国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

飽和狀態(tài)下黃綿土坡面細(xì)溝侵蝕可蝕性和臨界剪切應(yīng)力特征

2023-01-16 09:44黃鈺涵楊夢(mèng)格雷廷武李法虎
關(guān)鍵詞:剪切應(yīng)力坡面水流

黃鈺涵,楊夢(mèng)格,雷廷武,李法虎,王 偉

飽和狀態(tài)下黃綿土坡面細(xì)溝侵蝕可蝕性和臨界剪切應(yīng)力特征

黃鈺涵1,2,楊夢(mèng)格2,雷廷武1※,李法虎1,王 偉3

(1. 中國農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,北京 100083;2. 廣西大學(xué)林學(xué)院,廣西森林生態(tài)與保育重點(diǎn)實(shí)驗(yàn)室,南寧 530004;3. 中國農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083)

土壤可蝕性參數(shù)和臨界剪切應(yīng)力是評(píng)價(jià)土壤易侵蝕程度和抗水流剪切變形能力的重要指標(biāo),目前在黃綿土坡面細(xì)溝侵蝕過程中,土壤飽和條件下可蝕性參數(shù)和臨界剪切應(yīng)力的變化尚不明確。該研究采用室內(nèi)土槽模擬沖刷試驗(yàn)確定不同坡度(5°、10°、15°、20°)和流量(2、4、8 L/min)下飽和黃綿土坡面的最大細(xì)溝剝蝕率,基于數(shù)值法、修正數(shù)值法和解析法計(jì)算土壤可蝕性參數(shù)和臨界剪切應(yīng)力。結(jié)果表明,3種方法所得最大細(xì)溝剝蝕率均隨坡度和流量增加而增大,其中修正數(shù)值法和解析法計(jì)算的最大細(xì)溝剝蝕率更接近。土壤可蝕性參數(shù)分別是0.470、0.278和0.256 s/m,土壤臨界剪切應(yīng)力分別為1.502、1.306和1.367 N/m2。修正數(shù)值法可提高數(shù)值法近似計(jì)算的精度,使近似計(jì)算結(jié)果更接近解析法計(jì)算獲得的理論值。飽和較未飽和黃綿土的土壤可蝕性參數(shù)略有減?。?6.83%),而臨界剪切應(yīng)力減小了66.97%,表明土壤飽和對(duì)黃綿土土壤可蝕性參數(shù)影響很小,但大幅度削弱了土壤臨界剪切應(yīng)力,使得黃綿土坡面飽和后土壤侵蝕更為強(qiáng)烈。此外,飽和黃綿土邊坡的臨界剪切應(yīng)力與飽和紫色土坡面相比差異不大,而細(xì)溝可蝕性參數(shù)大2.26倍,表明土壤飽和對(duì)2種土壤臨界剪切應(yīng)力影響程度相似,但黃綿土較紫色土對(duì)土壤侵蝕的敏感性更高。研究結(jié)果可為飽和狀態(tài)下不同土壤坡面細(xì)溝侵蝕模型參數(shù)的優(yōu)化提供參考。

土壤;侵蝕;細(xì)溝;可蝕性;臨界剪切應(yīng)力;飽和;最大細(xì)溝剝蝕率

0 引 言

細(xì)溝侵蝕是坡面侵蝕泥沙的重要來源,是坡面侵蝕泥沙運(yùn)移的主要通道。侵蝕細(xì)溝形成后,土壤侵蝕顯著增加,土地退化加劇,嚴(yán)重威脅農(nóng)業(yè)可持續(xù)發(fā)展[1-3],因此,研究者們對(duì)土壤侵蝕預(yù)報(bào)和土壤侵蝕控制措施持續(xù)關(guān)注[4]。目前,常用的土壤侵蝕預(yù)報(bào)模型包括:經(jīng)驗(yàn)?zāi)P停║niversal Soil Loss Equation (USLW)和Revised Universal Soil Loss Equation (RUSLE))、基于物理過程的預(yù)報(bào)模型(Water Erosion Prediction Project (WEPP)和European Soil Erosion Model (EUROSEM))、分布式流域水文模型(Soil and Water Assessment Tool (SWAT))等[5-6]。土壤可蝕性參數(shù)和臨界剪切應(yīng)力是土壤侵蝕預(yù)報(bào)模型的2個(gè)重要參數(shù),其中,土壤可蝕性是指土壤是否易受侵蝕破壞的性能, 即土壤對(duì)侵蝕介質(zhì)剝蝕和搬運(yùn)的敏感性[7];土壤的臨界剪切應(yīng)力是表征土體力學(xué)性質(zhì)的一個(gè)主要指標(biāo),它的大小與土壤凝聚力和內(nèi)摩擦角有關(guān),可直接反映土體抵抗外力作用發(fā)生剪切變形破壞的能力[7]。因此,這2個(gè)參數(shù)是評(píng)價(jià)土壤易侵蝕程度和抗水流剪切變形能力的重要指標(biāo)[8-9]。

