization of Few-Layer Black Phosphorus[J]. 2D Materials, 2014, 1(2): 025001.

[46] 靳巧玲, 李國祿, 王海斗, 等. 納米壓痕技術(shù)在材料力學(xué)測試中的應(yīng)用[J]. 表面技術(shù), 2015, 44(12): 127-136.

JIN Qiao-ling, LI Guo-lu, WANG Hai-dou, et al. Appli-cation of the Nanoindentation Technique in Material Mechanics Test[J]. Surface Technology, 2015, 44(12): 127-136.

[47] CHEN Hao, HUANG Peng, GUO Dan, et al. Anisotropic Mechanical Properties of Black Phosphorus Nanori-bbons[J]. The Journal of Physical Chemistry C, 2016, 120(51): 29491-29497.

[48] WANG Zeng-hui, JIA Hao, ZHENG Xu-qian, et al. Reso-lving and Tuning Mechanical Anisotropy in Black Phos-phorus via Nanomechanical Multimode Resonance Spec-tromicroscopy[J]. Nano Letters, 2016, 16(9): 5394-5400.

[49] LI Li-li, FENG Chuang, YANG Jie. Tensile and Com-pressive Behaviors of Prestrained Single-Layer Black Phosphorus: A Molecular Dynamics Study[J]. Nanoscale, 2017, 9(10): 3609-3619.

[50] JIANG Jin-wu. Parametrization of Stillinger–Weber Pote-ntial Based on Valence Force Field Model: Application to Single-Layer MoS2and Black Phosphorus[J]. Nanotech-nology, 2015, 26(31): 315706.

[51] LIU Ning, BECTON M, ZHANG Liu-yang, et al. A Coarse-Grained Model for Mechanical Behavior of Phos-phorene Sheets[J]. Physical Chemistry Chemical Physics: PCCP, 2019, 21(4): 1884-1894.

[52] ZHAO Jun-hua, JIANG Jin-wu, WANG Li-feng, et al. Coarse-Grained Potentials of Single-Walled Carbon Nan-otubes[J]. Journal of the Mechanics and Physics of Solids, 2014, 71: 197-218.

[53] KOU Liang-zhi, MA Yan-dong, SMITH S C, et al. Ani-sotropic Ripple Deformation in Phosphorene[J]. The Jou-rnal of Physical Chemistry Letters, 2015, 6(9): 1509-1513.

[54] WANG Gao-xue, LOH G C, PANDEY R, et al. Out- of-Plane Structural Flexibility of Phosphorene[J]. Nanote-chnology, 2016, 27(5): 055701.

[55] SADEGHIAN H, YANG C K, GOOSEN J F L, et al. Characterizing Size-Dependent Effective Elastic Modulus of Silicon Nanocantilevers Using Electrostatic Pull-in Ins-tability[J]. Applied Physics Letters, 2009, 94(22): 221903.

[56] NAMAZU T, ISONO Y, TANAKA T. Evaluation of Size Effect on Mechanical Properties of Single Crystal Silicon by Nanoscale Bending Test Using AFM[J]. Journal of Microelectromechanical Systems, 2000, 9(4): 450-459.

[57] LI Qian, HUANG Hao, CHEN Zhong-wei, et al. Thic-kness-Dependent Structural Stability and Anisotropy of Black Phosphorus[J]. Advanced Electronic Materials, 2019, 5(3): 1800712.

[58] WANG Jia-ying, LI Yang, ZHAN Zhao-yao, et al. Elastic Properties of Suspended Black Phosphorus Nanosheets[J]. Applied Physics Letters, 2016, 108(1): 013104.

[59] BANHART F, KOTAKOSKI J, KRASHENINNIKOV A V. Structural Defects in Graphene[J]. ACS Nano, 2011, 5(1): 26-41.

[60] GAO Jun-feng, ZHANG Jun-feng, LIU Hong-sheng, et al. Structures, Mobilities, Electronic and Magnetic Properties of Point Defects in Silicene[J]. Nanoscale, 2013, 5(20): 9785-9792.

[61] KOMSA H P, KOTAKOSKI J, KURASCH S, et al. Two- Dimensional Transition Metal Dichalcogenides under Electron Irradiation: Defect Production and Doping[J]. Physical Review Letters, 2012, 109(3): 035503.

