黃 飛,陳紀宇,歐陽金鑫,戴 健,肖 揚,劉志宏,趙俊光,向 洪
基于正序電壓差的含分布式電源配電網(wǎng)斷線接地復合故障定位方法
黃 飛1,陳紀宇2,歐陽金鑫2,戴 健1,肖 揚2,劉志宏3,趙俊光3,向 洪1
(1.國網(wǎng)重慶市電力公司電力科學研究院,重慶 401123;2.輸配電裝備及系統(tǒng)安全與新技術(shù)國家重點實驗室(重慶大學),重慶 400044;3.國網(wǎng)重慶市電力公司,重慶 400015)
分布式電源(distributed generation, DG)大量應用給電網(wǎng)故障識別與定位提出了更高要求。配電網(wǎng)斷線故障時絕緣雖未遭到破壞,但可能導致DG故障穿越,甚至誘發(fā)并網(wǎng)逆變器閉鎖,造成電氣量越限,威脅電網(wǎng)穩(wěn)定運行。為此,提出了一種利用正序電壓差實現(xiàn)含DG配電網(wǎng)的斷線接地復合故障定位方法。通過解析不同故障情況下配電網(wǎng)饋線序電流和DG并網(wǎng)點電壓,發(fā)現(xiàn)了非故障點兩端正序電壓差等于線路壓降,而斷口兩端正序電壓差恒為正數(shù)且多大于非故障區(qū)段壓差的特征,構(gòu)造了基于正序電壓差的故障定位判據(jù)。針對定位判據(jù)可能出現(xiàn)的死區(qū)問題,引入DG輸出電流作為輔助判據(jù)提高定位可靠性,進而提出了含DG配電網(wǎng)的斷線接地復合故障定位方法。理論分析和仿真結(jié)果表明,所提方法能夠?qū)崿F(xiàn)不同DG容量、故障位置下的斷線接地復合故障區(qū)段準確定位,且具有較強的耐過渡電阻能力。
DG;配電網(wǎng);斷線接地復合故障;正序電壓;故障定位
隨著能源轉(zhuǎn)型和綠色創(chuàng)新發(fā)展的不斷深入,可再生新能源尤其是太陽能、風能等受到廣泛關(guān)注,構(gòu)建以新能源為主體的新型電力系統(tǒng)勢在必行[1-5]。新能源以分布式電源(distributed generation, DG)形式接入,作為“大機組、大容量”電網(wǎng)的補充,能夠有效提升新能源應用效率以及配電網(wǎng)運行的可靠性和靈活性。然而,DG接入輻射狀配電網(wǎng)后,配電網(wǎng)潮流雙向流動,故障電氣量的分布和演變特征與傳統(tǒng)配電網(wǎng)存在區(qū)別。加之受到控制策略、運行方式甚至氣候等因素影響,不同運行狀態(tài)下DG提供的故障電流差異巨大,給含DG配電網(wǎng)的故障定位帶來極大挑戰(zhàn)[6-9]。
目前不少研究人員就含DG配電網(wǎng)接地故障的定位展開了研究?,F(xiàn)有含DG配電網(wǎng)接地故障定位方法主要包括穩(wěn)態(tài)量法、暫態(tài)量法和人工智能算法[10-12]。文獻[13-15]基于DG故障穿越過程中存在短路電流幅值受限、相角受控、頻率偏移的特點,通過比較流過饋線終端的穩(wěn)態(tài)故障電流差異實現(xiàn)定位。文獻[16-17]解析了含DG配電網(wǎng)的故障暫態(tài)特征,從多角度構(gòu)造基于暫態(tài)零序電流形態(tài)學、極性與分布、主諧振頻率與能量等定位判據(jù)。此外,近年來借助智能算法提取全局信息的方法因具有良好的容錯性也受到研究人員的青睞,文獻[18-19]分別利用了縱橫交叉優(yōu)化神經(jīng)網(wǎng)絡和多目標粒子群算法求解可能故障空間進而實現(xiàn)定位。
與接地故障相比,斷線故障發(fā)生時相與地之間的絕緣雖未遭到破壞,但使得配電網(wǎng)三相嚴重不對稱,嚴重影響電能質(zhì)量,甚至可能導致DG連鎖脫網(wǎng),乃至系統(tǒng)頻率、電壓越限[20-22]。由于接地和斷線故障特征存在本質(zhì)差異[23-25],已有接地故障定位方法難以應用于斷線故障,開展含DG配電網(wǎng)斷線故障識別與定位的研究變得尤為重要。文獻[26]提出基于節(jié)點功率方向一致性的斷線故障區(qū)段定位方法。文獻[27-29]通過解析非全相斷線下饋線序電流變化特征,提出基于序電流和中性點電壓組合的斷線保護方法。文獻[30]提出一種基于電壓故障分量推算值與實測電壓故障分量比的電壓型縱聯(lián)保護方案,可兼顧斷線故障定位。但是,上述研究僅關(guān)注于斷口兩側(cè)均不接地的斷線故障。