土壤可蝕性參數(shù)與臨界剪切應(yīng)力作為土壤坡面細(xì)溝侵蝕模型的重要參數(shù),實(shí)現(xiàn)其精確計(jì)算對(duì)提高細(xì)溝侵蝕模型精度有十分重要的意義。研究發(fā)現(xiàn)影響土壤可蝕性參數(shù)和臨界剪切應(yīng)力的因素包括:土壤含水量[10-12]、土壤水勢(shì)梯度[13]、有機(jī)質(zhì)含量[14]、坡度、水流流量[7]、土壤孔隙水壓力[13,15-16]、土壤孔隙比[17]等。其中,土壤含水量的影響越來越受到關(guān)注,Hanson等[10]發(fā)現(xiàn)土壤抗侵蝕能力隨著土壤含水量的增加在土壤塑限范圍內(nèi)升高。Su等[15]發(fā)現(xiàn)隨著土壤水文條件的變化(從排水到飽和再到滲流狀態(tài)下),不同土壤類型(黃褐土、紫色土、干紅壤)的土壤可蝕性參數(shù)逐漸增加,而臨界剪切應(yīng)力沒有顯著變化。Nouwakpo等[13]發(fā)現(xiàn)土壤滲流狀態(tài)下臨界剪切應(yīng)力隨垂直水力梯度的增加呈線性減小趨勢(shì),導(dǎo)致土壤侵蝕加劇。邢行等[12]通過限定性細(xì)溝模擬試驗(yàn)指出,土壤水分含量變化會(huì)引起土壤臨界剪切應(yīng)力的變化,這與Singh等[11]研究小流域土壤侵蝕得出的試驗(yàn)結(jié)果一致。以上研究均表明土壤含水量不同能引起近地表水文狀況顯著變化,進(jìn)而引發(fā)不同程度的土壤侵蝕。土壤飽和作為一種特殊的近地表水文狀況,顯著影響了土壤團(tuán)聚體結(jié)構(gòu)、土壤孔隙水壓力和表面粗糙程度等[18],進(jìn)而改變土壤侵蝕。目前關(guān)于土壤飽和的研究主要集中于坡面產(chǎn)流產(chǎn)沙過程[19-22]及土壤力學(xué)性質(zhì)方面[23-25],而針對(duì)飽和土壤坡面土壤可蝕性參數(shù)和臨界剪切應(yīng)力的研究較少,開展相關(guān)研究可為完善土壤侵蝕預(yù)報(bào)模型提供科學(xué)依據(jù)。

黃土高原地區(qū)每年60%~70%的降雨量集中于夏季,降雨具有短歷時(shí)、高強(qiáng)度的特點(diǎn)[26]。極端降雨條件下,可能因犁底層入滲受阻,使耕層逐漸形成飽和土層,加劇土壤流失。黃綿土作為黃土高原分布面積最大的土壤類型,是受強(qiáng)降雨影響形成農(nóng)地耕作層飽和土壤侵蝕的核心區(qū)域之一,因此針對(duì)黃土區(qū)坡耕地飽和狀態(tài)下黃綿土邊坡的土壤侵蝕研究顯得尤為重要。本文研究黃綿土坡面飽和對(duì)土壤可蝕性參數(shù)和臨界剪切應(yīng)力的影響,并對(duì)比了黃綿土與紫色土的差異,以期為飽和狀態(tài)下土壤坡面細(xì)溝侵蝕模型參數(shù)的優(yōu)化提供科學(xué)基礎(chǔ)。本文主要研究內(nèi)容如下:1)根據(jù)室內(nèi)試驗(yàn)細(xì)溝剝蝕率數(shù)據(jù)集,運(yùn)用數(shù)值法、修正數(shù)值法和解析法計(jì)算飽和黃綿土的細(xì)溝可蝕性參數(shù)和臨界剪切應(yīng)力;2)根據(jù)解析法精確計(jì)算的理論值,明確數(shù)值法與修正數(shù)值法的計(jì)算精度;3)對(duì)比飽和與未飽和狀態(tài)下黃綿土坡面及飽和狀態(tài)下黃綿土與紫色土的土壤可蝕性參數(shù)與臨界剪切應(yīng)力。

1 材料與方法

1.1 供試土壤

試驗(yàn)土壤為黃綿土,采集自中國科學(xué)院水利部水土保持研究所安塞水土保持綜合試驗(yàn)站(36°51′30″N、109°19′23″E)周邊的退耕荒地,該區(qū)域?yàn)榈湫土很鉅铧S土丘陵溝壑區(qū)。將收集的土壤風(fēng)干后過4 mm篩,使用Mastersizer 3000激光粒度分析儀(Malvern, UK, ±1%)測(cè)定試驗(yàn)土壤機(jī)械組成結(jié)果如下:砂粒、粉粒和黏粒體積分?jǐn)?shù)分別為23.80%、64.57%和11.63%,根據(jù)美國制土壤質(zhì)地分類標(biāo)準(zhǔn)試驗(yàn)土壤為粉壤土。通過重鉻酸鉀法測(cè)得有機(jī)質(zhì)含量為4.5 g/kg。

1.2 試驗(yàn)設(shè)計(jì)與數(shù)據(jù)集

試驗(yàn)在中國農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院模擬降雨大廳進(jìn)行,試驗(yàn)土槽為鋼制可調(diào)節(jié)坡度土槽,長8 m、寬1.2 m。用鋼板將土槽中間隔成8個(gè)8 m×0.1 m×0.35 m的限定性溝槽,即8條細(xì)溝,每條細(xì)溝長度為8 m,寬度0.1 m,深度0.25 m。在最左和最右側(cè)預(yù)留出0.2 m設(shè)置飽和土壤裝置,隔板間及隔板與試驗(yàn)平臺(tái)的間隙用黏質(zhì)土壤填充壓實(shí)5 cm厚,用于模擬犁底層,填土容重為1.5 g/cm3。

供試土槽的8條細(xì)溝以1 m為間隔等分為8條溝段,每米溝段的底部都?jí)簩?shí)填充3 cm厚的黏土層,并在每米溝段的黏土層上方水平設(shè)置1根水管,每根水管位于每米溝段前端10 cm處,且貫穿8條細(xì)溝(圖1a)。每個(gè)0.1 m溝段間隔的滲水管上表面布設(shè)3個(gè)滲水孔(直徑2 mm),滲水孔的間距為20 mm,在安裝時(shí)滲水孔朝上坡方向放置。自滲水管向下游0.9 m長都用黏性土壤填充壓實(shí)2 cm,土壤容重為1.5 g/cm3,每米溝段的前部0.1 m采用粗砂填充2 cm并覆蓋滲水管,作為滲水單元向供試土壤中供水(圖1b)。滲水管上部為供水管,每個(gè)供水管上安裝閥門控制供水水量,8根供水管末端都共同連接至1根輸水管,將水流分別輸送至各供水管。此外,在8條細(xì)溝中均鋪設(shè)滲水良好的土工織物以保護(hù)底部沙層,填入20 cm厚的供試土壤并自然沉降。

