胡 冰,張藝森
基于Akt/ERK/NF-κB信號(hào)通路探究松果菊苷對(duì)缺氧性肺動(dòng)脈高壓新生大鼠肺血管重塑的影響
胡 冰,張藝森
駐馬店市中心醫(yī)院兒科,河南 駐馬店 463000
基于蛋白激酶B(protein kinase B,Akt)/細(xì)胞外調(diào)節(jié)蛋白激酶(extracellular regulated protein kinases,ERK)/核因子-κB(nuclear factor-κB,NF-κB)通路探究松果菊苷對(duì)缺氧性肺動(dòng)脈高壓(hypoxic pulmonary hypertension,HPH)新生大鼠肺血管重塑的影響。按照隨機(jī)數(shù)字表法將Wistar新生大鼠分為對(duì)照組、模型組、大花紅景天口服液(1.78 mL/kg)組、松果菊苷(40 mg/kg)+Akt激活劑SC79(0.04 μg/kg)組和松果菊苷低、高劑量(15、40 mg/kg)組,每組12只。除對(duì)照組外,其余組大鼠缺氧15 d制備HPH模型;對(duì)照組大鼠不進(jìn)行缺氧處理。從缺氧第1天至第15天,各給藥組給予相應(yīng)藥物,檢測(cè)各組大鼠在第3、7、11、15天的肺動(dòng)脈壓;末次給藥24 h后,檢測(cè)各組大鼠右心室肥大指數(shù);采用蘇木素-伊紅(HE)染色檢測(cè)各組大鼠肺血管形態(tài),并計(jì)算肺小動(dòng)脈中層血管壁厚度占肺小動(dòng)脈外徑的百分比(MT)、肺小動(dòng)脈中層橫截面積占總橫截面積的百分比(MA);采用Masson染色檢測(cè)各組大鼠肺組織纖維化;采用Western blotting檢測(cè)大鼠肺組織中Akt/ERK/NF-κB信號(hào)通路相關(guān)蛋白表達(dá)。與對(duì)照組比較,模型組大鼠肺動(dòng)脈壓、右心室肥大指數(shù)、MT、MA、膠原纖維面積占比均顯著升高(<0.05),肺組織中p-Akt、p-ERK1、p-NF-κB p65蛋白表達(dá)水平均顯著升高(<0.05);與模型組比較,松果菊苷各劑量組和大花紅景天口服液組以上指標(biāo)均顯著降低(<0.05);Akt激活劑SC79明顯減弱了高劑量的松果菊苷對(duì)HPH新生大鼠肺血管重塑的保護(hù)作用(<0.05)。松果菊苷能夠通過(guò)抑制Akt/ERK/NF-κB信號(hào)通路抑制HPH新生大鼠的肺血管重塑。
松果菊苷;缺氧性肺動(dòng)脈高壓;新生大鼠;蛋白激酶B/細(xì)胞外調(diào)節(jié)蛋白激酶/核因子-κB通路;肺血管重塑
新生兒缺氧性肺動(dòng)脈高壓(hypoxic pulmonary hypertension,HPH)是新生兒重癥監(jiān)護(hù)室中最常見(jiàn)的由于缺氧性疾病誘發(fā)的嚴(yán)重肺血管疾病,其病理變化包括肺動(dòng)脈收縮反應(yīng)增加和遠(yuǎn)端肺小動(dòng)脈過(guò)度重塑[1]?;谏鲜鲎兓?,目前對(duì)于新生兒HPH的治療采用綜合策略,包括吸入一氧化氮、機(jī)械通氣以改善氧合和使用誘導(dǎo)肺血管擴(kuò)張的藥物如前列腺素、內(nèi)皮素受體拮抗劑和磷酸二酯酶抑制劑等[2-3]。但該治療方案存在一定的局限性以及不良反應(yīng)[4]。因此,開(kāi)發(fā)新的藥物來(lái)治療新生兒HPH具有重要意義。
松果菊苷是肉蓯蓉Ma的主要活性成分,具有抗氧化、抗炎、抗細(xì)胞凋亡、抗腫瘤等多種藥理作用[5]。研究報(bào)道,松果菊苷能夠通過(guò)調(diào)節(jié)肺動(dòng)脈功能抑制HPH進(jìn)展[6]。抑制蛋白激酶B(protein kinase B,Akt)/細(xì)胞外調(diào)節(jié)蛋白激酶(extracellular regulated protein kinases,ERK)/核因子-κB(nuclear factor-κB,NF-κB)信號(hào)通路可改善肺動(dòng)脈高壓大鼠肺血管重塑和心肺損傷[7],但松果菊苷能否通過(guò)調(diào)控Akt/ERK/NF-κB信號(hào)通路影響HPH新生大鼠的肺血管重塑尚不明確。本研究旨在探究松果菊苷對(duì)HPH新生大鼠肺血管重塑的影響以及其作用機(jī)制。