[62] HU Wei, YANG Jin-long. Defects in Phosphorene[J]. The Journal of Physical Chemistry C, 2015, 119(35): 20474- 20480.

[63] UMAR FAROOQ M, HASHMI A, HONG Ji-sang. Ani-sotropic Bias Dependent Transport Property of Defective Phosphorene Layer[J]. Scientific Reports, 2015, 5: 12482.

[64] LI Xi-bo, GUO Pan, CAO Teng-fei, et al. Structures, Stabilities and Electronic Properties of Defects in Mono-layer Black Phosphorus[J]. Scientific Reports, 2015, 5: 10848.

[65] LI Nan-nan, SHA Zhen-dong, PEI Qing-xiang, et al. Hydrogenated Grain Boundaries Control the Strength and Ductility of Polycrystalline Graphene[J]. The Journal of Physical Chemistry C, 2014, 118(25): 13769-13774.

[66] HE Lin-chun, GUO S, LEI Jin-cheng, et al. The Effect of Stone-Thrower-Wales Defects on Mechanical Properties of Graphene Sheets—A Molecular Dynamics Study[J]. Carbon, 2014, 75: 124-132.

[67] NG T Y, YEO J J, LIU Z S. A Molecular Dynamics Study of the Thermal Conductivity of Graphene Nanor-ibbons Containing Dispersed Stone-Thrower-Wales De-fects[J]. Carbon, 2012, 50(13): 4887-4893.

[68] DING Zhi-wei, PEI Qing-xiang, JIANG Jin-wu, et al. Manipulating the Thermal Conductivity of Monolayer MoS2via Lattice Defect and Strain Engineering[J]. The Journal of Physical Chemistry C, 2015, 119(28): 16358- 16365.

[69] ZHANG Y Y, CHENG Y, PEI Q X, et al. Thermal Conductivity of Defective Graphene[J]. Physics Letters A, 2012, 376(47-48): 3668-3672.

[70] MORTAZAVI B, AHZI S. Thermal Conductivity and Tensile Response of Defective Graphene: A Molecular Dynamics Study[J]. Carbon, 2013, 63: 460-470.

[71] HAO Feng, CHEN Xi. First-Principles Study of the Defected Phosphorene under Tensile Strain[J]. Journal of Applied Physics, 2016, 120(16): 165104.

[72] SHA Zhen-dong, PEI Qing-xiang, ZHANG Ying-yan, et al. Atomic Vacancies Significantly Degrade the Mechanical Properties of Phosphorene[J]. Nanotechnology, 2016, 27(31): 315704.

[73] XIAO Hang, SHI Xiao-yang, HAO Feng, et al. Develo-pment of a Transferable Reactive Force Field of P/H Systems: Application to the Chemical and Mechanical Properties of Phosphorene[J]. The Journal of Physical Chemistry A, 2017, 121(32): 6135-6149.

[74] NGUYEN D T, LE M Q, NGUYEN Vt, et al. Effects of Various Defects on the Mechanical Properties of Black Phosphorene[J]. Superlattices and Microstructures, 2017, 112: 186-199.

[75] GUO Yu, ZHOU Si, ZHANG Jun-feng, et al. Atomic Structures and Electronic Properties of Phosphorene Grain Boundaries[J]. 2D Materials, 2016, 3(2): 025008.

[76] BEI H, SHIM S, PHARR Gm, et al. Effects of Pre-Strain on the Compressive Stress-Strain Response of Mo-Alloy Single-Crystal Micropillars[J]. Acta Materialia, 2008, 56(17): 4762-4770.

[77] DE P S, KUNDU A, CHAKRABORTI P C. Effect of Prestrain on Tensile Properties and Ratcheting Behaviour of Ti-Stabilised Interstitial Free Steel[J]. Materials & Design, 2014, 57: 87-97.

[78] LE Q, KANG H T, KRIDLI G, et al. Effect of Prestrain Paths on Mechanical Behavior of Dual Phase Sheet Steel[J]. International Journal of Fatigue, 2009, 31(4): 607-615.

[79] THORIN A, AZOUG A, CONSTANTINESCU A. Influ-ence of Prestrain on Mechanical Properties of Highly- Filled Elastomers: Measurements and Modeling[J]. Pol-ymer Testing, 2012, 31(8): 978-986.

