国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

血清全氟化合物與代謝相關(guān)脂肪性肝病患病風(fēng)險的關(guān)系

2023-02-24 00:58:18張露露賀穎倩趙亞楠王敏珍
中國環(huán)境科學(xué) 2023年2期
關(guān)鍵詞:亞組患病肝臟

張露露,劉 婧,賀穎倩,趙亞楠,鄭 山,王敏珍

血清全氟化合物與代謝相關(guān)脂肪性肝病患病風(fēng)險的關(guān)系

張露露,劉 婧,賀穎倩,趙亞楠,鄭 山,王敏珍*

(蘭州大學(xué)公共衛(wèi)生學(xué)院,流行病與衛(wèi)生統(tǒng)計學(xué)研究所,甘肅 蘭州 730000)

基于2017~2018年美國國家營養(yǎng)調(diào)查與健康調(diào)查數(shù)據(jù)集(NHANES),探究血清全氟化合物(PFAS)對代謝相關(guān)脂肪性肝病(MAFLD)的影響以及在不同人群中的效應(yīng)差異.采用Logistic回歸模型和限制性立方樣條評估各污染物的效應(yīng)和劑量反應(yīng)關(guān)系.結(jié)果表明:單污染物模型發(fā)現(xiàn)血清全氟辛烷磺酸(PFOS)、全氟己烷磺酸(PFHxS)、全氟癸酸(PFDA)與MAFLD患病風(fēng)險呈負(fù)向關(guān)聯(lián),OR值分別為0.64(95%CI:0.45~0.91)、0.65(95%CI:0.46~0.93)、0.45(95%CI:0.30~0.67);多污染物模型中,與最低四分位數(shù)濃度(Q1)相比,血清全氟壬酸(PFNA)濃度處于Q2、Q3、Q4水平時,患MAFLD風(fēng)險分別增加62%(OR=1.62,95%CI:1.10~2.39)、62%(OR=1.62,95%CI:1.01~2.60)、172%(OR=2.72,95%CI: 1.53~4.84),且呈正向線性劑量-反應(yīng)關(guān)系(overall=0.002).血清PFDA處于Q2、Q3、Q4水平時,可導(dǎo)致MAFLD風(fēng)險分別減少39%(OR=0.61,95%CI: 0.44~0.85)、46%(OR=0.54,95%CI:0.34~0.84)、74%(OR=0.26,95%CI:0.15~0.45),呈負(fù)向線性劑量-反應(yīng)關(guān)系(overall<0.001).亞組分析顯示血清PFDA對51~65歲人群罹患MAFLD的影響更為顯著,而血清PFNA對女性的影響較大.綜上所述,血清PFNA及PFDA與MAFLD患病風(fēng)險關(guān)聯(lián),血清PFNA暴露是MAFLD發(fā)生的重要危險因素,而血清PFDA是保護(hù)因素, 女性、中老年人群是潛在的易感人群.

全氟化合物;代謝相關(guān)脂肪性肝??;劑量反應(yīng)關(guān)系

全氟化合物(PFAS)最初在1940年代和1950年代生產(chǎn)[1],常用于一次性食品包裝、工業(yè)洗滌劑、消防泡沫或防水防油材料[2],具有熱穩(wěn)定性、疏水性、疏油性和極低表面張力等特點,因此在環(huán)境中分布廣泛且難以降解.此外,長鏈PFAS在人體內(nèi)半衰期極長[3],且在肝臟和其他器官內(nèi)積累[4],因而被美國疾病控制和預(yù)防中心歸類為持久性有機(jī)污染物.雖然近年來由于各國的監(jiān)管干預(yù)措施,人類對常見 PFAS的接觸逐漸減少,但其在環(huán)境中存在的普遍性和持久性仍對人類健康造成不利影響[5].研究表明, PFAS暴露與癌癥[6]、甲狀腺疾病[7]、免疫功能[8]、代謝紊亂[9]和肝臟損傷[10]等多種不良健康結(jié)局有關(guān).

代謝相關(guān)脂肪性肝病(MAFLD)是2020年6月提出的一個非酒精性脂肪性肝病(NAFLD)新概念[11],其診斷不需排除其他慢性肝病,而是基于肝脂肪變性將肥胖癥、代謝綜合征和系統(tǒng)生物學(xué)的理解集中在一個焦點上[12-13].研究表明MAFLD全球患病率為38.77%[14],已成為重要的公共衛(wèi)生問題.