由于外力、老化等因素,發(fā)生斷線故障后,常常出現(xiàn)斷口一側(cè)接地、另一側(cè)不接地的斷線接地復合故障。據(jù)統(tǒng)計,南方部分地區(qū)斷線接地復合故障占比高達25%以上,且接地點附近可能產(chǎn)生大量熱量和跨步電壓,造成火災或人員傷亡事故[31]。斷線接地復合故障的等效回路并非斷線不接地故障和接地故障的疊加。與接地故障相比,斷口兩側(cè)相對解耦,斷口前后饋線電氣量的變化規(guī)律存在顯著差異;與斷線不接地故障相比,由于對地支路的存在,接地側(cè)與大地存在電氣聯(lián)系,故障特性也存在明顯不同。接地故障和斷線不接地故障的識別與定位方法均難以適用于斷線接地復合故障。斷線接地復合故障可能出現(xiàn)電源側(cè)接地或負荷側(cè)接地,兩種情況下故障電流的通路不同,使得故障特性存在較大差異,給故障的識別與定位提出了更大挑戰(zhàn)。目前,配電網(wǎng)斷線接地復合故障定位的研究還較少,文獻[32]提出了一種基于序電流融合的配電網(wǎng)斷線接地復合故障識別方法,但未考慮DG接入的影響。
本文提出了一種利用正序電壓差實現(xiàn)含DG配電網(wǎng)斷線接地復合故障定位的方法。首先,分別建立了DG并網(wǎng)點上游、DG并網(wǎng)點間、DG并網(wǎng)點下游發(fā)生斷線電源側(cè)接地故障的復合序網(wǎng)和斷線負荷側(cè)接地故障的復合序網(wǎng),推導了不同故障情況下饋線序電流和DG并網(wǎng)點電壓的表達式;然后通過分析斷口兩端的正序電壓分布特征,構(gòu)造了基于正序電壓差的故障定位判據(jù),針對定位判據(jù)可能出現(xiàn)的死區(qū)問題,引入DG輸出電流作為輔助判據(jù)提高定位可靠性,提出了含DG配電網(wǎng)斷線接地復合故障定位方法;最后通過仿真驗證了方法的有效性。該方法能夠準確實現(xiàn)不同DG容量、負荷大小和故障位置下的斷線接地復合故障區(qū)段定位,且不受斷線接地點過渡電阻的影響,具有較高的可靠性和實用性。
圖1 含DG配電網(wǎng)
Fig. 1 Distribution network with DG
由于負荷側(cè)斷線點處故障相電流為0,斷口前后非故障相電壓連續(xù),則負荷側(cè)斷線點的邊界條件為
考慮到負荷阻抗顯著大于系統(tǒng)阻抗,負荷正、負序阻抗相等,求解復合序網(wǎng)可得DG并網(wǎng)點上游斷線電源側(cè)接地故障時饋線各序電流為
圖2 DG并網(wǎng)點上游饋線斷線接地復合故障序網(wǎng)
根據(jù)復合序網(wǎng)和式(1)可求得DG1、DG2并網(wǎng)點的正序電壓為
當DG并網(wǎng)點上游發(fā)生斷線負荷側(cè)接地故障時,同樣根據(jù)邊界條件可建立如圖2(b)所示的復合序網(wǎng)。求解復合序網(wǎng)可得DG并網(wǎng)點上游斷線負荷側(cè)接地故障時饋線各序電流和DG1、DG2并網(wǎng)點正序電壓為
當DG并網(wǎng)點之間饋線(f2處)發(fā)生斷線電源側(cè)接地故障時,根據(jù)式(1)和式(2)可建立如圖3(a)所示的復合序網(wǎng)。求解復合序網(wǎng),可得DG間斷線電源側(cè)接地故障時饋線各序電流為
DG1、DG2的并網(wǎng)點正序電壓為
當DG并網(wǎng)點間發(fā)生斷線負荷側(cè)接地故障時,可建立如圖3(b)所示的復合序網(wǎng),求解可得DG并網(wǎng)點間饋線斷線負荷側(cè)接地故障時饋線各序電流為
DG1、DG2并網(wǎng)點的正序電壓為
(14)
當DG并網(wǎng)點下游饋線(f3處)發(fā)生斷線電源側(cè)接地故障時,可建立如圖4(a)所示的復合序網(wǎng),求解可得DG并網(wǎng)點下游饋線斷線電源側(cè)接地故障時饋線各序電流為