[80] XU Yan, WANG Jie, LIU Gui-peng, et al. Properties of Monolayer Black Phosphorus Affected by Uniaxial Strain[J]. Physica E: Low-Dimensional Systems and Nanostruc-tures, 2020, 117: 113834.

[81] LI Li-li, YANG Jie. Mechanical Properties of Prestrained Single-Layer Black Phosphorus: Effect of Thermal Environment[J]. Nanotechnology, 2017, 28(47): 475701.

[82] ISLAND J O, STEELE G A, VAN DER ZANT H S J, et al. Environmental Instability of Few-Layer Black Phos-phorus[J]. 2D Materials, 2015, 2(1): 011002.

[83] FAVRON A, GAUFRèS E, FOSSARD F, et al. Exfolia-ting Pristine Black Phosphorus down to the Monolayer: Photo-Oxidation and Electronic Confinement Effects [EB/OL]. 2014: arXiv: 1408.0345. https://arxiv.org/abs/ 1408.0345.

[84] WOOD JOSHUA D, WELLS SPENCER A, DEEP J, et al. Effective Passivation of Exfoliated Black Phosp-horus Transistors Against Ambient Degradation[J]. Nano Letters, 2014, 14(12): 6964-6970.

[85] MORENO-MORENO M, LOPEZ-POLIN G, CASTELL ANOS-GOMEZ A, et al. Environmental Effects in Mec-hanical Properties of Few-Layer Black Phosphorus[J]. 2D Materials, 2016, 3(3): 031007.

[86] ILLARIONOV Y Y, WALTL M, RZEPA G, et al. Highly-Stable Black Phosphorus Field-Effect Transistors with Low Density of Oxide Traps[J]. Npj 2D Materials and Applications, 2017, 1: 23.

[87] LI Peng, ZHANG Dong-zhi, LIU Jing-jing, et al. Air- Stable Black Phosphorus Devices for Ion Sensing[J]. ACS Applied Materials & Interfaces, 2015, 7(44): 24396- 24402.

[88] YUE De-wu, LEE D, JANG Y D, et al. Passivated Ambipolar Black Phosphorus Transistors[J]. Nanoscale, 2016, 8(25): 12773-12779.

[89] WALIA S, BALENDHRAN S, AHMED T, et al. Black Phosphorus: Ambient Protection of Few-Layer Black Phosphorus via Sequestration of Reactive Oxygen Species (Adv. Mater. 27/2017)[J]. Advanced Materials, 2017, 29(27): 1700152.

[90] AN cheng jin, KANG Y H, LEE Chang-jin, et al. Preparation of Highly Stable Black Phosphorus by Gold Decoration for High-Performance Thermoelectric Genera-tors[J]. Advanced Functional Materials, 2018, 28(28): 1800532.

[91] LEI Wan-ying, ZHANG Ting-ting, LIU Ping, et al. Ban-dgap-and Local Field-Dependent Photoactivity of Ag/ Black Phosphorus Nanohybrids[J]. ACS Catalysis, 2016, 6(12): 8009-8020.

[92] HU Ze-hua, LI Qiang, LEI Bo, et al. Abnormal Near- Infrared Absorption in 2D Black Phosphorus Induced by Ag Nanoclusters Surface Functionalization[J]. Advanced Materials (Deerfield Beach, Fla), 2018, 30(43): e1801931.

[93] OUYANG Jiang, LIU Ren-yu, CHEN Wan-song, et al. A Black Phosphorus Based Synergistic Antibacterial Plat-form Against Drug Resistant Bacteria[J]. Journal of Materials Chemistry B, 2018, 6(39): 6302-6310.

[94] HUANG Hao, XIAO Quan-lan, WANG Jia-hong, et al. Black Phosphorus: A Two-Dimensional Reductant for in Situ Nanofabrication[J]. Npj 2D Materials and Appli-cations, 2017, 1: 20.

[95] WALIA S, SABRI Y, AHMED T, et al. Defining the Role of Humidity in the Ambient Degradation of Few- Layer Black Phosphorus[J]. 2D Materials, 2016, 4(1): 015025.

