李德,李宇,楊天爽
中海油能源發(fā)展股份有限公司工程技術(shù)分公司(天津300450)
我國致密砂巖氣分布廣,探明地質(zhì)儲量高達(dá)40%[1],居非常規(guī)天然氣產(chǎn)量首位,是潛力巨大的非常規(guī)天然氣資源。2021年初,中國海油在山西省臨縣和興縣發(fā)現(xiàn)千億立方米的大氣田,探明天然氣地質(zhì)儲量超過1 010×108m3[2]。
致密砂巖氣簡稱致密氣,一般指賦存于滲透率小于1×10-3μm2、孔隙度小于10%的砂巖儲層中的天然氣[3]。由于其具有低孔隙度、低滲透率特征,開采難度較大,通常需要大規(guī)模水力壓裂措施才能產(chǎn)出具有經(jīng)濟(jì)價值的天然氣。在現(xiàn)場壓裂施工過程中,破裂壓力是壓裂工藝參數(shù)設(shè)計的核心要素,其預(yù)估的精確與否對壓裂設(shè)備優(yōu)選、提高壓裂效益至關(guān)重要。在儲集層改造過程中,某些地層破裂壓力異常高,超過管柱及設(shè)備的承受能力,直接導(dǎo)致壓裂改造措施失敗[4-5]。因此,如何準(zhǔn)確估計儲層的破裂壓力亟待解決。
1957年,Hubbert和Willis[6]首次提出基于線彈性理論的適用于非滲透條件下巖石破裂壓力的計算模型。1962年,Morgenstern[7]引入剪切破壞理論來計算破裂壓力。1973年,Daneshy[8]借助坐標(biāo)系變換的手段建立了定向井井筒周圍的應(yīng)力分布模型,從而推導(dǎo)出定向井條件下儲層破裂壓力計算模型。1981年,黃榮樽等人[9-10]將地應(yīng)力、孔隙壓力、井內(nèi)液柱壓力以及壓裂液滲濾對井周應(yīng)力的影響引入了垂直裂縫和水平裂縫起裂的判斷依據(jù),從而提出一種新的破裂壓力計算模型。1991年,Ito和Hayashi[11]引入點破裂準(zhǔn)則來計算破裂壓力,該準(zhǔn)則認(rèn)為巖石起裂位置在距井壁一定特征距離的特征點處。2002年,李傳亮等人[12]建立了在射孔條件下的破裂壓力計算模型。2003年,胡永全等人[13]采用有限元法對射孔條件下水力壓裂后儲層破裂壓力進(jìn)行了分析研究。2009年,王素玲等人[14]運用牛頓法研究了低滲透儲集層條件下射孔參數(shù)對地層起裂壓力的影響。
隨著計算水平的提高,一些學(xué)者開始借助數(shù)理統(tǒng)計和機器學(xué)習(xí)的方法對儲層破裂壓力進(jìn)行預(yù)測研究。2004年,聶采軍等人[15]根據(jù)測井?dāng)?shù)據(jù),提出一種基于數(shù)理統(tǒng)計方法的破裂壓力預(yù)測模型。2014年,于成海和郭大立[16]建立基于徑向基函數(shù)網(wǎng)絡(luò)的煤層破裂壓力預(yù)測方法。2015年,李昌盛等人[17]建立一種基于遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)方法的地層破裂壓力預(yù)測模型。2018年,張嘯宇根據(jù)壓裂施工歷史資料,提出基于多元線性回歸和BP神經(jīng)網(wǎng)絡(luò)算法的兩種破裂壓力預(yù)測方法。2019年,陳立超和王生維[18]通過非線性擬合方法研究煤層破裂壓力與彈性模量、剪切模量、泊松比之間的關(guān)系。
綜上所述,國內(nèi)外學(xué)者對地層破裂壓力的計算和預(yù)測進(jìn)行了大量的研究,但針對基于多元線性回歸方法的破裂壓力預(yù)測模型鮮有研究?;诖耍陨轿魇∨R興區(qū)塊致密砂巖氣儲層為目標(biāo)對象,根據(jù)構(gòu)建的壓裂施工資料、測井資料及地質(zhì)數(shù)據(jù)的數(shù)據(jù)庫樣本,通過多元線性回歸方法計算儲層的破裂壓力。為進(jìn)一步剖析不同參數(shù)對破裂壓力的敏感性,分別計算各因素與破裂壓力的皮爾遜相關(guān)系數(shù),從而評價最小水平主應(yīng)力、彈性模量、泊松比、滲透率、孔隙度和破裂壓力的關(guān)聯(lián)程度。