當DG并網(wǎng)點下游饋線發(fā)生斷線負荷側(cè)接地故障時,可建立如圖4(b)所示的復合序網(wǎng),求解可得DG并網(wǎng)點下游饋線斷線負荷側(cè)接地故障時饋線各序電流為
根據(jù)圖4所示復合序網(wǎng)可見,DG并網(wǎng)點下游饋線發(fā)生斷線接地復合故障后,不論接地點在電源側(cè)還是負荷側(cè),DG1、DG2并網(wǎng)點正序電壓都始終等于母線正序電壓。
當DG并網(wǎng)點上游或DG并網(wǎng)點間饋線發(fā)生斷線電源側(cè)接地故障時,故障點兩端正序電壓差為
圖4 DG并網(wǎng)點下游饋線斷線接地復合故障序網(wǎng)
將式(5)代入式(17)后取絕對值可得
圖5 故障正序電壓差分布規(guī)律
Fig. 5 Distribution of fault positive sequence voltage difference
同理,當DG并網(wǎng)點上游或DG并網(wǎng)點間饋線發(fā)生斷線負荷側(cè)接地故障時,故障點兩端正序電壓差為
當DG并網(wǎng)點下游饋線發(fā)生斷線電源側(cè)接地故障時,故障點兩端正序電壓差為
當DG并網(wǎng)點下游饋線發(fā)生斷線負荷側(cè)接地故障時,故障點兩端正序電壓差為
當DG并網(wǎng)點上游饋線發(fā)生斷線電源側(cè)接地故障時,根據(jù)式(3)可知流過故障饋線出口位置的正序電流為
對比式(23)—式(28)可知,故障饋線出口的正序電流總是滿足:
因此,當含DG配電網(wǎng)發(fā)生斷線接地復合故障且正序電壓差小于整定值時,故障點下游DG電流之和總是滿足式(32)。
故可利用DG輸出電流構(gòu)造如式(33)所示的輔助判據(jù)。
短路故障時,區(qū)段正序電壓差可能滿足對應的最大線路阻抗壓降的判據(jù)。由于發(fā)生短路故障時,設備可能因過熱或產(chǎn)生巨大機械應力損毀,應盡可能快地隔離短路故障,因此斷線接地復合故障保護可在短路故障保護的基礎(chǔ)上增加一級延時。當配電網(wǎng)發(fā)生短路故障時,短路故障定位和斷線接地復合故障定位可能同時啟動,此時短路故障定位首先動作,斷線接地復合故障定位隨之返回。當發(fā)生斷線電源側(cè)接地故障時,由于此時故障特征與接地短路故障時相近,短路故障定位和斷線接地復合故障定位仍可能同時啟動,短路故障定位首先動作,若短路故障定位不動作,一定延時后斷線接地復合故障定位動作。當發(fā)生斷線負荷側(cè)接地故障時,此時故障特征信息微弱,短路故障定位無法動作,一定延時后由斷線接地復合故障定位動作。
圖6 基于正序電壓差的斷線接地復合故障定位流程
圖7 仿真系統(tǒng)
表1 負荷及DG參數(shù)
表2 不同故障位置下斷線電源側(cè)接地正序電壓及DG電流
表3 不同故障位置下斷線負荷側(cè)接地正序電壓及DG電流
表4 不同故障位置下斷線電源側(cè)接地正序電壓差及整定值
表5 不同故障位置下斷線負荷側(cè)接地正序電壓差及整定值
設故障點位于饋線1的3 km處,改變接地點的過渡電阻分別為0 Ω、100 Ω、300 Ω、500 Ω,記錄斷線電源側(cè)接地故障和斷線負荷側(cè)接地故障下各監(jiān)測點的正序電壓和DG輸出電流,如表6和表7所示。根據(jù)表6和表7及整定原則,分別計算得不同過渡電阻下斷線電源側(cè)接地故障和斷線負荷側(cè)接地故障時的正序電壓差監(jiān)測值及整定值,如表8和表9所示。
表6 不同過渡電阻下斷線電源側(cè)接地正序電壓及DG電流
表7 不同過渡電阻下斷線負荷側(cè)接地正序電壓及DG電流
表8 不同過渡電阻下斷線電源側(cè)接地正序電壓差及整定值
表9 不同過渡電阻下斷線負荷側(cè)接地正序電壓差及整定值
設故障點位于饋線1的1 km處,改變接于饋線1的5 km處的DG2容量分別為0.5 MW、1 MW、2 MW、3 MW、4 MW,斷線電源側(cè)接地故障和斷線負荷側(cè)接地故障下故障點前后(FTU1至FTU2區(qū)段)的正序電壓差及DG1—DG3的輸出電流,如表10和表11所示。
表10 不同DG容量下斷線電源側(cè)接地正序電壓差及DG電流