圖1 試驗(yàn)裝置圖

試驗(yàn)工作原理為水流通過輸水管進(jìn)入供水管而后到達(dá)滲水管,并通過滲流孔進(jìn)入沙層直至沙層達(dá)到飽和,而后水流持續(xù)向上飽和供試土壤,并逐漸向下游推進(jìn),最終實(shí)現(xiàn)全坡面土壤供水直至完全飽和。根據(jù)中國農(nóng)耕地的坡度最高25°,且據(jù)已有研究[27]以及野外坡耕地調(diào)研,細(xì)溝發(fā)育的臨界坡度為2°,且在5°以上發(fā)育最為廣泛,因此試驗(yàn)選取緩斜坡、斜坡與陡坡的代表性坡度,設(shè)置4個(gè)坡度:5°、10°、15°、20°。根據(jù)以往研究[28]得出的黃綿土坡耕地產(chǎn)生細(xì)溝侵蝕的臨界流量及黃綿土細(xì)溝侵蝕研究中采用的人工模擬降雨強(qiáng)度進(jìn)行換算,同時(shí)為了與前人研究[4]體系保證統(tǒng)一以便對(duì)比,因此,本文設(shè)計(jì)3個(gè)流量:2、4、8 L/min。當(dāng)供試土壤完全飽和后,調(diào)節(jié)坡度與流量測(cè)定細(xì)溝侵蝕水流流速與沿程含沙水樣濃度,且試驗(yàn)開始前供水條件保持不變。采用電解質(zhì)示蹤法測(cè)量(1、2、3、4、5、6、7、8 m)的水流流速,并取平均流速作為不同水力工況條件下的水流流速(表1)[29]。另外,沿程測(cè)定含沙水樣濃度:分別從距離細(xì)溝出口的1、2、4、8 m處用4個(gè)300 mL容積的鋼杯收集泥沙水流樣品,采樣時(shí)間為30~60 s。每個(gè)設(shè)計(jì)工況條件下,水流流速測(cè)量與沿程水流含沙量沖刷試驗(yàn)均各重復(fù)3次。之后將樣品靜置24 h后濾掉上層清液,放入105 ℃烘箱中烘干48 h,稱質(zhì)量記錄并計(jì)算水流含沙量,并通過數(shù)值法、修正數(shù)值法和解析法分別計(jì)算得到細(xì)溝剝蝕率。

表1 不同水力工況條件下飽和黃綿土坡面沿程水流流速[29]

1.3 計(jì)算原理

在WEPP模型中細(xì)溝剝蝕率可用式(1)表示:

式中D是細(xì)溝剝蝕率,kg/(m2·s);K是土壤可蝕性參數(shù),s/m;是水流剪切應(yīng)力,N/m2;τ是臨界剪切應(yīng)力,N/m2;為單寬流量,m3/(s·m);為水流含沙量,kg/m3;T為水流輸沙能力,kg/m3。在飽和土壤坡面上,清水中的含沙量為0,即水流剛剛進(jìn)入細(xì)溝溝頭時(shí)細(xì)溝剝蝕率可視為最大值,因此由式(1)可得飽和土壤坡面最大細(xì)溝剝蝕率為

式中D(max)為飽和土壤坡面的最大細(xì)溝剝蝕率,kg/(m2·s)。由式(2)可知,確定不同設(shè)計(jì)試驗(yàn)工況下最大細(xì)溝剝蝕率與水流剪切應(yīng)力,就可通過擬合分析得到細(xì)溝可蝕性參數(shù)與臨界剪切應(yīng)力。

1.3.1 數(shù)值法

根據(jù)細(xì)溝剝蝕率定義,細(xì)溝剝蝕率是細(xì)溝溝長的函數(shù),且不隨時(shí)間變化[30]?;谫|(zhì)量守恒定律,在細(xì)溝剝蝕階段水流輸沙量的增量應(yīng)與土壤剝蝕量相等,則對(duì)應(yīng)的飽和土壤坡面細(xì)溝剝蝕率可用數(shù)值法近似計(jì)算獲得[31],即:

式中為細(xì)溝溝長,m;為水流流量,m3/s;,為細(xì)溝溝寬,m;Δ為細(xì)溝溝寬增量,m;為單寬流量,m3/(s·m),D1為數(shù)值法計(jì)算的細(xì)溝剝蝕率,kg/(m2·s)。已有研究表明[31],飽和土壤坡面上細(xì)溝剝蝕率數(shù)值計(jì)算結(jié)果與水流含沙量有良好的線性函數(shù)關(guān)系,如式(4):

式中1為常數(shù),kg/(m2?s);1為比例系數(shù),一般為負(fù)值,表示隨水流含沙量增加細(xì)溝剝蝕率下降的速率,m/s。從式(4)中可看出在飽和土壤坡面上水流的細(xì)溝剝蝕率隨水流含沙量的增大而呈線性減小。當(dāng)水流含沙量為0時(shí),細(xì)溝剝蝕率可達(dá)到其最大值。

式中D1(max)為數(shù)值法計(jì)算的飽和土壤坡面最大細(xì)溝剝蝕率,kg/(m2·s)。

1.3.2 修正數(shù)值法

根據(jù)Huang等[32]獲得飽和土壤坡面細(xì)溝侵蝕過程中水流含沙量與細(xì)溝溝長的變化關(guān)系。

式中為水流達(dá)到輸沙能力時(shí)的最大水流含沙量,kg/m3;為隨細(xì)溝溝長增速的衰減系數(shù),m-1。

由于數(shù)值法為近似計(jì)算,因此數(shù)值法計(jì)算獲得的細(xì)溝剝蝕率與真實(shí)值存在較大誤差。式(6)為單調(diào)增函數(shù),且根據(jù)1.3.1節(jié)所述細(xì)溝剝蝕率數(shù)值計(jì)算原理,基于數(shù)學(xué)理論,總能在(x-1, x)區(qū)間上找到一點(diǎn)(ξ)使得式(7)成立。