臨興區(qū)塊地處鄂爾多斯盆地東北部伊陜斜坡東段、晉西撓褶帶西緣,其面積約為2 530 km2。伊陜斜坡基巖起伏較小,沉積蓋層坡度傾角較為平緩,主要形成于早白堊時期,該斜坡現(xiàn)今構(gòu)造面貌為向西傾斜的平緩單斜,傾角不足1°,主要發(fā)育鼻狀構(gòu)造;晉西撓褶帶位于盆地東緣,呈帶狀延伸。該構(gòu)造帶的東緣南部發(fā)育南北向的狹窄背斜構(gòu)造,構(gòu)造帶的西部多發(fā)育南西向的鼻狀構(gòu)造。
晚石炭世-早二疊世沉積的海陸過渡相含煤層系是該區(qū)域上古生界的主力烴源巖,且在本溪組至石千峰組都是發(fā)育有利的儲集層類型,在儲集層的縱向上形成了下部(本溪組-山西組)、中部(下石盒子組)和上部(上石盒子組-石千峰組)3種成藏組合。由此可以表明,臨興區(qū)塊是天然氣富集的有利場所。
由于臨興區(qū)塊各井及各層段壓裂施工次數(shù)較多,研究選取了其中15口致密砂巖氣井的20次壓裂數(shù)據(jù)。將las文件測井?dāng)?shù)據(jù)導(dǎo)入GOHFER3D軟件中,計算了不同壓裂目的層條件下的最小水平主應(yīng)力、彈性模量、泊松比等參數(shù),孔隙度和滲透率通過地質(zhì)資料獲取得到。最終統(tǒng)計后的基礎(chǔ)參數(shù)見表1。
表1 臨興區(qū)塊致密砂巖氣壓裂儲層基礎(chǔ)數(shù)據(jù)
多元線性回歸是一種線性預(yù)測多個自變量和因變量之間關(guān)系的數(shù)理統(tǒng)計方法,當(dāng)僅有一個獨立變量的時候稱作一元線性回歸。通常回歸模型都假設(shè)每個因素是完全相互獨立的,雖然這個假設(shè)在大多數(shù)實際問題中都不完全成立,但回歸模型仍然被廣泛地應(yīng)用于巖石力學(xué)與壓裂模擬領(lǐng)域的預(yù)測問題中[19]。假定模型中因變量y與p個因素相關(guān),則樣本點的多元線性回歸方程通式為:
式中:β0,β1,β2,…,βp是模型所要計算的擬合參數(shù);x p表示樣本點的第p個自變量。
以儲層的最小水平主應(yīng)力、彈性模量、泊松比、滲透率、孔隙度為自變量,以破裂壓力為因變量,多元線性回歸后可得回歸方程:
式中:p f為破裂壓力,MPa;σh為最小水平主應(yīng)力,MPa;E為彈性模量,GPa;ν為泊松比;k為儲層滲透率,10-3μm2;φ為孔隙度。
根據(jù)圖1的計算結(jié)果可以看出,利用多元線性回歸方法預(yù)測結(jié)果與實際的破裂壓力具有較高的吻合度。多元回歸后的擬合優(yōu)度為0.904 9,且p值小于0.05。從圖2可知,預(yù)測值與實際值的壓力差最大為2.37 MPa,85%的壓力差計算結(jié)果小于1.7 MPa。由圖3可知,基于多元線性回歸預(yù)測后的破裂壓力相對誤差值不超過7.31%,平均相對誤差為3.4%。
圖1 多元線性回歸預(yù)測破裂壓力結(jié)果
圖2 多元線性回歸預(yù)測破裂壓力差應(yīng)力結(jié)果
圖3 多元線性回歸預(yù)測破裂壓力相對誤差分析