表11 不同DG容量下斷線負荷側(cè)正序電壓差及DG電流
針對含DG配電網(wǎng)斷線接地復合故障的新挑戰(zhàn)和新特性,綜合考慮了中性點接地方式、故障位置等多重因素的影響,分析了含DG配電網(wǎng)斷線電源側(cè)接地故障和斷線負荷側(cè)接地故障下的饋線正序電壓分布特征,基于非故障點兩端正序電壓差等于線路壓降,而斷口兩端的正序電壓差恒為正數(shù)且多大于非故障區(qū)段壓差的特征,構(gòu)造了基于正序電壓差和DG輸出電流的故障定位判據(jù),提出了一種基于正序電壓差的含DG配電網(wǎng)斷線接地復合故障定位方法。在不同接地側(cè)、不同過渡電阻、不同DG容量、不同故障位置的30組算例中,該方法均能夠可靠定位斷線接地復合故障,且故障區(qū)段的正序電壓差或DG輸出電流的監(jiān)測值與對應整定值之比均顯著大于1,表明故障區(qū)段與非故障區(qū)段的邊界清晰,故障定位方法具有較高的可靠性和實用性。
[1] 周孝信, 陳樹勇, 魯宗相, 等. 能源轉(zhuǎn)型中我國新一代電力系統(tǒng)的技術(shù)特征[J]. 中國電機工程學報, 2018, 38(7): 1893-1904.
ZHOU Xiaoxin, CHEN Shuyong, LU Zongxiang, et al. Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904.
[2] ZHANG Chaorui, LI Jiayong, ZHANG Yingjun, et al. Optimal location planning of renewable distributed generation units in distribution networks: an analytical approach[J]. IEEE Transactions on Power Systems, 2018, 33(3): 2742-2753.
[3] 田廓, 董文杰. 構(gòu)建新型電力系統(tǒng)背景下輸電網(wǎng)架加強投資決策模型[J]. 智慧電力, 2021, 49(8): 1-7, 54.
TIAN Kuo, DONG Wenjie. Investment decision-making model of transmission grids under new style power system[J]. Smart Power, 2021, 49(8): 1-7, 54.
[4] 劉依晗, 王宇飛. 新型電力系統(tǒng)中跨域連鎖故障的演化機理與主動防御探索[J]. 中國電力, 2022, 55(2): 62-72, 81.
LIU Yihan, WANG Yufei. Exploring the evolution mechanism and active defense of cross-domain cascading failures in new type power system[J]. Electric Power, 2022, 55(2): 62-72, 81.
[5] 唐堅, 蘇劍濤, 姚禹歌, 等. 面向新型電力系統(tǒng)的風電調(diào)頻技術(shù)分析[J]. 熱力發(fā)電, 2022, 51(7): 1-8.
TANG Jian, SU Jiantao, YAO Yuge, et al. Technical analysis of power system frequency regulation by wind power for new power system[J]. Thermal Power Generation, 2022, 51(7): 1-8.
[6] WANG Chongyu, PANG Kaiyuan, SHAHIDEHPOUR M, et al. MILP-based fault diagnosis model in active power distribution networks[J]. IEEE Transactions on Smart Grid, 2021, 12(5): 3847-3857.