研究表明PFAS暴露可能會增加人體代謝紊亂(如血糖、胰島素抵抗和血脂異常)和相關(guān)代謝性疾病(如2型糖尿病和代謝綜合征)發(fā)生風(fēng)險[9,15-19].然而,關(guān)于PFAS與代謝紊亂的關(guān)聯(lián)存在異質(zhì)性,有研究提示兩者并無關(guān)聯(lián)甚至是相反的結(jié)果[20-23].此外,PFAS可能對肝臟造成損傷,流行病學(xué)研究表明,PFAS水平與肥胖人群肝脂肪變性相關(guān)的肝功能指數(shù)呈正相關(guān)[24],并且會引起肝酶升高[25].

代謝紊亂和肝損傷是MAFLD發(fā)生的關(guān)鍵因素[26].實驗研究進(jìn)一步表明,PFAS暴露會破壞正常的肝臟脂質(zhì)代謝,導(dǎo)致肝臟脂肪變性[3,27].PFAS能夠與脂肪酸結(jié)合蛋白[28]和過氧化物酶體增殖物激活受體a(PPAR-a)[29]結(jié)合,進(jìn)而破壞肝脂肪代謝及葡萄糖動態(tài)平衡、促進(jìn)炎癥和MAFLD的發(fā)展.雖然關(guān)于PFAS破壞動物肝脂代謝誘發(fā)NAFLD的研究已被廣泛報道,但是關(guān)于PFAS與NAFLD之間的流行病學(xué)結(jié)果很少,與新定義MAFLD的關(guān)聯(lián)流行病學(xué)研究更是有限.

盡管以上大部分研究均支持PFAS的肝毒性和促進(jìn)代謝紊亂,但也有不一致的流行病學(xué)結(jié)果.此外,目前也沒有關(guān)于PFAS與MAFLD關(guān)聯(lián)的直接流行病學(xué)證據(jù).因此,本研究基于2017- 2018NHANES數(shù)據(jù)庫,探究常見血清PFAS與MAFLD患病風(fēng)險的潛在關(guān)聯(lián),旨在為PFAS與MAFLD患病風(fēng)險研究提供最新流行病學(xué)證據(jù),為重點人群篩查提供依據(jù).

1 材料與方法

1.1 數(shù)據(jù)來源

美國國家營養(yǎng)調(diào)查與健康調(diào)查數(shù)據(jù)庫(National Health and Nutrition Examination Survey,NHANES)是一項評估美國居民健康和營養(yǎng)狀況的橫斷面調(diào)查,采用分層多階段抽樣設(shè)計每兩年進(jìn)行一次調(diào)查,調(diào)查數(shù)據(jù)包括人口統(tǒng)計、膳食、生物監(jiān)測、體檢和訪談等.該研究方案經(jīng)美國國家衛(wèi)生統(tǒng)計中心研究倫理審查委員會批準(zhǔn)、參與者同意.考慮到數(shù)據(jù)庫包含PFAS和肝臟超聲彈性瞬時成像的年份,因此我們選取NHANES 2017~2018年的研究對象進(jìn)行分析.

NHANES 2017~2018年數(shù)據(jù)庫中共有9254個對象,研究排除缺乏PFAS血清檢測(=7325)、肝臟瞬時彈性成像(=117)、年齡<20歲(=305)以及缺失多變量模型中重要協(xié)變量者(=332),最終納入1245名研究對象,詳細(xì)篩選流程見圖1.

圖1 研究人群篩選過程

1.2 MAFLD的定義

采用瞬時彈性成像(FibroScan?)受控衰減參數(shù)(Controlled attenuation parameter,CAP)和肝臟硬度測量(Liver stiffness measurements,LSM)分別定義肝脂肪變性和肝纖維化.本研究參照Eddowes等人的研究[30],將CAP3274dB/m定為肝脂肪變性(該臨界值識別肝脂肪變性的敏感度為90%).排除禁食時間<3h、LSM完整讀數(shù)少于10次或LSM四分位間距范圍/LSM中位數(shù)超過30%的FibroScan?測量失敗者.

根據(jù)國際專家共識聲明[11],MAFLD診斷標(biāo)準(zhǔn)是基于肝脂肪變性證據(jù)有以下三個標(biāo)準(zhǔn)之一:超重/肥胖、2型糖尿病或代謝失調(diào)證據(jù).代謝失調(diào)定義為滿足以下至少兩種代謝風(fēng)險異常:1)男性腰圍3102cm,女性腰圍388cm;2)血壓3130/85mmHg或特定藥物治療;3)血漿甘油三酯異常(即血漿甘油三酯3150mg/dl或特定藥物治療);4)男性血漿高密度脂蛋白膽固醇<40mg/dl,女性血漿高密度脂蛋白膽固醇<50mg/dl或特定藥物治療;5)糖尿病前期(即空腹血糖水平100至125mg/d,或負(fù)荷后2h血糖水平140至199mg/dl或HbA1c 5.7%至6.4%);6)胰島素抵抗評分的穩(wěn)態(tài)模型評估32.5;7)血漿高敏C反應(yīng)蛋白水平>2mg/L.