式中D2為修正數(shù)值法計(jì)算的飽和土壤坡面細(xì)溝剝蝕率,kg/(m2?s);c-1和c分別表示細(xì)溝溝段內(nèi)第-1和處水流含沙量,kg/m3。修正數(shù)值法可提高沿程細(xì)溝剝蝕率的計(jì)算精度,為后續(xù)的細(xì)溝侵蝕參數(shù)估算及模型構(gòu)建提供基礎(chǔ)。采用修正數(shù)值法計(jì)算細(xì)溝剝蝕率與水流含沙量間的關(guān)系,如式(9)所示:

式中2為常數(shù),kg/(m2?s);2為式(9)中的比例系數(shù),表示隨水流含沙量增加細(xì)溝剝蝕率下降的速率,m/s。從式(9)可看出,當(dāng)水流含沙量為0時(shí)細(xì)溝剝蝕率可達(dá)到其最大值,如式(10):

式中D2(max)為修正數(shù)值法計(jì)算的飽和土壤坡面最大細(xì)溝剝蝕率,kg/(m2?s)。

1.3.3 解析法

如式(3)所示,根據(jù)細(xì)溝剝蝕率的定義,當(dāng)?趨近于0時(shí),?/2也趨近于0。因此,根據(jù)極限的基本原理對(duì)式(3)進(jìn)行轉(zhuǎn)換:

式中D3為解析法計(jì)算的飽和土壤坡面細(xì)溝剝蝕率(kg/(m2?s)),即依據(jù)數(shù)學(xué)原理精確計(jì)算所得的理論細(xì)溝剝蝕率。式(11)定義了解析法計(jì)算飽和土壤坡面細(xì)溝剝蝕率,因此將式(6)代入式(11)中可獲得通過細(xì)溝溝長解析計(jì)算細(xì)溝剝蝕率的式子,如下:

式中D3為通過細(xì)溝溝長解析計(jì)算的飽和土壤坡面細(xì)溝剝蝕率,kg/(m2?s);是飽和土壤坡面測(cè)量最大水流含沙量,kg/m3;為相關(guān)系數(shù)m-1,表明細(xì)溝剝蝕率隨細(xì)溝溝長增加而降低的速率。采用解析法計(jì)算細(xì)溝剝蝕率與水流含沙量間的關(guān)系,如式(13)所示:

式中3為常數(shù),kg/(m2?s);3為式(13)中的比例系數(shù),表示隨水流含沙量增加細(xì)溝剝蝕率下降的速率,m/s。由式(13)可知,當(dāng)水流含沙量為0時(shí),細(xì)溝剝蝕率可達(dá)到其最大值,如式(14):

式中D3(max)為解析法計(jì)算的飽和土壤坡面最大細(xì)溝剝蝕率,kg/(m2?s)。

將式(2)分別代入式(5)、式(10)與式(14),可計(jì)算得到基于3種計(jì)算方法的飽和土壤坡面細(xì)溝侵蝕土壤可蝕性參數(shù)K和土壤臨界剪切應(yīng)力τ

式中K1是基于數(shù)值法擬合的土壤可蝕性參數(shù),s/m;τ1是基于數(shù)值法擬合的臨界剪切應(yīng)力,N/m2;K2是基于修正數(shù)值法擬合的土壤可蝕性參數(shù),s/m;τ2是基于修正數(shù)值法擬合的臨界剪切應(yīng)力,N/m2;K3是基于解析法擬合的土壤可蝕性參數(shù),s/m;τ3是基于解析法擬合的臨界剪切應(yīng)力,N/m2。水流剪切應(yīng)力(τ)為

式中是水的重力密度,9 800 N/m3;為地表坡度的正弦值;avg是侵蝕細(xì)溝的水流流速,m/s。

2 結(jié)果與分析

2.1 基于3種方法的土壤可蝕性參數(shù)與臨界剪切應(yīng)力

基于WEPP模型原理,最大細(xì)溝剝蝕率是計(jì)算土壤可蝕性參數(shù)與臨界剪切應(yīng)力的基礎(chǔ)。通過式(5)、式(10)和式(14)得出不同水力工況條件下數(shù)值法、修正數(shù)值法和解析法計(jì)算的最大細(xì)溝剝蝕率,如表2所示,3種方法所得結(jié)果在坡度為5和10°,流量為2 L/min時(shí)都較小,但在坡度為15°和20°,流量為4和8 L/min時(shí)逐漸增大。隨坡度增加,數(shù)值法計(jì)算的最大細(xì)溝剝蝕率明顯高于修正數(shù)值法和解析法,即數(shù)值法計(jì)算的最大細(xì)溝剝蝕率對(duì)于坡度更加敏感。例如流量為8 L/min時(shí),坡度從10°變化至15°,數(shù)值法計(jì)算的最大細(xì)溝剝蝕率變化率為288.1%,而修正數(shù)值法與解析法計(jì)算的最大細(xì)溝剝蝕率變化率僅為156.0%和151.5%。而在同一坡度下,流量增加對(duì)3種方法計(jì)算的最大細(xì)溝剝蝕率的影響無明顯差異。整體來看,修正數(shù)值法和解析法計(jì)算的最大細(xì)溝剝蝕率更接近。

表2 數(shù)值法、修正數(shù)值法和解析法計(jì)算的最大細(xì)溝剝蝕率

根據(jù)最大細(xì)溝剝蝕率結(jié)果,運(yùn)用式(18)計(jì)算獲得不同水力工況條件下的水流剪切應(yīng)力,并根據(jù)式(15)、(16)和(17)分別進(jìn)行線性回歸,所得結(jié)果如圖2所示。圖2a中直線的斜率即為基于數(shù)值法的土壤可蝕性參數(shù)0.470 s/m,圖2b中直線的斜率即為基于修正數(shù)值法的土壤可蝕性參數(shù)0.278 s/m,圖2c中直線的斜率即為基于解析法的土壤可蝕性參數(shù)0.256 s/m。當(dāng)最大細(xì)溝剝蝕率為0時(shí),此時(shí)水流剪切力即為臨界剪切應(yīng)力,因此基于數(shù)值法計(jì)算的臨界剪切應(yīng)力為1.502 N/m2,基于修正數(shù)值法的臨界剪切應(yīng)力為1.306 N/m2,基于解析法的臨界剪切應(yīng)力為1.367 N/m2。