[7] 馬靜, 劉青, 吳佳芳, 等. 高比例變流型電源并網(wǎng)的輸電系統(tǒng)三相短路電流計算[J]. 電力系統(tǒng)自動化, 2019, 43(5): 83-91, 113.
MA Jing, LIU Qing, WU Jiafang, et al. Three-phase short-circuit current calculation for power transmission system with high penetration of converter-type sources[J]. Automation of Electric Power Systems, 2019, 43(5): 83-91, 113.
[8] 陳燕擎, 劉濤, 韓文建, 等. 考慮配電網(wǎng)分布式零序電 流關(guān)系的單相接地故障定位[J]. 電力系統(tǒng)保護與控 制, 2020, 48(22): 118-126.
CHEN Yanqing, LIU Tao, HAN Wenjian, et al. Single- phase-to-earth fault location in distribution networks considering the distributed relations of the zero-sequence currents[J]. Power System Protection and Control, 2020, 48(22): 118-126.
[9] 徐艷春, 趙彩彩, 孫思涵, 等. 基于改進LMD和能量相對熵的主動配電網(wǎng)故障定位方法[J]. 中國電力, 2021, 54(11): 133-143.
XU Yanchun, ZHAO Caicai, SUN Sihan, et al. Fault location for active distribution network based on improved LMD and energy relative entropy[J]. Electric Power, 2021, 54(11): 133-143.
[10] 薛艷靜, 徐巖, 程姝. 基于電流變化的環(huán)狀直流配電網(wǎng)故障定位方法[J]. 智慧電力, 2021, 49(2): 76-82, 98.
XUE Yanjing, XU Yan, CHENG Shu. Fault location method of ring DC distribution network based current variation[J]. Smart Power, 2021, 49(2): 76-82, 98.
[11] 王曉偉, 張曉, 趙倩宇, 等. 基于暫態(tài)零模電流的配電網(wǎng)故障區(qū)段定位[J]. 智慧電力, 2021, 49(3): 103-110.
WANG Xiaowei, ZHANG Xiao, ZHAO Qianyu, et al. Fault section location in distribution system based on transient zero-mode current[J]. Smart Power, 2021, 49(3): 103-110.
[12] 姚永峰, 王啟哲, 王慧萍, 等. 基于鄰接矩陣的低壓配電網(wǎng)故障區(qū)段定位方法[J]. 中國電力, 2021, 54(11): 91-96, 114.
YAO Yongfeng, WANG Qizhe, WANG Huiping, et al. Faulted line segment location method for low-voltage distribution network based on adjacency matrix[J]. Electric Power, 2021, 54(11): 91-96, 114.
[13] 高孟友, 徐丙垠, 張新慧. 基于故障電流幅值比較的有源配電網(wǎng)故障定位方法[J]. 電力自動化設備, 2015, 35(7): 21-25.
GAO Mengyou, XU Bingyin, ZHANG Xinhui. Fault location based on fault current amplitude comparison for active distribution network[J]. Electric Power Automation Equipment, 2015, 35(7): 21-25.
[14] 陳建平, 桑林衛(wèi), 吳在軍, 等. 基于幅相關(guān)系的有源配電網(wǎng)多端差動保護方案[J]. 電測與儀表, 2021, 58(9): 71-77.
CHEN Jianping, SANG Linwei, WU Zaijun, et al. Multi- terminal differential protection scheme for active distribution network based on amplitude-phase relationship[J]. Electrical Measurement & Instrumentation, 2021, 58(9): 71-77.
[15] 段建東, 崔帥帥, 劉吳驥, 等. 基于電流頻率差的有源配電網(wǎng)線路保護[J]. 中國電機工程學報, 2016, 36(11): 2927-2934.
DUAN Jiandong, CUI Shuaishuai, LIU Wuji, et al. Line protection based on current frequency difference for active distribution network[J]. Proceedings of the CSEE, 2016, 36(11): 2927-2934.
[16] 李衛(wèi)國, 許文文, 喬振宇, 等. 基于暫態(tài)零序電流凹凸特征的配電網(wǎng)故障區(qū)段定位方法[J]. 電力系統(tǒng)保護與控制, 2020, 48(10): 164-173.
LI Weiguo, XU Wenwen, QIAO Zhenyu, et al. Fault section location method for a distribution network based on concave and convex characteristics of transient zero sequence current[J]. Power System Protection and Control, 2020, 48(10): 164-173.