1.3 血清PFAS的測定

1.4 其他變量定義

糖尿病定義根據(jù)美國糖尿病協(xié)會相關(guān)標(biāo)準(zhǔn)[31],即符合以下任何條件之一:1)自我報告診斷糖尿病.2)使用降糖藥物.3)血紅蛋白36.5% (48mmol/mol).4)空腹血糖3126mg/dl.2型糖尿病的診斷是基于糖尿病診斷,排除可能的1型糖尿病患者(診斷年齡<30歲,胰島素為唯一抗高血糖藥物).

貧困收入比(Poverty income ratio, PIR): <1.3為低、1.3~3.5為中、33.5為高.身體活動:0MET- minutes/week為不活動,1~499MET-minutes/week為低等體力活動水平,3500MET-minutes/week為中等及以上體力活動水平.

1.5 統(tǒng)計分析

連續(xù)變量以平均值±標(biāo)準(zhǔn)差或中位數(shù)(四分位數(shù)間距)表示,組間比較采用Student檢驗或Mann- Whitney檢驗;分類變量采用頻數(shù)(百分比)表示,組間比較采用卡方檢驗.

首先,使用Spearman相關(guān)性評估不同血清PFAS濃度之間的相關(guān)性.其次,采用logistic回歸模型以PFAS連續(xù)變量(血清PFAS值經(jīng)對數(shù)變換,以10為底糾正偏態(tài)分布)和分類變量(第一分位數(shù)Q1作為參考)分別作為自變量,探究其與MAFLD發(fā)生的暴露反應(yīng)關(guān)系.其中,單污染模型自變量包括單個PFAS和調(diào)整變量,多污染物模型自變量包括PFOA、PFOS、PFHxS、PFDA、PFNA以及調(diào)整變量.根據(jù)既往文獻(xiàn)[9,32],納入的模型調(diào)整變量包括年齡、性別、種族、貧困收入比、教育水平、身體活動、血清可替寧、飲酒.根據(jù)赤池信息準(zhǔn)則,選取最優(yōu)節(jié)點數(shù)量的限制性立方樣條進(jìn)一步分析PFAS暴露與 MAFLD之間的劑量反應(yīng)關(guān)系.最后采用分層多元回歸分析按年齡、性別、種族、貧困收入比、教育水平、飲酒狀況和身體活動分層進(jìn)行亞組分析,交互作用分析闡明亞組之間效應(yīng)的異質(zhì)性,探討不同特征人群中MAFLD患病風(fēng)險和血清PFAS濃度之間的關(guān)系.

數(shù)據(jù)分析采用R 4.1.3和SPSS25.0軟件完成.所有檢驗均為雙側(cè)檢驗,檢驗水準(zhǔn)=0.05.

2 結(jié)果

2.1 一般人口學(xué)特征

本研究共納入研究對象1245名,其中MAFLD 542名(43.5%),男性占50.4%,平均年齡49.94±17.53歲.大多數(shù)參與者為非西班牙裔白人(37.5%),其次是非西班牙裔黑人(22.1%)和墨西哥裔美國人(13.6%).除貧困收入比外,MAFLD組與非MAFLD組年齡、性別、種族以及教育水平均存在統(tǒng)計學(xué)差異(<0.05).與非MAFLD患者相比,MAFLD患者平均年齡較高,高血壓、糖尿病、糖尿病前期、高甘油三酯血癥發(fā)生比例較高.此外血清PFDA水平在兩組差異有統(tǒng)計學(xué)意義,見表1.

表1 一般人口學(xué)特征

注:數(shù)據(jù)描述為均值(標(biāo)準(zhǔn)差)或中位數(shù)(四分位數(shù)間距)或頻數(shù)(百分比),*表示組間差異顯著.

2.2 血清PFAS之間的相關(guān)性

由圖2所示,5種PFAS間存在不同程度的顯著相關(guān)性(<0.001),s0.27~0.74,均呈正相關(guān).

2.3 血清PFAS濃度與MAFLD患病風(fēng)險的關(guān)聯(lián)

表2顯示,在單污染物模型中,PFOS、PFHxS和PFDA與MAFLD風(fēng)險降低相關(guān),PFOS每增加一個單位,患MAFLD風(fēng)險下降36%(OR=0.64,95%CI: 0.45~0.91),PFHxS每增加一個單位,患MAFLD風(fēng)險下降35%(OR=0.65,95%CI: 0.46~0.93),PFDA每增加一個單位,患MAFLD風(fēng)險下降55%(OR=0.45, 95%CI:0.30~0.67),趨勢性檢驗均具有統(tǒng)計學(xué)意義(trend<0.05).