將3種方法計(jì)算的飽和黃綿土坡面設(shè)計(jì)水力工況條件下土壤可蝕性參數(shù)及臨界剪切應(yīng)力的結(jié)果進(jìn)行對(duì)比,發(fā)現(xiàn)修正數(shù)值法與解析法計(jì)算的土壤可蝕性參數(shù)(0.278、0.256 s/m)和臨界剪切應(yīng)力(1.306、1.367 N/m2)較為接近,數(shù)值法計(jì)算的土壤可蝕性參數(shù)較大(0.470 s/m、1.502 N/m2)??梢娦拚龜?shù)值法較大程度提高了由實(shí)測(cè)數(shù)據(jù)近似計(jì)算細(xì)溝剝蝕率的準(zhǔn)確性,使其與解析法計(jì)算獲得的理論細(xì)溝剝蝕率更為接近,從而提高了基于最大細(xì)溝剝蝕率計(jì)算所得土壤可蝕性參數(shù)和臨界剪切應(yīng)力的精度。

圖2 基于數(shù)值法、修正數(shù)值法和解析法計(jì)算不同水力工況條件下最大剝蝕率與水流剪切應(yīng)力的關(guān)系

2.2 飽和與未飽和黃綿土坡面細(xì)溝侵蝕的土壤可蝕性參數(shù)與臨界剪切應(yīng)力對(duì)比

本課題組在前期研究中相同試驗(yàn)條件獲得了基于解析法計(jì)算的未飽和黃綿土坡面土壤可蝕性參數(shù)與臨界剪切應(yīng)力[4]。將之與本研究中基于修正數(shù)值法和解析法計(jì)算的飽和黃綿土坡面細(xì)溝侵蝕土壤可蝕性參數(shù)及臨界剪切應(yīng)力進(jìn)行對(duì)比,如表3所示。

表3 飽和與未飽和黃綿土坡面土壤可蝕性參數(shù)與土壤臨界剪切應(yīng)力

如表3所示,飽和黃綿土坡面修正數(shù)值法與解析法計(jì)算所得土壤可蝕性參數(shù)分別較未飽和黃綿土坡面解析法計(jì)算土壤可蝕性參數(shù)結(jié)果小13.40%和20.25%,平均上小16.83%,但飽和黃綿土坡面修正數(shù)值法與解析法計(jì)算的臨界剪切應(yīng)力分別較未飽和黃綿土坡面解析法計(jì)算的臨界剪切應(yīng)力小67.72%和66.21%,平均小66.97%。說明盡管飽和黃綿土坡面細(xì)溝侵蝕過程中泥沙輸送能力和細(xì)溝水流含沙濃度比未飽和黃綿土坡面大[22,32],但對(duì)于給定類型的土壤,土壤可蝕性參數(shù)是一個(gè)較為穩(wěn)定的值[14,34],土壤飽和對(duì)土壤可蝕性參數(shù)的影響小,但對(duì)臨界剪切應(yīng)力影響大。一方面,土壤飽和導(dǎo)致土壤顆粒之間黏結(jié)力減弱,土壤團(tuán)聚體易分解為單顆粒,使得土壤強(qiáng)度顯著降低,致使土壤抵抗徑流剪切的能力降低[29,35];另一方面,土壤飽和使得土壤顆粒間隙在孔隙水壓力影響下增大,且顆粒間的摩擦顯著減小,從而導(dǎo)致土壤的臨界剪切應(yīng)力降低[16]。因此,飽和與未飽和狀態(tài)下的黃綿土臨界剪切應(yīng)力相差較大,也是飽和黃綿土坡面細(xì)溝侵蝕輸沙量更大的原因。上述結(jié)果表明,土壤飽和主要導(dǎo)致了黃綿土抵抗徑流剪切破壞的能力大幅度降低,從而使得黃綿土坡面飽和后更易發(fā)生細(xì)溝侵蝕。

2.3 飽和黃綿土與紫色土坡面細(xì)溝侵蝕的土壤可蝕性參數(shù)與臨界剪切應(yīng)力對(duì)比

前期研究[2]基于修正數(shù)值法和解析法計(jì)算得到飽和紫色土坡面細(xì)溝剝蝕率,之后通過最大細(xì)溝剝蝕率與水流剪切應(yīng)力回歸分析,獲得飽和紫色土坡面在相同坡度與流量條件下的土壤可蝕性參數(shù)和臨界剪切應(yīng)力。與本文研究結(jié)果對(duì)比(表4),分析得出飽和狀態(tài)下黃綿土坡面解析法與修正數(shù)值法計(jì)算所得土壤臨界剪切應(yīng)力分別比紫色土坡面大4.68%和小2.10%,整體差異不大。但飽和黃綿土坡面解析法與修正數(shù)值法計(jì)算所得土壤可蝕性參數(shù)分別比紫色土坡面大2.16倍和2.35倍,平均大2.26倍。原因可能是黃綿土粉粒含量高、有機(jī)質(zhì)含量低,而紫色土黏粒含量高、有機(jī)質(zhì)含量高,且有研究表明黏粒和有機(jī)質(zhì)含量越高,土壤可蝕性參數(shù)越小[14,36]。此外,黃綿土黏聚力低,黏結(jié)性差,土壤剖面結(jié)構(gòu)不良,使得黃綿土容易侵蝕;而紫色土通常是豐富的不完全風(fēng)化粗土塊,不易被侵蝕。因此,2種土壤在飽和狀態(tài)下,黃綿土較紫色土更易分散為小顆粒,易發(fā)生侵蝕[37],黃綿土的土壤可蝕性參數(shù)顯著高于紫色土。黃綿土與紫色土在飽和狀態(tài)下的臨界剪切應(yīng)力相近,但土壤可蝕性參數(shù)相差較大,說明土壤類型更大程度上決定了土壤可蝕性參數(shù),因此土壤飽和對(duì)其他土壤類型的土壤可蝕性參數(shù)和臨界剪切應(yīng)力影響值得進(jìn)一步探究。