SPF級(jí)7~10日齡新生Wistar大鼠72只,雌雄各半,體質(zhì)量20~30 g,購(gòu)自鄭州市惠濟(jì)區(qū)華興實(shí)驗(yàn)動(dòng)物養(yǎng)殖場(chǎng),生產(chǎn)許可證號(hào)SCXK(豫)2019-0002。動(dòng)物飼養(yǎng)于駐馬店市中心醫(yī)院動(dòng)物實(shí)驗(yàn)室,12 h光/12 h暗循環(huán)、溫度25~27 ℃、濕度50%~70%,自由進(jìn)食飲水。動(dòng)物實(shí)驗(yàn)經(jīng)駐馬店市中心醫(yī)院動(dòng)物倫理委員會(huì)批準(zhǔn)(批準(zhǔn)號(hào)20-0436)。
松果菊苷(批號(hào)20211208,質(zhì)量分?jǐn)?shù)≥98%)購(gòu)自寶雞市國(guó)康生物公司;Akt激活劑SC79(批號(hào)20220806)購(gòu)自上海碧云天生物公司;大花紅景天口服液(國(guó)藥準(zhǔn)字號(hào)B20070002,批號(hào)20211105)購(gòu)自西藏藏藥集團(tuán)股份有限公司;兔源p-Akt抗體(批號(hào)ab38449)、p-ERK1抗體(批號(hào)ab131438)、p-NF-κB p65抗體(批號(hào)ab239882)、Akt抗體(批號(hào)ab8805)、ERK1抗體(批號(hào)ab109282)、NF-κB p65抗體(批號(hào)ab32536)、甘油醛-3-磷酸脫氫酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)抗體(批號(hào)ab9485)、HRP標(biāo)記的山羊抗兔二抗(批號(hào)ab205718)均購(gòu)自英國(guó)Abcam公司。
Ei生物顯微鏡(日本尼康公司);DYCP-31DN型電泳儀(北京六一儀器廠);BL-420型生物信號(hào)采集系統(tǒng)(成都泰盟軟件有限公司);FA2204C型電子分析天平(上海恒勤儀器設(shè)備有限公司)。
按照隨機(jī)數(shù)字表法將Wistar新生大鼠隨機(jī)分為對(duì)照組、模型組、大花紅景天口服液(1.78 mL/kg,陽(yáng)性對(duì)照藥物)[8]組、松果菊苷(40 mg/kg)+SC79(0.04μg/kg)[9]組和松果菊苷低、高劑量(15、40 mg/kg)[6]組,每組12只。除對(duì)照組外,其余組大鼠參照文獻(xiàn)方法[10]制備HPH模型:在9.5%~10.5% O2、溫度22~25 ℃、濕度60%~70%、晝夜比為12∶12的條件下,將Wistar新生大鼠放入常壓低氧艙,每天缺氧8 h,共缺氧15 d;對(duì)照組大鼠不進(jìn)行缺氧處理。從缺氧第1~15天,松果菊苷低、高劑量組ip松果菊苷,并ig等體積的生理鹽水;大花紅景天口服液組ig大花紅景天口服液,且ip等體積的生理鹽水;松果菊苷+SC79組ip松果菊苷和SC79,且ig等體積的生理鹽水;對(duì)照組和模型組ip等體積的生理鹽水,且ig等體積的生理鹽水,1次/d。
第3、7、11、15天,各組大鼠ip 2%戊巴比妥鈉(40 mg/kg)麻醉后,利用生物信號(hào)采集系統(tǒng)檢測(cè)各組大鼠肺動(dòng)脈壓。