在多污染物模型中, PFDA與MAFLD發(fā)生風(fēng)險降低相關(guān)(OR=0.24,95%CI:0.13~0.43),PFNA與MAFLD發(fā)生風(fēng)險增加相關(guān)(OR=2.94, 95%CI: 1.58~ 5.47).以Q1組為參照,血清PFDA 的Q2組、Q3組、Q4組的OR值分別為0.61(95%CI: 0.44~0.85) 、0.54 (95%CI:0.34~0.84)、0.26(95%CI:0.15~0.45),血清PFNA的Q2組、Q3組、Q4組的OR值分別為1.62 (95%CI:1.10~2.39)、1.62(95%CI:1.01~2.60)、2.72 (95%CI:1.53~4.84),均存在劑量反應(yīng)關(guān)系(trend< 0.05).

圖2 血清PFAS濃度之間的相關(guān)性

*表示顯著相關(guān)

表2 血清PFAS濃度與MAFLD患病風(fēng)險之間的關(guān)聯(lián)性

注:表中數(shù)字為OR(95%CI);OR,比值比;CI,置信區(qū)間;Q,四分位數(shù);*為顯著相關(guān). .a:單污染物模型在調(diào)整協(xié)變量基礎(chǔ)上一次納入一種PFAS進(jìn)入模型;b:多污染物模型在調(diào)整協(xié)變量基礎(chǔ)上同時納入以上5種PFAS進(jìn)入模型;c:血清PFAS濃度經(jīng)lg10轉(zhuǎn)換.模型調(diào)整了年齡、性別、種族、貧困收入比率、教育水平、身體活動、飲酒狀況、血清可替寧.

2.4 血清PFAS與患MAFLD風(fēng)險的劑量反應(yīng)關(guān)系

如圖3所示,PFDA濃度與MAFLD患病風(fēng)險呈負(fù)向線性劑量反應(yīng)關(guān)系(overall<0.001,nonlinear= 0.484),隨著PFDA水平增加,MAFLD患病風(fēng)險降低;PFNA濃度與MAFLD患病風(fēng)險呈正向線性劑量反應(yīng)關(guān)系(overall=0.002,nonlinear=0.452),隨著PFNA水平增加,患MAFLD風(fēng)險增加.

調(diào)整因素同表2

2.5 亞組分析

圖4所示為不同亞組之間血清PFDA、PFNA濃度對MAFLD患病風(fēng)險的影響.血清PFDA濃度與年齡亞組之間存在顯著交互作用(inter=0.023),且在51~65歲年齡組血清PFDA與MAFLD患病風(fēng)險相關(guān)性更強(qiáng)烈.此外,血清PFNA與性別亞組也存在顯著交互作用(inter=0.001),且在女性人群中血清PFNA與MAFLD患病風(fēng)險相關(guān)性更強(qiáng)烈.

圖1 不同亞組人群血清PFDA、PFNA與MAFLD患病風(fēng)險的關(guān)聯(lián)

*表示交互作用有顯著相關(guān)性

3 討論

本研究首次評估了美國成年人中多種血清PFAS與MAFLD患病風(fēng)險的關(guān)系.單污染模型顯示,血清PFOS、PFHxS、PFDA與MAFLD患病風(fēng)險降低相關(guān).多污染模型中血清PFAS沒有顯示一致的關(guān)聯(lián)性,血清PFNA與MAFLD患病風(fēng)險呈正向線性劑量反應(yīng)關(guān)系,而血清PFDA與MAFLD患病風(fēng)險呈負(fù)向線性劑量反應(yīng)關(guān)系.