表4 飽和狀態(tài)下黃綿土與紫色土的土壤可蝕性參數(shù)與臨界剪切應(yīng)力

3 結(jié) 論

本文基于飽和黃綿土坡面細(xì)溝侵蝕水流流速與沿程含沙量試驗(yàn),采用數(shù)值法、修正數(shù)值法和解析法計(jì)算不同水力工況條件下細(xì)溝剝蝕率,獲得最大細(xì)溝剝蝕率,而后通過最大細(xì)溝剝蝕率與水流剪切應(yīng)力的線性回歸獲得飽和黃綿土坡面細(xì)溝侵蝕的土壤可蝕性參數(shù)和臨界剪切應(yīng)力,結(jié)果表明:1)3種方法所得土壤可蝕性參數(shù)分別是0.470、0.278和0.256 s/m,臨界剪切應(yīng)力分別為1.502、1.306和1.367 N/m2。修正數(shù)值法可提高數(shù)值法近似計(jì)算的精度,使近似計(jì)算結(jié)果更接近解析法計(jì)算獲得的理論值。2)飽和狀態(tài)下黃綿土坡面細(xì)溝侵蝕的土壤可蝕性參數(shù)較與未飽和土壤平均減小16.83%,臨界剪切應(yīng)力相較于未飽和黃綿土坡面平均減小66.97%;說明同一土壤類型的坡面在飽和前后土壤可蝕性參數(shù)相近,但臨界剪切應(yīng)力變化較大,土壤飽和極大影響了臨界剪切應(yīng)力,從而使得黃綿土坡面飽和時(shí)更易發(fā)生細(xì)溝侵蝕。3)對(duì)不同飽和土壤而言,飽和狀態(tài)下黃綿土坡面的臨界剪切應(yīng)力與紫色土差異不大,而土壤可蝕性參數(shù)比紫色土大2.26倍,說明2種土壤在飽和狀態(tài)下的臨界剪切應(yīng)力相近,但土壤可蝕性參數(shù)相差較大,即土壤類型對(duì)土壤可蝕性參數(shù)起決定性作用。土壤飽和使得臨界剪切應(yīng)力降低導(dǎo)致土壤坡面細(xì)溝侵蝕加劇,且不同土壤類型坡面的土壤可蝕性參數(shù)與臨界剪切應(yīng)力受飽和狀態(tài)的影響不同,因此進(jìn)一步探究土壤飽和對(duì)不同土壤類型土壤坡面的影響可為完善土壤侵蝕預(yù)報(bào)物理模型提供科學(xué)依據(jù)。

[1] Chen X Y, Zhao Y, Mi H X, et al. Estimating rill erosion process from eroded morphology in flume experiments by volume replacement method[J]. Catena, 2016, 136: 135-140.

[2] Li D D, Chen X Y, Han Z, et al. Determination of rill erodibility and critical shear stress of saturated purple soil slopes[J]. International Soil and Water Conservation Research, 2021, 10(1): 38-45.

[3] 趙宇輝,張建軍,于洋,等. 晉西黃土區(qū)蔡家川小流域切溝的空間分布及形態(tài)特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(4):151-158.

Zhao Yuhui, Zhang Jianjun, Yu Yang, et al. Spatial distribution and characteristics of the gullies in Caijiachuan watershed in loess region of Western Shanxi Province, China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(4): 151-158. (in Chinese with English abstract)

[4] Lei T W, Zhang Q W, Yan L J, et al. A rational method for estimating erodibility and critical shear stress of an eroding rill[J]. Geoderma, 2008, (3/4): 628-633.

[5] 陳平安,雷孝章. 美國土壤侵蝕模型研究綜述[C]//劉國東,梁川,覃光華. 河流開發(fā)、保護(hù)與水資源可持續(xù)利用—第六屆中國水水壇水論壇論文集. 北京:中國水利水電出版社,2008:1018-1023.

Chen Pingan, Lei Xiaozhang. A review of soil erosion models in the United States[C]//Liu Guodong, Liang Chuan, Qin Guanghua. River Development and Protection and Sustainable Utilization of Water Resources—The Sixth China Water Forum Proceedings. Beijing: China Water&Power Press, 2008: 1018-1023. (in Chinese with English abstract)

[6] 周正朝,上官周平. 土壤侵蝕模型研究綜述[J]. 中國水土保持科學(xué),2004,2(1):52-56.

Zhou Zhengchao, Shangguan Zhouping. Overview on soil erosion model research[J]. Science of Soil and Water Conservation in China, 2004, 2(1): 52-56. (in Chinese with English abstract)

[7] 張晴雯,雷廷武,潘英華,等. 細(xì)溝侵蝕可蝕性參數(shù)及土壤臨界抗剪應(yīng)力的有理(實(shí)驗(yàn))求解方法[J]. 中國科學(xué)院研究生院學(xué)報(bào),2004,21(4):468-475.

Zhang Qingwen, Lei Tingwu, Pan Yinghua, et al. Rational computational method of soil erodibility and critical shear stress from experimental data[J]. Journal of Graduate School of Chinese Academy of Sciences, 2004, 21(4): 468-475. (in Chinese with English abstract)

[8] van Klaveren R W, McCool D K. Erodibility and critical shear of a previously frozen soil[J]. Transactions of the ASAE, 1998, 41(5): 1315-1321.

[9] 劉寶元,張科利,焦菊英. 土壤可蝕性及其在侵蝕預(yù)報(bào)中的應(yīng)用[J]. 自然資源學(xué)報(bào),1999,14(4):345-350.

Liu Baoyuan, Zhang Keli, Jiao Juying. Soil erodibility and its use in soil erosion prediction model[J]. Journal of Natural Resources, 1999, 14(4): 345-350. (in Chinese with English abstract)

[10] Hanson G J, Hunt S L. Lessons learned using laboratory JET method to measure soil erodibility of compacted soils[J]. Applied Engineering in Agriculture, 2007, 23: 305-312.

[11] Singh H V, Thompson A M. Effect of antecedent soil moisture content on soil critical shear stress in agricultural watersheds[J]. Geoderma, 2016, 262: 165-173.