末次肺動(dòng)脈壓檢測(cè)結(jié)束后,大鼠脫頸椎處死,分離心臟,去除心房后保留心室組織,沿心室溝分離右心室、左心室和隔膜,濾紙吸水后,分別稱定右心室、左心室和隔膜質(zhì)量,計(jì)算右心室肥大指數(shù)。
右心室肥大指數(shù)=右心室質(zhì)量/(左心室質(zhì)量+隔膜質(zhì)量)
取各組大鼠肺組織,于10%中性福爾馬林緩沖液中固定,用石蠟包埋制成5 μm厚的切片,進(jìn)行HE染色以評(píng)估各組大鼠肺血管形態(tài)變化,根據(jù)病理圖像分析軟件測(cè)定肺小動(dòng)脈中層血管壁厚度、肺小動(dòng)脈外徑、肺小動(dòng)脈中層橫截面積和總橫截面積,計(jì)算肺小動(dòng)脈中層血管壁厚度占肺小動(dòng)脈外徑的百分比(MT)、肺小動(dòng)脈中層橫截面積占總橫截面積的百分比(MA)。
取各組大鼠肺組織石蠟切片,用Weigert鐵蘇木素脫蠟染色,再用麗春紅酸性品紅染色液染色,經(jīng)磷鉬酸處理后再用苯胺藍(lán)染色。切片經(jīng)1%冰醋酸處理、乙醇脫水、二甲苯?jīng)_洗后,用中性樹(shù)脂密封。于光學(xué)顯微鏡下觀察每個(gè)切片中肺組織纖維化程度,并評(píng)估膠原纖維面積占比。
取各組大鼠肺組織,加入RIPA裂解液,勻漿后提取總蛋白,蛋白樣品經(jīng)十二烷基硫酸鈉-聚丙烯酰胺凝膠電泳,轉(zhuǎn)至PVDF膜,封閉后分別加入p-Akt(1∶2000)、p-ERK1(1∶2000)、p-NF-κB p65(1∶2000)、Akt(1∶1000)、ERK1(1∶1000)、NF-κB p65(1∶1000)、GAPDH(1∶2000)抗體,4 ℃孵育過(guò)夜;加入二抗(1∶2000),室溫孵育2 h;加入ECL發(fā)光試劑顯影,采用Image J軟件分析條帶灰度值。
如表1所示,第3、7、11、15天,與對(duì)照組比較,模型組大鼠肺動(dòng)脈壓均顯著升高(<0.05);與模型組比較,松果菊苷各劑量組和大花紅景天口服液組大鼠肺動(dòng)脈壓均顯著降低(<0.05);與松果菊苷低劑量組比較,松果菊苷高劑量組和大花紅景天口服液組大鼠肺動(dòng)脈壓均顯著降低(<0.05);與松果菊苷高劑量組比較,松果菊苷+SC79組大鼠肺動(dòng)脈壓顯著升高(<0.05)。
表1 松果菊苷對(duì)HPH大鼠肺動(dòng)脈壓的影響(, n = 12)
1 mm Hg=133 Pa 與對(duì)照組比較:*<0.05;與模型組比較:#<0.05;與松果菊苷低劑量組比較:&<0.05;與松果菊苷高劑量組比較:@<0.05,下表同
1 mm Hg = 133 Pa*< 0.05control group;#< 0.05model group;&< 0.05echinacoside low-dose group;@< 0.05echinacoside high-dose group, same as below tables
如表2所示,與對(duì)照組比較,模型組大鼠右心室肥大指數(shù)顯著升高(<0.05);與模型組比較,松果菊苷各劑量組和大花紅景天口服液組大鼠右心室肥大指數(shù)均顯著降低(<0.05);松果菊苷低劑量組比較,松果菊苷高劑量組和大花紅景天口服液組大鼠右心室肥大指數(shù)顯著降低(<0.05);與松果菊苷高劑量組比較,松果菊苷+SC79組大鼠右心室肥大指數(shù)顯著升高(<0.05)。
表2 松果菊苷對(duì)HPH大鼠右心室肥大指數(shù)的影響(, n = 12)
如圖1所示,與對(duì)照組比較,模型組大鼠肺小動(dòng)脈壁明顯增厚,肺小動(dòng)脈管腔變窄;與模型組比較,松果菊苷各劑量組和大花紅景天口服液組大鼠肺小動(dòng)脈壁厚度減小,肺小動(dòng)脈管腔變寬;與松果菊苷高劑量組比較,松果菊苷+SC79組大鼠肺小動(dòng)脈壁增厚,肺小動(dòng)脈管腔變窄。