[96] ESWARAIAH V, ZENG Qing-sheng, LONG Yi, et al. Black Phosphorus Nanosheets: Synthesis, Characteriza-tion and Applications[J]. Small (Weinheim an Der Ber-gstrasse, Germany), 2016, 12(26): 3480-3502.

[97] CHEN Xiao-long, WU Ying-ying, WU Ze-fei, et al. High- Quality Sandwiched Black Phosphorus Heterostructure and Its Quantum Oscillations[J]. Nature Communications, 2015, 6: 7315.

[98] WANG Lei, CAI Kun. Absorption and Temperature Effects on the Tensile Strength of a Black Phosphorus Ribbon in Argon Environment[J]. Computational Mate-rials Science, 2018, 150: 15-23.

[99] BAI Li-chun, LIU Bo, SRIKANTH N, et al. Nano- Friction Behavior of Phosphorene[J]. Nanotechnology, 2017, 28(35): 355704.

[100] CUI Zi-yi, XIE Guo-xin, HE Feng, et al. Atomic-Scale Friction of Black Phosphorus: Effect of Thickness and Anisotropic Behavior[J]. Advanced Materials Interfaces, 2017, 4(23): 1700998.

[101] GONG Han-jun, ZHU Peng-zhe, SI Li-na, et al. “M-Shape” Nanoscale Friction Anisotropy of Phosphorene[J]. Com-putational Materials Science, 2018, 150: 364-368.

[102] LEE Chang-gu, LI Qun-yang, KALB W, et al. Frictional Characteristics of Atomically Thin Sheets[J]. Science, 2010, 328(5974): 76-80.

[103] FILLETER T, MCCHESNEY J L, BOSTWICK A, et al. Friction and Dissipation in Epitaxial Graphene Films[J]. Physical Review Letters, 2009, 102(8): 086102.

[104] WU Shuai, HE Feng, XIE Guo-xin, et al. Black Phos-phorus: Degradation Favors Lubrication[J]. Nano Letters, 2018, 18(9): 5618-5627.

[105] WU Shuai, HE Feng, XIE Guo-xin, et al. Super-Slippery Degraded Black Phosphorus/Silicon Dioxide Interface[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7717- 7726.

[106] XU Yu-fu, YU Jing-yuan, DONG Ying-hui, et al. Boun-dary Lubricating Properties of Black Phosphorus Nanos-heets in Polyalphaolefin Oil[J]. Journal of Tribology, 2019, 141(7): 072101.

[107] WANG Qing-juan, HOU Ting-li, WANG Wei, et al. Tribological Properties of Black Phosphorus Nanosheets as Oil-Based Lubricant Additives for Titanium Alloy- Steel Contacts[J]. Royal Society Open Science, 2020, 7(9): 200530.

[108] TANG Gong-bin, WU Zhi-bin, SU Feng-hua, et al. Mac-roscale Superlubricity on Engineering Steel in the Pres-ence of Black Phosphorus[J]. Nano Letters, 2021, 21(12): 5308-5315.

[109] KUMARA C, LUO Hui-min, LEONARD D N, et al. Organic-Modified Silver Nanoparticles as Lubricant Additives[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 37227-37237.

[110] MA Jian-qi, MO Yu-fei, BAI Ming-wu. Effect of Ag Nanoparticles Additive on the Tribological Behavior of Multialkylated Cyclopentanes (MACs)[J]. Wear, 2009, 266(7-8): 627-631.

[111] TANG Gong-bin, SU Feng-hua, XU Xing, et al. 2D Black Phosphorus Dotted with Silver Nanoparticles: An Exce-llent Lubricant Additive for Tribological Applications[J]. Chemical Engineering Journal, 2020, 392: 123631.

[112] LUO Zhi-heng, YU Jing-yuan, XU Yu-fu, et al. Surface Characterization of Steel/Steel Contact Lubricated by PAO6 with Novel Black Phosphorus Nanocomposites[J]. Friction, 2021, 9(4): 723-733.

[113] WANG Wei, XIE Guo-xin, LUO Jian-bin. Superlubricity of Black Phosphorus as Lubricant Additive[J]. ACS App-lied Materials & Interfaces, 2018, 10(49): 43203-43210.

[114] WANG Qing-juan, HOU Ting-li, WANG Wei, et al. Tribological Behavior of Black Phosphorus Nanosheets as Water-Based Lubrication Additives[J]. Friction, 2022, 10(3): 374-387.