[17] 李衛(wèi)國, 許文文, 王旭光, 等. 基于廣義S變換的有源配電網(wǎng)故障定位方法[J]. 電測與儀表, 2021, 58(6): 105-112.
LI Weiguo, XU Wenwen, WANG Xuguang, et al. Fault location method for active distribution network based on generalized S transform[J]. Electrical Measurement & Instrumentation, 2021, 58(6): 105-112.
[18] 孟安波, 葛佳菲, 李德強, 等. 基于縱橫交叉算法的神經(jīng)網(wǎng)絡配電網(wǎng)故障選線研究[J]. 電力系統(tǒng)保護與控制, 2016, 44(21): 90-95.
MENG Anbo, GE Jiafei, LI Deqiang, et al. Research on fault line selection of distribution network using RBF neural network based on crisscross optimization algorithm optimization[J]. Power System Protection and Control, 2016, 44(21): 90-95.
[19] 吳凡, 趙晉泉, 朱斌, 等. 基于MOPSO的含分布式光伏配電網(wǎng)故障區(qū)段定位[J]. 電力系統(tǒng)保護與控制, 2018, 46(6): 46-53.
WU Fan, ZHAO Jinquan, ZHU Bin, et al. Faulty section location based on MOPSO for distribution networks with distributed photovoltaic generation[J]. Power System Protection and Control, 2018, 46(6): 46-53.
[20] KALYUZHNY A. Analysis of temporary over voltages during open-phase faults in distribution networks with resonant grounding[J]. IEEE Transactions on Power Delivery, 2015, 30(1): 420-427.
[21] CAMPBELL M, ARCE G. Effect of motor voltage unbalance on motor vibration: test and evaluation[J]. IEEE Transactions on Industry Applications, 2018, 54(1): 905-911.
[22] 叢子涵, 劉亞東, 王鵬, 等. 10 kV配電網(wǎng)斷線墜地故障地表電勢分布及安全距離研究[J]. 高壓電器, 2022, 58(4): 101-107.
CONG Zihan, LIU Yadong, WANG Peng, et al. Study on surface potential distribution and safety distance of disconnected grounding fault in 10 kV distribution network[J]. High Voltage Apparatus, 2022, 58(4): 101-107.
[23] 龍毅, 歐陽金鑫, 熊小伏, 等. 基于零序功率變化量的配電網(wǎng)單相高阻接地保護[J]. 電工技術(shù)學報, 2019, 34(17): 3687-3695.
LONG Yi, OUYANG Jinxin, XIONG Xiaofu, et al. Protection principle of single-phase high resistance fault for distribution network based on zero-sequence power variation[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3687-3695.
[24] WANG Xuewen, ZHANG Hengxu, SHI Fang, et al. Location of single phase to ground faults in distribution networks based on synchronous transients energy analysis[J]. IEEE Transactions on Smart Grid, 2020, 11(1): 774-785.
[25] 王鵬, 馮光, 韋延方, 等. 10 kV配電網(wǎng)的接地故障測試述評及真型實驗場設計[J]. 電力系統(tǒng)保護與控制, 2020, 48(11): 1-10.
WANG Peng, FENG Guang, WEI Yanfang, et al. Review of grounding fault testing and design of real experimental field for 10 kV distribution network[J]. Power System Protection and Control, 2020, 48(11): 1-10.
[26] 王玥婷, 梁中會, 牟欣瑋, 等. 考慮分布式能源的配電網(wǎng)斷線定位方法[J]. 電力系統(tǒng)保護與控制, 2018, 46(21): 131-137.
WANG Yueting, LIANG Zhonghui, MU Xinwei, et al. Method of locating disconnection of distribution network considering distributed energy[J]. Power System Protection and Control, 2018, 46(21): 131-137.
[27] 杜雪, 肖揚, 付濱, 等. 基于負序電流比的主動配電網(wǎng)斷線故障保護方法[J]. 電測與儀表, 2021, 58(7): 57-66.
DU Xue, XIAO Yang, FU Bin, et al. Break fault protection method of active distribution network based on negative-sequence current ratio[J]. Electrical Measurement & Instrumentation, 2021, 58(7): 57-66.
[28] 王開科, 熊小伏, 肖揚, 等. 基于負序電流的主動配電網(wǎng)單相斷線故障保護方法[J]. 電力系統(tǒng)保護與控制, 2021, 49(6): 10-18.