如表3所示,與對(duì)照組比較,模型組大鼠MT、MA明顯升高(<0.05);與模型組比較,松果菊苷各劑量組和大花紅景天口服液組大鼠MT、MA均顯著降低(<0.05);與松果菊苷低劑量組比較,松果菊苷高劑量組和大花紅景天口服液組大鼠MT、MA顯著降低(<0.05);與松果菊苷高劑量組比較,松果菊苷+SC79組大鼠MT、MA顯著升高(<0.05)。
圖1 松果菊苷對(duì)HPH大鼠肺血管形態(tài)的影響(HE, ×200)
表3 松果菊苷對(duì)HPH大鼠肺血管重塑指標(biāo)MT、MA的影響(, n = 6)
如圖2和表4所示,與對(duì)照組比較,模型組大鼠肺組織中有大量膠原沉積,膠原纖維面積占比明顯升高(<0.05);與模型組比較,松果菊苷各劑量組和大花紅景天口服液組大鼠肺組織中膠原沉積有所改善,膠原纖維面積占比顯著降低(<0.05);與松果菊苷高劑量組比較,松果菊苷+SC79組大鼠肺組織中膠原沉積增多,膠原纖維面積占比明顯升高(<0.05)。
圖2 松果菊苷對(duì)HPH大鼠肺組織纖維化的影響(Masson, ×400)
表4 松果菊苷對(duì)HPH大鼠肺組織膠原纖維面積占比的影響(, n = 6)
如圖3和表5所示,與對(duì)照組比較,模型組大鼠肺組織中p-Akt/Akt、p-ERK1/ERK1和p-NF-κB p65/NF-κB p65蛋白表達(dá)水平均顯著升高(<0.05);與模型組比較,松果菊苷各劑量組和大花紅景天口服液組大鼠肺組織中p-Akt/Akt、p-ERK1/ERK1和p-NF-κB p65/NF-κB p65蛋白表達(dá)水平均顯著降低(<0.05);與松果菊苷低劑量組比較,松果菊苷高劑量組和大花紅景天口服液組大鼠肺組織中p-Akt/Akt、p-ERK1/ERK1和p-NF-κB p65/NF-κB p65蛋白表達(dá)水平顯著降低(<0.05);與松果菊苷高劑量組比較,松果菊苷+SC79組大鼠肺組織中p-Akt/Akt、p-ERK1/ERK1和p-NF-κB p65/NF-κB p65蛋白表達(dá)水平顯著升高(<0.05)。
圖3 松果菊苷對(duì)HPH大鼠肺組織中Akt/ERK/NF-κB信號(hào)通路相關(guān)蛋白表達(dá)的影響
表5 松果菊苷對(duì)HPH大鼠肺組織中Akt/ERK/NF-κB信號(hào)通路相關(guān)蛋白表達(dá)的影響(, n = 6)
新生兒HPH是兒童的一種嚴(yán)重肺動(dòng)脈高壓類型,發(fā)病率為0.04%~0.68%[11]。在以肺血管收縮為特征的新生兒HPH的早期階段,若對(duì)癥治療在一定程度上是有效的[12]。然而,一旦疾病進(jìn)展為肺血管重塑和右心室肥大,治療的有效性就會(huì)降低,從而導(dǎo)致高死亡率[13]。因此,制定有效的策略來(lái)抑制新生兒HPH肺血管重塑和右心室肥大至關(guān)重要。據(jù)報(bào)道,新生兒缺氧可導(dǎo)致肺血管阻力變大,最終引起肺動(dòng)脈壓升高[14]。本研究通過(guò)缺氧處理以誘導(dǎo)HPH新生大鼠模型,結(jié)果顯示,與對(duì)照組比較,模型組大鼠肺動(dòng)脈壓升高,提示HPH大鼠模型構(gòu)建成功。缺氧會(huì)升高HPH小鼠右心室肥大指數(shù),且增加肺組織中膠原纖維的形成[15];MT、MA作為肺血管重塑的指標(biāo),在HPH新生大鼠肺組織中異常升高[16]。本研究發(fā)現(xiàn),與對(duì)照組比較,模型組大鼠右心室肥大指數(shù)升高,肺組織中MT、MA及膠原纖維面積所占百分比升高,提示HPH新生大鼠肺血管重塑及肺組織纖維化嚴(yán)重。
研究發(fā)現(xiàn),松果菊苷可抑制去甲腎上腺素誘導(dǎo)的大鼠肺動(dòng)脈高壓[17]。本研究結(jié)果與其一致,松果菊苷可降低HPH新生大鼠肺動(dòng)脈壓及右心室肥大指數(shù),抑制肺血管重塑及肺組織纖維化,且呈劑量相關(guān)性,提示松果菊苷可能通過(guò)抑制肺血管重塑對(duì)HPH新生大鼠發(fā)揮保護(hù)作用。