[12] 邢行,陳曉燕,韓珍,等. 飽和與非飽和黃綿土細(xì)溝徑流水動(dòng)力學(xué)特征及侵蝕阻力對(duì)比[J]. 水土保持學(xué)報(bào),2018,32(3):92-97.

Xing Hang, Chen Xiaoyan, Han Zhen, et al. Comparation of hydrodynamic characteristics and flow resistance under rill erosion between saturated and unsaturated loess soil[J]. Journal of Soil and Water Conservation, 2018, 32(3): 92-97. (in Chinese with English abstract)

[13] Nouwakpo S K, Huang C H, Bowling L, et al. Impact of vertical hydraulic gradient on rill erodibility and critical shear stress[J]. Soil Science Society of America Journal2010, 74(6): 1914-1921.

[14] 王彬,鄭粉莉,王玉璽,等. 東北典型薄層黑土區(qū)土壤可蝕性模型適用性分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(6):126-131.

Wang Bin, Zheng Fenli, Wang Yuxi, et al. Adaptability analysis on soil erodibility models in typical thin layer black soil area of Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(6): 126-131. (in Chinese with English abstract)

[15] Su Z G, Xiong D H, Zhang J H, et al. Variation in the vertical zonality of erodibility and critical shear stress of rill erosion in China’s Hengduan Mountains[J]. Earth Surface Processes and Landforms, 2019, 44(1): 88-97.

[16] Han Z, Chen X Y, Li Y H, et al. Quantifying the rill-detachment process along a saturated soil slope[J]. Soil and Tillage Research, 2020, 204: 104726.

[17] Liu Q J, Wells R R, Dabney S M, et al. Effect of water potential and void ratio on erodibility for agricultural soils[J]. Soil Science Society of America Journal, 2017, 81(3): 622-632.

[18] Bullock M S, Nelson S D, Kemper W D. Soil cohesion as affected by freezing, water content, time and tillage[J]. Soil Science Society of America Journal, 1988, 52(3): 770-776

[19] 董月群,李淑芹,原翠萍,等. 黑麥草對(duì)黃土坡面降雨產(chǎn)流產(chǎn)沙過程的影響[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報(bào),2011,16(4):67-73.

Dong Yuequn, Li Shuqin, Yuan Cuiping, et al. Impacts of rye grasses on runoff and sedimentation processes from loess slopes[J]. Journal of China Agricultural University, 2011, 16(4): 67-73. (in Chinese with English abstract)

[20] 安娟,鄭粉莉,李桂芳,等. 不同近地表土壤水文條件下雨滴打擊對(duì)黑土坡面養(yǎng)分流失的影響[J]. 生態(tài)學(xué)報(bào),2011,31(24):7579-7590.

An Juan, Zheng Fenli, Li Guifang, et al. Effect of raindrop impact on nutrient losses under different near-surface soil hydraulic conditions on black soil slope[J]. Acta Pedologica Sinica, 2011, 31(24): 7579-7590. (in Chinese with English abstract)

[21] Wu B, Wang Z L, Zhang Q W, et al. Evaluation of shear stress and unit stream power to determine the sediment transport capacity of loess materials on different slopes[J]. Journal of Soils and Sediments, 2018, 18: 116-127.

[22] Huang Y H, Li F H, Liu Z Q, et al. Experimental determination of sediment transport capacity of concentrated water flow over saturated soil slope[J]. European Journal of Soil Science, 2020, 72(2): 756-768.

[23] 孫樹林,王利豐. 飽和、非飽和有機(jī)質(zhì)粉土抗剪強(qiáng)度的對(duì)比[J]. 巖土工程學(xué)報(bào),2006,28(11):1932-1935.

Sun Shulin, Wang Lifeng. Comparison of shear strength between saturated and unsaturated sandy silt[J]. Journal of Geotechnical Engineering, 2006, 28(11): 1932-1935. (in Chinese with English abstract)

[24] 滕延京,盛志強(qiáng),王曙光. 飽和黏性土抗剪強(qiáng)度的試驗(yàn)方法[J]. 巖土工程學(xué)報(bào),2015,37(3):426-431.

Teng Yanjing, Sheng Zhiqiang, Wang Shuguang. Test method for shear strength of saturated cohesive soil[J]. Journal of Geotechnical Engineering, 2015, 37(3): 426-431. (in Chinese with English abstract)

[25] Saffari P, Noor M J M, Ashaari Y, et al. Shear strength of unsaturated malaysian granitic residual soil[J]. Journal of Testing and Evaluation, 2019, 47(1): 640-653.

[26] 王偉,陳楊,莊曉暉,等. 極端降雨條件下秸稈覆蓋坡面水流流速空間分布[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(2):149-156.

Wang Wei, Chen Yang, Zhuang Xiaohui, et al. Spatial distribution of overland flow velocity along straw-mulched slope under extreme rainfall[J]. Journal of Geotechnical Engineering (Transactions of the CSAE),2022, 38(2): 149-156. (in Chinese with English abstract)

[27] 沈海鷗, 鄭粉莉, 溫磊磊. 細(xì)溝發(fā)育與形態(tài)特征研究進(jìn)展[J].生態(tài)學(xué)報(bào),2018,38(19):6818-6825.

Shen Haiou, Zheng Fenli, Wen Leilei. A research review of rill development and morphological characteristics[J]. Acta ecologica sinica, 2018, 38(19): 6818-6825. (in Chinese with English abstract)

[28] 張科利, 秋吉康宏. 坡面細(xì)溝侵蝕發(fā)生的臨界水力條件研究[J]. 土壤侵蝕與水土保持學(xué)報(bào),1998(1):42-47.

Zhang Keli, Qiuji Kanghong. Critical hydraulic condition of rill erosion onsloping surface[J]. Journal of Soil Erosion and Soil and Water Conservation, 1998(1): 42-47. (in Chinese with English abstract)

[29] Huang Y H, Chen X Y, Li F H, et al. Velocity of water flow along saturated loess slopes under erosion effects[J]. Journal of Hydrology, 2018, 561: 304-311.

[30] Lei T W, Zhang Q W, Zhao J, et al. A laboratory study of sediment transport capacity in the dynamic process of rill erosion[J]. Transactions of the ASAE, 2001, 44(6): 1537-1542.