[115] REN Xiao-yong, YANG Xiao, XIE Guo-xin, et al. Super-lubricity under Ultrahigh Contact Pressure Enabled by Partially Oxidized Black Phosphorus Nanosheets[J]. Npj 2D Materials and Applications, 2021, 5: 44.

[116] REN Xiao-yong, YANG Xiao, XIE Guo-xin, et al. Black Phosphorus Quantum Dots in Aqueous Ethylene Glycol for Macroscale Superlubricity[J]. ACS Applied Nano Materials, 2020, 3(5): 4799-4809.

[117] TANG Wei-wei, JIANG Zhi-qiang, WANG Bao-gang, et al. Black Phosphorus Quantum Dots: A New-Type of Water-Based High-Efficiency Lubricant Additive[J]. Fric-tion, 2021, 9(6): 1528-1542.

[118] GUO Peng-fei, QI Shun-shun, CHEN Lin, et al. Black Phosphorus–Graphene Oxide Hybrid Nanomaterials Toward Advanced Lubricating Properties under Water[J]. Adva-nced Materials Interfaces, 2019, 6(23): 1901174.

[119] LV Yan, WANG Wei, XIE Guo-xin, et al. Self-Lubri-cating PTFE-Based Composites with Black Phosphorus Nanosheets[J]. Tribology Letters, 2018, 66(2): 61.

[120] PENG Shi-guang, GUO Yue, XIE Guo-xin, et al. Tribolo-gical Behavior of Polytetrafluoroethylene Coating Reinfo-rced with Black Phosphorus Nanoparticles[J]. Applied Surface Science, 2018, 441: 670-677.

Advances in Mechanical and Tribological Properties of Black Phosphorus

1,1,1,1,1,2,1,2,3

(1. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China; 2. State Key Laboratory of Reliability and Intelligence Electrical Equipment, Tianjin 300130, China; 3. National Engineering Research Center for Technological Innovation Method and Tool, Tianjin 300401, China)

In this paper, the theoretical calculation and experimental research progress in mechanics and tribology of new two-dimensional layered black phosphorus materials were summarized. The future research and development of layered black phosphorus materials were also prospected. The focus was put on the negative Poisson's ratio and anisotropy of mechanical properties caused by the unique fold structure of black phosphorus. The effects of thickness, defect, pre-strain and environmental degradation on its mechanical properties were summarized. The research status of black phosphorus in tribology was summarized. The unique mechanical properties of black phosphorus materials were described from two aspects. Firstly, the negative Poisson's ratio characteristics of black phosphorus materials were confirmed through both theoretical calculation and experimental observation, which suggested the application of black phosphorus materials in fasteners, composite materials and national defense equipment. Secondly, the atomic structure with strong in-plane anisotropy of layered black phosphorus resulted in the anisotropy of mechanical properties, including the in-plane Young's modulus, tensile strength and critical strain. In advanced micro devices and integrated systems, crystal and mechanical anisotropy would promote applications in nanomechanical resonators, thermoelectric devices and motion sensors with adjustable functions that cannot be achieved with isotropic materials. In addition, the factors affecting the mechanical properties of black phosphorus were summarized, including thickness dependence of the structural properties of black phosphorus, the effects of different defects on its mechanical properties, the control of mechanical properties of black phosphorus by pre-strain, and the hindrance of environmental factors on the further development of black phosphorus devices. The research of black phosphorus in tribology was summarized from two aspects: microtribology and macrotribology. The microtribological studies of black phosphorus mainly focused on the anisotropy of tribological properties of black phosphorus, the effects of thickness and load on tribological properties, and the contribution of surface degradation to the lubrication. It was proved that the frictional anisotropy was caused by the coupling effect of the folded-structure of monolayer black phosphorus and the heterogeneous interaction between substrate and sample. The effect of layer numbers and applied load on its surface friction tests using AFM were summarized. The surface degradation of black phosphorus was considered as a major bottleneck for its application under environmental conditions; while its chemical activity could be made use of in tribology to achieve superlubricity. During the degradation of black phosphorus in ambient conditions, the strong interaction between few-layered black phosphorus and the water molecules favored the lower surface adhesion as well as lower interfacial shear stress between the layered black phosphorus and silicon dioxide wafer. The experimental research showed that the black phosphorus nanosheets, black phosphorus quantum dots and nanocomposites in oil-based lubricant as well as water-based lubricant could exhibit lower friction coefficient below 0.001 and better wear reduction property compared with other nanomaterial additives. The addition of black phosphorus nanoparticles to polymer matrix also enhanced the wear resistance of the produced composites. In particular, the excellent lubrication property of black phosphorus additives under extreme load of over 1.0 GPa was expected to promote the realization of superlubricity in the engineering field. At present, both the research area and application filed of black phosphorus are still expanding, and more basic problems need to be explored. However, the regulation of mechanical properties of black phosphorus and its application in different environment still meets great challenge. Compared with the performance of black phosphorus in liquid lubrication, the basic research and practical application of black phosphorus as a solid lubricant is still lack of systematic research, and its advantages in mechanical and tribological properties need to be fully utilized and developed.