抑制Akt通過(guò)下調(diào)依賴于ERK的NF-κB信號(hào)通路可有效改善機(jī)體的炎癥反應(yīng)[18]。據(jù)報(bào)道,抑制Akt/ERK/NF-κB信號(hào)通路可改善小鼠脂多糖誘導(dǎo)的急性肺損傷[19];抑制Akt/ERK通路可有效改善肺動(dòng)脈高壓大鼠的肺血管重塑[20];抑制NF-κB活化可以減輕缺氧誘導(dǎo)的小鼠肺動(dòng)脈高壓[21]。以上研究表明抑制Akt/ERK/NF-κB信號(hào)通路可發(fā)揮對(duì)肺組織的保護(hù)作用以及對(duì)肺動(dòng)脈高壓的抑制作用。本研究結(jié)果顯示,與對(duì)照組比較,模型組大鼠肺組織中p-Akt、p-ERK1、p-NF-κB p65蛋白表達(dá)升高,表明Akt/ERK/NF-κB信號(hào)通路可能參與了HPH新生大鼠肺血管重塑過(guò)程;各劑量的松果菊苷均可降低HPH大鼠肺組織中p-Akt、p-ERK1、p-NF-κB p65蛋白表達(dá)水平,且呈劑量相關(guān)性,推測(cè)松果菊苷可能通過(guò)抑制Akt/ERK/NF-κB信號(hào)通路抑制HPH新生大鼠肺血管重塑。為了驗(yàn)證該推測(cè),本研究在給予高劑量松果菊苷處理的基礎(chǔ)上再加上Akt激活劑SC79干預(yù)HPH新生大鼠,結(jié)果顯示,SC79減弱了高劑量松果菊苷對(duì)HPH新生大鼠肺血管重塑的抑制作用,證明松果菊苷通過(guò)抑制Akt/ERK/NF-κB信號(hào)通路抑制HPH新生大鼠肺血管重塑。
綜上所述,松果菊苷能夠通過(guò)抑制Akt/ERK/NF-κB信號(hào)通路抑制HPH新生大鼠肺血管重塑。松果菊苷可能成為臨床上治療新生兒HPH的潛在藥物。
利益沖突 所有作者均聲明不存在利益沖突
[1] Huang W J, Liu N, Tong X,. Sildenafil protects against pulmonary hypertension induced by hypoxia in neonatal rats via activation of PPARγ?mediated downregulation of TRPC [J]., 2022, 49(2): 19.
[2] Lai M Y, Chu S M, Lakshminrusimha S,. Beyond the inhaled nitric oxide in persistent pulmonary hypertension of the newborn [J]., 2018, 59(1): 15-23.
[3] Wedgwood S, Steinhorn R H, Lakshminrusimha S. Optimal oxygenation and role of free radicals in PPHN [J]., 2019, 142: 97-106.
[4] Abdelkreem E, Mahmoud S M, Aboelez M O,. Nebulized magnesium sulfate for treatment of persistent pulmonary hypertension of newborn: A pilot randomized controlled trial [J]., 2021, 88(8): 771-777.
[5] Gai X Y, Wei Y H, Zhang W,. Echinacoside induces rat pulmonary artery vasorelaxation by opening the NO-cGMP-PKG-BKCa channels and reducing intracellular Ca2+levels [J]., 2015, 36(5): 587-596.