3.1 PFAS對MAFLD患病風(fēng)險的影響

目前沒有研究直接表明PFAS與MAFLD發(fā)生的潛在關(guān)聯(lián),只有少數(shù)流行病學(xué)研究報道PFAS有肝臟損傷以及增加代謝紊亂的風(fēng)險.同樣基于NHANES數(shù)據(jù)庫,Gleason等探討了四種PFAS (PFHxS、PFOS、PFOA和 PFNA)與肝功能標(biāo)志物的關(guān)系,發(fā)現(xiàn)谷丙轉(zhuǎn)氨酶隨著血清PFNA水平增加而增加[33],說明PFNA對肝臟有損傷作用.此外在美國俄亥俄州200名成年人的報告中,同樣觀察到PFNA與細(xì)胞角蛋白-18(一種脂肪肝生物標(biāo)志物)存在正相關(guān)[34].研究顯示,PFAS 暴露與血液中脂質(zhì)譜的改變有關(guān),如甘油三酯、膽固醇、低密度脂蛋白升高和高密度脂蛋白降低[35-38].由于PFAS更容易引起肥胖人群血脂異常,并且 MAFLD 與肥胖密切相關(guān),這在一定程度上說明PFAS暴露可能與MAFLD患病風(fēng)險存在潛在關(guān)聯(lián).此外,MAFLD是代謝綜合征的肝臟表現(xiàn)[39],Christense等[9]的研究發(fā)現(xiàn)PFNA始終與代謝綜合征及其組分的風(fēng)險增加相關(guān),而PFDA呈現(xiàn)出與代謝綜合征風(fēng)險降低有關(guān),這暗示了PFNA可能與MAFLD的風(fēng)險增加有關(guān)系,而PFDA的保護(hù)性作用也與本研究結(jié)果一致.

動物實驗中,有研究報道PFAS會導(dǎo)致大鼠和非人靈長類動物的肝臟脂質(zhì)代謝異常、肝臟腫大[40],從而誘發(fā)非酒精性脂肪性肝病,可能機(jī)制是通過激活PPAR-a誘導(dǎo)脂肪酸b氧化導(dǎo)致肝脂肪積累[41]和氧化應(yīng)激[42],激活的PPAR-a上調(diào)參與調(diào)節(jié)脂肪酸和膽固醇的運輸與代謝以及炎癥反應(yīng)的PPAR-a靶基因,并與其上游的過氧化物酶體增殖物反應(yīng)原件結(jié)合[43].此外,PPAR-a在PFDA誘導(dǎo)的肝毒性中有破壞和保護(hù)雙重作用[44].PPAR-a功能在人與動物之間存在差異,因此需進(jìn)一步研究來闡明人血清PFAS在MAFLD發(fā)展中的具體機(jī)制.

3.2 女性和中老年人的易感性較高

不同性別人群中PFNA相關(guān)的MAFLD風(fēng)險存在差異.女性對PFAS的敏感性較高,與其他結(jié)果相似[45],這可能與男性和女性PFAS的不同毒代動力學(xué)有關(guān)[46].此外,中老年人群中血清PFDA與MAFLD患病風(fēng)險相關(guān)相關(guān)效應(yīng)更為強(qiáng)烈,考慮與中老年人生理功能衰退,對污染物的敏感性升高有關(guān).

3.3 局限性

本研究的局限性:第一,基于橫斷面研究,因果關(guān)系的證據(jù)并不充分;第二,數(shù)據(jù)來自NHANES數(shù)據(jù)庫,外推性受限,需在其他人群中進(jìn)行驗證;第三,由于 NHANES 2017~2018數(shù)據(jù)集的限制,缺乏涉及代謝風(fēng)險異常的部分MAFLD診斷參數(shù),例如負(fù)荷后2小時血糖水平和糖尿病類型,這可能會低估MAFLD患病率;第四,因研究條件的局限性,未排除職業(yè)、高脂肪飲食以及低水果和蔬菜攝入量等因素,可能導(dǎo)致效應(yīng)估計有偏差.

4 結(jié)論

4.1 與最低四分位數(shù)濃度(Q1)相比,血清 PFNA濃度處于Q2、Q3、Q4水平時,患MAFLD風(fēng)險分別增加62%、62%、172%,且限制性立方樣條分析呈正向線性劑量-反應(yīng)關(guān)系(overall=0.002),表明PFNA暴露是MAFLD發(fā)生的重要危險因素.

4.2 與最低四分位數(shù)濃度(Q1)相比,血清PFDA處于Q2、Q3、Q4水平時,可導(dǎo)致MAFLD風(fēng)險分別減少39%、46%、74%,限制性立方樣條分析呈負(fù)向線性劑量-反應(yīng)關(guān)系(overall<0.001),表明PFDA暴露是MAFLD發(fā)生的重要保護(hù)因素.

4.3 亞組分析提示PFDA與年齡亞組存在顯著交互作用(inter=0.023),PFNA與性別亞組存在顯著交互作用(inter=0.001).其中,女性、中老年人群分別是PFNA效應(yīng)與PFDA效應(yīng)的易感人群.

[1] Lindstrom A B, Strynar M J, Libelo E L. Polyfluorinated compounds: Past, present, and future [J]. Environmental Science & Technology, 2011,45(19):7954-61.

[2] Kotthoff M, Müller J, Jürling H, et al. Perfluoroalkyl and polyfluoroalkyl substances in consumer products [J]. Environmental Science and Pollution Research, 2015,22(19):14546-59.