WANG Kaike, XIONG Xiaofu, XIAO Yang, et al. Single-phase break fault protection method for an active distribution network based on negative sequence current[J]. Power System Protection and Control, 2021, 49(6): 10-18.
[29] XIAO Yang, OUYANG Jinxin, XIONG Xiaofu, et al. Fault protection method of single-phase break for distribution network considering the influence of neutral grounding modes[J]. Protection and Control of Modern Power Systems, 2020, 5(2): 111-123.
[30] 王志遠. 有源配電網(wǎng)饋線保護方法研究[D]. 濟南: 山東大學, 2021.
WANG Zhiyuan. Research on feeder protection method of active distribution network[D]. Jinan: Shandong University, 2021.
[31] 謝松偉, 薛永端, 吳衛(wèi)堃, 等. 單相斷線墜地故障暫態(tài)特征及暫態(tài)選線方法適用性[J]. 電力系統(tǒng)自動化, 2022, 46(2): 126-136.
Xie Songwei, XUE Yongduan, WU Weikun, et al. Transient characteristics of single-phase line breaking and grounding fault and applicability of transient line selection methods[J]. Automation of Electric Power Systems, 2022, 46(2): 126-136.
[32] 肖揚, 歐陽金鑫, 熊小伏. 計及過渡電阻影響的配電網(wǎng)斷線接地復合故障保護方法[J]. 電網(wǎng)技術(shù), 2021, 45(11): 4296-4307.
XIAO Yang, OUYANG Jinxin, XIONG Xiaofu. Protection method of compound break fault with grounding for distribution network considering influence of fault resistance[J]. Power System Technology, 2021, 45(11): 4296-4307.
Fault location method of a compound break fault with grounding for distribution network contained distributed generation based on positive sequence voltage difference
HUANG Fei1, CHEN Jiyu2, OUYANG Jinxin2, DAI Jian1, XIAO Yang2, LIU Zhihong3, ZHAO Junguang3, XIANG Hong1
(1. State Grid Chongqing Electric Power Research Institute, Chongqing 401123, China; 2. State Key Laboratory of Power Transmission Equipment & System Security and New Technology (Chongqing University), Chongqing 400044, China;3. State Grid Chongqing Electric Power Company, Chongqing 400015, China)
The massive application of distributed generation (DG) has brought forward higher requirements for grid fault identification and location. Although the insulation is not damaged during a break fault in the distribution network, it may lead to DG fault ride-through and even induce grid-connected inverter blocking, causing an electrical quantity exceeding the limit, and thereby threatening the stable operation of the power grid. Thus a method is proposed to locate the compound break fault with grounding in a distribution network with DG using the positive sequence voltage difference. By analyzing the sequence currents and voltages point of common coupling voltages of the distribution network under different fault conditions, it is found that the positive sequence voltage difference at both ends of the non-fault section is equal to the line voltage drop, while the positive sequence voltage difference at both ends of the break is constant positive and more than the difference of the non-fault section. Thus a fault location criterion based on the positive sequence voltage difference is constructed. For the possible dead zone problem of the location criterion, the DG output current is introduced as an auxiliary criterion to improve reliability. Finally, the method of fault location of a compound break fault with grounding is proposed. The theoretical analysis and simulation results show that the proposed method can accurately locate the compound break fault with grounding section with different DG capacity and fault location, and has strong resistance to transition resistance.
distributed generation (DG);distribution network; compound break fault with grounding; positive sequence voltage; fault location
10.19783/j.cnki.pspc.220355
國家自然科學基金項目資助(51877018);國網(wǎng)重慶市電力有限公司科技項目資助(SGCQDK00DWJS2100189)
This work is supported by theNational Natural Science Foundation of China (No. 51877018).
2022-03-17;
2022-07-22
黃 飛(1987—),男,碩士研究生,高級工程師,研究方向為智能配電網(wǎng)技術(shù);E-mail: huangfei_87@163.com
陳紀宇(1999—),男,碩士研究生,研究方向為電力系統(tǒng)保護與控制;E-mail: chenjiyve@163.com
歐陽金鑫(1984—),男,博士,副教授,研究方向為電力系統(tǒng)保護與控制、新能源發(fā)電等。E-mail: jinxinoy@ 163.com
(編輯 周金梅)