[31] Lei T W, Zhang Q W, Zhao J, et al. Soil detachment rates for sediment loaded flow in rills[J]. Transactions of the ASAE, 2002, 45(6): 1897-1903.

[32] Huang Y H, Wang W, Lei T W, et al. Saturation effect on the distribution of rill detachment rate[J]. European Journal of Soil Science, 2021, 72(5): 2076-2087.

[33] 黃鈺涵. 飽和土壤坡面細(xì)溝侵蝕動(dòng)力機(jī)制試驗(yàn)研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2020.

Huang Y H. Experimental Study on the Dynamic Mechanism of Rill Erosion over Saturated Soil Slope[D]. Beijing: China Agricultural University, 2020. (in Chinese with English abstract)

[34] Huang C H, Bradford J M, Laflen J M. Evaluation of the detachmenttransport coupling concept in the wepp rill erosion equation[J]. Soil Science Society of America Journal, 1996, 60(3): 734-739.

[35] Chen X Y, Huang Y H, Zhao Y, et al. Comparison of loess and purple rill erosions measured with volume replacement method[J]. Journal of Hydrology, 2015, 530: 476-483.

[36] 劉紀(jì)根,張平倉,陳展鵬. 聚丙烯酰胺對(duì)擾動(dòng)紅壤可蝕性及臨界剪切力的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(7):45-49.

Liu Jigen, Zhang Pingcang, Chen Zhanpeng. Effects of Polyacrylamide (PAM) on soil erodibility and critical shear stresses for disturbed red soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(7): 45-49. (in Chinese with English abstract)

[37] Xing H, Huang Y H, Chen X Y, et al. Comparative study of soil erodibility and critical shear stress between loess and purple soils[J]. Journal of Hydrology, 2018, 558: 625-631.

Characteristics of soil erodibility parameter and critical shear stress on saturated loess soil slope

Huang Yuhan1,2, Yang Mengge2, Lei Tingwu1※, Li Fahu1, Wang Wei3

(1.,,100083,;2.,,,530004,;3.,100083,)

Soil erodibility parameter and critical shear stress are important indicators to evaluate the degree of soil erosion sensitivity and the resistance to the shear deformation of water flow. To date, the change of soil erodibility parameter and critical shear stress is unclear in the rill erosion process of saturated loess soil slope. In this study, the maximum rill detachment rates of saturated loess soil slope were determined by a series of soil scouring experiments in the laboratory under different slopes (5°, 10°, 15°, and 20°) and flow rates (2, 4, and 8 L/min). Then, the numerical, modified numerical, and analytical approaches were utilized to calculate the soil erodibility parameters and critical shear stresses. The results showed that the maximum rill detachment rates calculated by the three methods increased with the increase of slope and flow rate over saturated loess soil slope, and the maximum rill detachment rates calculated by the modified numerical method were similar with those calculated by the analytical method. The soil erodibility parameters were 0.470, 0.278, and 0.256 s/m, respectively, and the critical shear stresses were 1.502, 1.306, and 1.367 N/m2, respectively. The modified numerical method improved the calculation accuracy, thus the modified numerical calculation was close to the theoretical value calculated by the analytical method. The soil erodibility parameters of saturated loess soil slope decreased by 16.83%, and the critical shear stresses decreased by 66.97%, compared with those of non-saturated loess soil slope in the same study area. Soil saturation had no significant effect on the soil erodibility parameters, while greatly reducing soil critical shear stress, and then leading to serious soil erosion on loess soil slope. Besides, the critical shear stresses of the saturated loess soil slope were 6.38% larger than those of the saturated purple soil slope, and the soil erodibility parameters of the saturated loess soil slope were 2.26 times those of the saturated purple soil slope. These results indicated that the soil saturation had similar effects on the critical shear stress of the two soils, while the saturated loess soil was more sensitivity on soil erosion than the saturated purple soil. These findings can provide some references to optimize the rill erosion model parameters in different soil slopes under the condition of saturations.

soils; erosion; rills; erodibility parameter; critical shear stress; saturation; maximum rill detachment rate

10.11975/j.issn.1002-6819.2022.17.009

S224.2

A

1002-6819(2022)-17-0083-08

黃鈺涵,楊夢(mèng)格,雷廷武,等. 飽和狀態(tài)下黃綿土坡面細(xì)溝侵蝕可蝕性和臨界剪切應(yīng)力特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(17):83-90.doi:10.11975/j.issn.1002-6819.2022.17.009 http://www.tcsae.org

Huang Yuhan, Yang Mengge, Lei Tingwu, et al. Characteristics of soil erodibility parameter and critical shear stress on saturated loess soil slope[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(17): 83-90. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.17.009 http://www.tcsae.org

2022-05-18

2022-07-10

國家自然科學(xué)基金面上項(xiàng)目(41571257)

黃鈺涵,博士,講師,研究方向?yàn)橥寥狼治g機(jī)理、土壤水文與水土保持。Email:huangyuhan0710@foxmail.com

雷廷武,博士,教授,博士生導(dǎo)師,研究方向?yàn)橥寥狼治g機(jī)理、土壤水文與水土保持。Email:leitingwu@cau.edu.cn

猜你喜歡
剪切應(yīng)力坡面水流
黃土丘陵區(qū)凍土坡面侵蝕過程特征研究
深水坡面巖基礎(chǔ)施工方法
哪股水流噴得更遠(yuǎn)
能俘獲光的水流
結(jié)構(gòu)半主動(dòng)控制磁流變阻尼器流變學(xué)模型研究
我只知身在水中,不覺水流
地表粗糙度對(duì)黃土坡面產(chǎn)流機(jī)制的影響
剪切應(yīng)力對(duì)聚乳酸結(jié)晶性能的影響
Overview of Urban PM 2.5 Numerical Forecast Models in China
動(dòng)脈粥樣硬化病變進(jìn)程中血管細(xì)胞自噬的改變及低剪切應(yīng)力對(duì)血管內(nèi)皮細(xì)胞自噬的影響*