[3] Worley R R, Moore S M, Tierney B C, et al. Per- and polyfluoroalkyl substances in human serum and urine samples from a residentially exposed community [J]. Environ. Int., 2017,106:135-43.

[4] Pérez F, Nadal M, Navarro-Ortega A, et al. Accumulation of perfluoroalkyl substances in human tissues [J]. Environ. Int., 2013,59: 354-62.

[5] Sunderland E M, Hu X C, Dassuncao C, et al. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects [J]. J. Expo. Sci. Environ. Epidemiol., 2019,29(2):131-47.

[6] Barry V, Winquist A, Steenland K. Perfluorooctanoic Acid (PFOA) exposures and incident cancers among adults living near a chemical plant [J]. Environmental Health Perspectives, 2013,121(11/12): 1313-1318.

[7] Dzierlenga M W, Allen B C, Clewell H J, III, et al. Pharmacokinetic bias analysis of an association between clinical thyroid disease and two perfluoroalkyl substances [J]. Environ. Int., 2020,141:105784.

[8] DeWitt J C, Peden-Adams M M, Keller J M, et al. Immunotoxicity of perfluorinated compounds: recent developments [J]. Toxicol. Pathol., 2012,40(2):300-311.

[9] Christensen K Y, Raymond M, Meiman J. Perfluoroalkyl substances and metabolic syndrome [J]. International Journal of Hygiene and Environmental Health, 2019,222(1):147-153.

[10] Attanasio R. Association between perfluoroalkyl acids and liver function: Data on sex differences in adolescents [J]. Data in Brief, 2019,27:104618.

[11] Eslam M, Newsome P N, Sarin S K, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement [J]. Journal of Hepatology, 2020,73(1): 202-209.

[12] Zheng K I, Fan J G, Shi J P, et al. From NAFLD to MAFLD: a "redefining" moment for fatty liver disease [J]. Chin. Med. J. (Engl), 2020,133(19):2271-2283.

[13] Zheng K I, Sun D Q, Jin Y, et al. Clinical utility of the MAFLD definition [J]. J Hepatol, 2021,74(4):989-991.

[14] Chan K E, Koh T J L, Tang A S P, et al. Global prevalence and clinical characteristics of metabolic-associated fatty liver disease: A meta- analysis and systematic review of 10 739 607individuals [J]. The Journal of Clinical Endocrinology & Metabolism, 2022,107(9):2691- 2700.

[15] Zhang Y-T, Zeeshan M, Su F, et al. Associations between both legacy and alternative per- and polyfluoroalkyl substances and glucose-homeostasis: The Isomers of C8health project in China [J]. Environment International, 2022,158:106913.

[16] Zeeshan M, Zhang Y-T, Yu S, et al. Exposure to isomers of per- and polyfluoroalkyl substances increases the risk of diabetes and impairs glucose-homeostasis in Chinese adults: Isomers of C8 health project [J]. Chemosphere, 2021,278:130486.

[17] Han X, Meng L, Zhang G, et al. Exposure to novel and legacy per- and polyfluoroalkyl substances (PFASs) and associations with type 2diabetes: A case-control study in East China [J]. Environment International, 2021,156:106637.

[18] Duan Y, Sun H, Yao Y, et al. Serum concentrations of per-/ polyfluoroalkyl substances and risk of type 2diabetes: A case-control study [J]. Science of the Total Environment, 2021,787:147476.

[19] Yang Q, Guo X, Sun P, et al. Association of serum levels of perfluoroalkyl substances (PFASs) with the metabolic syndrome (MetS) in Chinese male adults: A cross-sectional study [J]. Science of the Total Environment, 2018,621:1542-1549.

[20] Jeddi M Z, Dalla Zuanna T, Barbieri G, et al. Associations of perfluoroalkyl substances with prevalence of metabolic syndrome in highly exposed young adult community residents-A cross- sectional study in Veneto Region, Italy [J]. International Journal of Environmental Research and Public Health, 2021,18(3):1194.

[21] Liu H-S, Wen L-L, Chu P-L, et al. Association among total serum isomers of perfluorinated chemicals, glucose homeostasis, lipid profiles, serum protein and metabolic syndrome in adults: NHANES, 2013~2014 [J]. Environmental Pollution, 2018,232:73-79.

[22] Su T-C, Kuo C-C, Hwang J-J, et al. Serum perfluorinated chemicals, glucose homeostasis and the risk of diabetes in working-aged Taiwanese adults [J]. Environment International, 2016,88:15-22.

[23] Conway B, Innes K E, Long D. Perfluoroalkyl substances and beta cell deficient diabetes [J]. Journal of Diabetes and Its Complications, 2016,30(6):993-998.