black phosphorus; mechanics; tribology; Poisson's ratio; anisotropy; superlubricity

TB321

A

1001-3660(2023)02-0088-19

10.16490/j.cnki.issn.1001-3660.2023.02.009

2021–10–26;

2022–03–14

2021-10-26;

2022-03-14

河北省自然科學(xué)基金(E2021202008);國家自然科學(xué)基金(52005151,81873316,51873146,11632004,U1864208);清華大學(xué)摩擦學(xué)國家重點實驗室開放基金(SKLTKF20B03);國家科技重大專項(2017-VII-0011-0106);河北省自然科學(xué)基金創(chuàng)新群體研究項目(A2020202002),河北省重點研發(fā)計劃(202030507040009);天津市自然科學(xué)基金重點項目(S20ZDF077);天津市科技計劃項目(20ZYJDJC00030)

The Natural Science Foundation of Hebei Province (E2021202008); The National Natural Science Foundation of China (52005151, 81873316, 51873146, 11632004, U1864208); Opening Foundation of State Key Laboratory of Tribology in Tsinghua University (SKLTKF20B03); The National Science and Technology Major Project (2017-VII-0011-0106); The Fund for Innovative Research Groups of Natural Science Foundation of Hebei Province (A2020202002); The Key Program of Research and Development of Hebei Province (202030507040009); The Key Project of Natural Science Foundation of Tianjin (S20ZDF077); Science and Technology Planning Project of Tianjin (20ZYJDJC00030)

王均帥(1996—),男,碩士研究生,主要研究方向為摩擦學(xué)和表面工程。

WANG Jun-shuai (1996-), Male, Postgraduate, Research focus: tribology and surface engineering.

武帥(1989—),男,博士,講師,主要研究方向為摩擦學(xué)和表面工程。

WU Shuai (1989-), Male, Doctor, Lecturer, Research focus: tribology and surface engineering.

魏強(qiáng)(1978—),男,博士,教授,主要研究方向為飛行器裝備制造與服役行為評價、生物熱力學(xué)與康復(fù)裝備。

WEI Qiang (1978-), Male, Doctor, Professor, Research focus: aircraft equipment manufacturing and service behavior evaluation, biological thermodynamics and rehabilitation equipment.

王均帥, 武帥, 鄭婕, 等. 黑磷的力學(xué)及摩擦學(xué)性能研究進(jìn)展[J]. 表面技術(shù), 2023, 52(2): 88-106.

WANG Jun-shuai, WU Shuai, ZHENG Jie, et al. Advances in Mechanical and Tribological Properties of Black Phosphorus[J]. Surface Technology, 2023, 52(2): 88-106.

責(zé)任編輯:劉世忠

新乡县| 清涧县| 莱芜市| 潼南县| 台北市| 乌鲁木齐市| 娱乐| 政和县| 锡林浩特市| 阿拉善右旗| 西贡区| 威海市| 武安市| 龙南县| 三穗县| 阿拉善左旗| 唐河县| 东兴市| 泗阳县| 富平县| 金昌市| 绿春县| 河源市| 绍兴市| 垣曲县| 东光县| 尼勒克县| 囊谦县| 巴南区| 建湖县| 贡山| 龙山县| 虎林市| 特克斯县| 申扎县| 中方县| 满洲里市| 天全县| 五台县| 丽水市| 灵台县|