為了與傳統(tǒng)的破裂壓力模型計算結(jié)果進(jìn)行比較,對6種典型的破裂壓力計算模型進(jìn)行了統(tǒng)計與分析[20-23],見表2。表2中σt為巖石的抗拉強度,MPa;σH為水平最大主應(yīng)力,MPa;p0為地層壓力,MPa;α為畢奧特系數(shù),無量綱;A是中間參數(shù),無量綱;K B為巖石體積模量,MPa;K M為骨架礦物體積模量,MPa;φ為孔隙度;T表示非均質(zhì)地質(zhì)構(gòu)造應(yīng)力系數(shù);模型中S代表最小水平主應(yīng)力,MPa;α、β分別為水平兩個主應(yīng)力方向的構(gòu)造應(yīng)力系數(shù)。
表2 傳統(tǒng)儲層破裂壓力計算模型統(tǒng)計
根據(jù)表2的破裂壓力計算模型可以得到各種方法下的破裂壓力預(yù)測值,與現(xiàn)場實測值對比后的結(jié)果如圖4所示。
圖4 不同模型下破裂壓力計算結(jié)果
根據(jù)圖4的計算結(jié)果可知,不同模型的破裂壓力計算結(jié)果均在實際破裂壓力值附近,破裂壓力值大多集中在20~40 MPa。為了評價各種模型的優(yōu)劣性,還需分別計算破裂壓力預(yù)測值與實測值的相對誤差值(圖5),以此來優(yōu)選破裂壓力計算模型。
圖5 不同模型下破裂壓力的相對誤差
由圖5可知,多元線性回歸方法計算出來的破裂壓力值的平均相對誤差最小,僅為3.4%。Haimson-Fairhurst模型計算的平均相對誤差最大,為10.26%。因此可以看出,選用多元線性回歸模型來預(yù)測儲層的破裂壓力準(zhǔn)確度較高。
在數(shù)理統(tǒng)計學(xué)中,皮爾遜相關(guān)系數(shù)(Pcc)又叫做皮爾遜積矩相關(guān)系數(shù),它是用來度量兩個變量x和y之間的相關(guān)(線性相關(guān))性,其取值范圍在-1~1。其計算公式如下:
式中:cov(x,y)代表兩個參數(shù)之間的協(xié)方差;σx、σy為兩個變量x、y的標(biāo)準(zhǔn)差。
衡量破裂壓力和最小水平主應(yīng)力這兩個變量間的線性相關(guān)性,就是把不同最小水平主應(yīng)力值(樣本點)組成一個樣本集,以及對應(yīng)的破裂壓力值(樣本點)組成一個樣本集,然后按上述公式計算得到皮爾遜相關(guān)系數(shù)。其他變量與破裂壓力間的皮爾遜相關(guān)系數(shù)計算方法類似。
各因素的皮爾遜相關(guān)系數(shù)計算結(jié)果如圖6所示,最小水平地應(yīng)力和破裂壓力之間的皮爾遜相關(guān)系數(shù)為0.853 5,二者的線性相關(guān)性最強,最小水平地應(yīng)力越大,破裂壓力也有增加的趨勢。彈性模量增加,總體來看破裂壓力也有增加的趨勢,但皮爾遜相關(guān)系數(shù)僅為0.585 6,二者間的線性相關(guān)性較弱。滲透率和孔隙度與破裂壓力的關(guān)系為負(fù)相關(guān),主要原因可能是孔隙度、滲跡率的增加使得地層孔隙壓力升高,增大了破裂地層所需的驅(qū)動力,從而降低了破裂壓力。
圖6 破裂壓力與各因素間的線性相關(guān)性分析
1)建立的多元線性回歸破裂壓力計算模型能夠較準(zhǔn)確地計算臨興區(qū)塊儲層的破裂壓力,多元回歸后的擬合優(yōu)度為0.904 9,地層破裂壓力預(yù)測最大誤差為7.31%,平均值為3.4%,預(yù)測精度較高,滿足壓裂工程需求。
2)不同的儲集層破裂壓力計算方法均有各自的側(cè)重點,每種模型選取的地層參數(shù)也不盡相同,對比后發(fā)現(xiàn)多元回歸方法預(yù)測值的相對誤差最小。
3)計算不同參數(shù)和儲層破裂壓力的皮爾遜相關(guān)系數(shù),發(fā)現(xiàn)最小水平地應(yīng)力與破裂壓力的相關(guān)性最強,相關(guān)系數(shù)為0.853 5;孔隙度和滲透率與破裂壓力的關(guān)系呈負(fù)相關(guān)。