[24] Jain R B, Ducatman A. Selective associations of recent low concentrations of perfluoroalkyl substances with liver function biomarkers: NHANES 2011to 2014 data on US adults aged320years [J]. J Occup Environ Med, 2019,61(4):293-302.

[25] Attanasio R. Sex differences in the association between perfluoroalkyl acids and liver function in US adolescents: Analyses of NHANES 2013~2016 [J]. Environmental Pollution, 2019,254(PtB):113061.

[26] Chen Y-l, Li H, Li S, et al. Prevalence of and risk factors for metabolic associated fatty liver disease in an urban population in China: a cross-sectional comparative study [J]. BMC Gastroenterology, 2021,21(1):212.

[27] Das K P, Wood C R, Lin M T, et al. Perfluoroalkyl acids-induced liver steatosis: Effects on genes controlling lipid homeostasis [J]. Toxicology, 2017,378:37-52.

[28] Zhang L, Ren X M, Guo L H. Structure-based investigation on the interaction of perfluorinated compounds with human liver fatty acid binding protein [J]. Environ Sci Technol, 2013,47(19):11293-11301.

[29] Foreman J E, Chang S-C, Ehresman D J, et al. Differential hepatic effects of perfluorobutyrate mediated by mouse and human PPAR-alpha [J]. Toxicological Sciences, 2009,110(1):204-211.

[30] Eddowes P J, Sasso M, Allison M, et al. Accuracy of FibroScan controlled attenuation parameter and liver stiffness measurement in assessing steatosis and fibrosis in patients with nonalcoholic fatty liver disease [J]. Gastroenterology, 2019,156(6):1717-1730.

[31] Classification and diagnosis of diabetes: Standards of medical care in diabetes-2021 [J]. Diabetes Care, 2021,44(Suppl 1):S15-S33.

[32] Guo B, Guo Y, Nima Q, et al. Exposure to air pollution is associated with an increased risk of metabolic dysfunction-associated fatty liver disease [J]. Journal of Hepatology, 2022,76(3):518-525.

[33] Gleason J A, Post G B, Fagliano J A. Associations of perfluorinated chemical serum concentrations and biomarkers of liver function and uric acid in the US population (NHANES), 2007~2010 [J]. Environmental Research, 2015,136:8-14.

[34] John, Bassler, Alan, et al. Environmental perfluoroalkyl acid exposures are associated with liver disease characterized by apoptosis and altered serum adipocytokines [J]. Environmental pollution (Barking, Essex: 1987), 2019:247:1055-1063.

[35] Lin T-W, Chen M-K, Lin C-C, et al. Association between exposure to perfluoroalkyl substances and metabolic syndrome and related outcomes among older residents living near a Science Park in Taiwan [J]. International Journal of Hygiene and Environmental Health, 2020,230:113607.

[36] Spratlen M J, Perera F P, Lederman S A, et al. The association between perfluoroalkyl substances and lipids in cord blood [J]. Journal of Clinical Endocrinology & Metabolism, 2020,105(1):43-54.

[37] Jain R B, Ducatman A. Roles of gender and obesity in defining correlations between perfluoroalkyl substances and lipid/lipoproteins [J]. Science of the Total Environment, 2019,653:74-81.

[38] Christensen K Y, Raymond M, Meiman J. Perfluoroalkyl substances and metabolic syndrome [J]. Int. J. Hyg. Environ. Health, 2019,222(1): 147-153.

[39] Kim C H, Younossi Z M. Nonalcoholic fatty liver disease: a manifestation of the metabolic syndrome [J]. Cleve Clin J Med, 2008, 75(10):721-728.

[40] Lau C, Anitole K, Hodes C, et al. Perfluoroalkyl acids: a review of monitoring and toxicological findings [J]. Toxicol. Sci., 2007,99(2): 366-394.

[41] Wan H T, Zhao Y G, Wei X, et al. PFOS-induced hepatic steatosis, the mechanistic actions on β-oxidation and lipid transport [J]. Biochim. Biophys. Acta, 2012,1820(7):1092-101.

[42] Khansari M R, Yousefsani B S, Kobarfard F, et al. In vitro toxicity of perfluorooctane sulfonate on rat liver hepatocytes: probability of distructive binding to CYP 2E1and involvement of cellular proteolysis [J]. Environ. Sci. Pollut. Res. Int., 2017,24(29):23382-8.

[43] Feige J N, Gelman L, Michalik L, et al. From molecular action to physiological outputs: Peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions [J]. Progress in Lipid Research, 2006,45(2):120-59.

[44] Luo M, Tan Z, Dai M, et al. Dual action of peroxisome proliferator- activated receptor alpha in perfluorodecanoic acid-induced hepatotoxicity [J]. Archive für Toxikologie, 2016,91(2):1-11.

[45] Sen P, Qadri S, Luukkonen P K, et al. Exposure to environmental contaminants is associated with altered hepatic lipid metabolism in non-alcoholic fatty liver disease [J]. Journal of Hepatology, 2022, 76(2):283-293.

[46] Harada K, Inoue K, Morikawa A, et al. Renal clearance of perfluorooctane sulfonate and perfluorooctanoate in humans and their species-specific excretion [J]. Environ. Res., 2005,99(2):253-261.

Relationship of serum perfluoroalkyl substances with the risk of metabolic associated fatty liver disease.

ZHANG Lu-lu, LIU Jing, HE Ying-qian, ZHAO Ya-nan, ZHENG Shan, WANG Min-zhen*

(Institute of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 73000, China)., 2023,43(2):964~972

To explore the effect of serum perfluoroalkyl substances (PFAS) on the metabolic-associated fatty liver disease (MAFLD) on the basis of the 2017~2018 US National Health and Nutrition Survey (NHANES) database. The logistic regression model and restricted cubic spline (RCS) were used to evaluate the association and dose-response relationship between PFAS and MAFLD. The main results showed that in a single pollutant model, perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS) and perfluorodecanoic acid (PFDA) were negatively associated with the risk of MAFLD, with the ORs of 0.64 (95%CI:0.45~0.91), 0.65 (95%CI:0.46~0.93) and 0.45 (95%CI:0.30~0.67), respectively. In the multi-pollutant model, compared with the lowest quantile (Q1), the risk of MAFLD increased with the increase of perfluoronanoic acid (PFNA) by 62% (OR=1.62, 95%CI:1.10~2.39), 62% (OR=1.62, 95%CI:1.01~2.60) and 172% (OR=2.72, 95%CI: 1.53~4.84) at Q2, Q3, and Q4, respectively. Conversely, there was negative linear dose-response relationship (overall<0.001) between PFDA and the risk of MAFLD. The risk of MAFLD were 0.61(95%CI: 0.44~0.85), 0.54(95%CI: 0.34~0.84) and 0.26(95%CI: 0.15~0.45) when the concentration of PFDA reached to Q2, Q3, and Q4 levels. Subgroup analysis showed that serum PFDA had a more significant effect on the risk of MAFLD in 51~65 years old population. Females exposed to serum PFNA were more likely to develop MAFLD. In conclusion, serum PFNA and PFDA were significantly related to the risk of MAFLD, and PFNA exposure played a risky role in the occurrence of MAFLD while PFDA had protective effect. Women, middle-aged and elderly people might be potential susceptible groups.

perfluoroalkyl substances;metabolic associated fatty liver disease;dose-response relationship

X503.1;X18

A

1000-6923(2023)02-0964-09

張露露(1998-),女,江西南昌人,蘭州大學(xué)碩士研究生,主要從事環(huán)境流行病學(xué)研究.

2022-07-06

國家自然科學(xué)基金資助項目(41705122)

* 責(zé)任作者, 副教授, wangmzh@lzu.edu.cn

猜你喜歡
亞組患病肝臟
基于Meta分析的黃酮類化合物對奶牛生產(chǎn)性能和血清免疫指標(biāo)影響的研究
慢性阻塞性肺疾病患者膈肌移動度分析
七種行為傷肝臟
中老年保健(2022年4期)2022-11-25 14:45:02
肝臟里的膽管癌
肝博士(2022年3期)2022-06-30 02:49:00
槭葉鐵線蓮亞組的研究進(jìn)展
園林科技(2021年3期)2022-01-19 03:17:32
為照顧患病家父請事假有何不可?
上海工運(2020年8期)2020-12-14 03:11:56
野生動物與人獸共患病
科學(xué)(2020年3期)2020-11-26 08:18:20
肝臟減負(fù)在于春
冠心病患者腸道菌群變化的研究 (正文見第45 頁)
IL-17A促進(jìn)肝部分切除后IL-6表達(dá)和肝臟再生
宝清县| 甘孜| 房产| 三原县| 大竹县| 上杭县| 留坝县| 永泰县| 安康市| 藁城市| 屯门区| 裕民县| 扎赉特旗| 青神县| 呈贡县| 尼勒克县| 海城市| 阜宁县| 平顺县| 汉中市| 铜梁县| 郓城县| 绥芬河市| 长宁区| 那曲县| 如东县| 黄龙县| 洛宁县| 泽普县| 衡山县| 银川市| 松阳县| 盈江县| 缙云县| 乡城县| 巴楚县| 嘉兴市| 揭阳市| 新邵县| 将乐县| 鲜城|