[6] Gai X Y, Lin P C, He Y F,. Echinacoside prevents hypoxic pulmonary hypertension by regulating the pulmonary artery function [J]., 2020, 144(4): 237-244.
[7] Yan G S, Wang J X, Yi T,. Erratum: “Baicalin prevents pulmonary arterial remodelingvia the AKT/ERK/NF-κB signaling pathways” [J]., 2022, 12(3): e12122.
[8] 劉洋, 羅蘭, 代紅燕, 等. 松果菊苷對(duì)低氧性肺動(dòng)脈高壓大鼠血管生長(zhǎng)因子的影響 [J]. 中南藥學(xué), 2016, 14(3): 263-266.
[9] 李曉丹, 王強(qiáng). 補(bǔ)肺顆粒通過(guò)調(diào)控Akt通路對(duì)慢阻肺大鼠肺組織自噬和凋亡的影響 [J]. 武漢大學(xué)學(xué)報(bào): 醫(yī)學(xué)版, 2020, 41(6): 904-910.
[10] 曹靜, 羅佳媛, 吳典, 等. 血管內(nèi)皮生長(zhǎng)因子A對(duì)缺氧性肺動(dòng)脈高壓新生大鼠肺血管重塑的影響及其機(jī)制研究 [J]. 中國(guó)當(dāng)代兒科雜志, 2021, 23(1): 103-110.
[11] Cao J, Yang L J, Wang L,. Heat shock protein 70 attenuates hypoxia?induced apoptosis of pulmonary microvascular endothelial cells isolated from neonatal rats [J]., 2021, 24(4): 690.
[12] Distefano G, Sciacca P. Molecular physiopathogenetic mechanisms and development of new potential therapeutic strategies in persistent pulmonary hypertension of the newborn [J]., 2015, 41: 6.
[13] Hudalla H, Michael Z, Christodoulou N,. Carbonic anhydrase inhibition ameliorates inflammation and experimental pulmonary hypertension [J]., 2019, 61(4): 512-524.
[14] 吳曉寧, 許桂鳳. 多巴胺聯(lián)合西地那非治療新生兒肺動(dòng)脈高壓的臨床研究 [J]. 現(xiàn)代藥物與臨床, 2015, 30(5): 572-575.
[15] 劉坤珍, 王樂(lè), 李明霞. 熱休克蛋白70對(duì)缺氧性肺動(dòng)脈高壓新生大鼠肺血管重塑的作用研究 [J]. 中國(guó)當(dāng)代兒科雜志, 2016, 18(2): 152-158.
[16] Ni Y J, Deng J, Liu X,. Echinacoside reverses myocardial remodeling and improves heart function via regulating SIRT1/FOXO3a/MnSOD axis in HF rats induced by isoproterenol [J]., 2021, 25(1): 203-216.
[17] Santos L A M D, Rodrigues G B, Mota F V B,. New thiazolidinedione LPSF/GQ-2 inhibits NF-κB and MAPK activation in LPS-induced acute lung inflammation [J]., 2018, 57: 91-101.
[18] Jiang K F, Guo S, Yang C,. Barbaloin protects against lipopolysaccharide (LPS)-induced acute lung injury by inhibiting the ROS-mediated PI3K/AKT/NF-κB pathway [J]., 2018, 64: 140-150.
[19] Lee H C, Liu F C, Tsai C N,. Esculetin ameliorates lipopolysaccharide-induced acute lung injury in mice via modulation of the AKT/ERK/NF-κB and RORγt/IL-17 pathways [J]., 2020, 43(3): 962-974.
[20] Cheng C C, Chi P L, Shen M C,. Caffeic acid phenethyl ester rescues pulmonary arterial hypertension through the inhibition of AKT/ERK-dependent PDGF/HIF-1αand[J]., 2019, 20(6): E1468.
[21] Chen M X, Ding Z Y, Zhang F Y,. A20 attenuates hypoxia-induced pulmonary arterial hypertension by inhibiting NF-κB activation and pulmonary artery smooth muscle cell proliferation [J]., 2020, 390(2): 111982-111991.
Effect of echinacoside on pulmonary vascular remodeling in neonatal rats with hypoxic pulmonary hypertension based on Akt/ERK/NF-κB signaling pathway
HU Bing, ZHANG Yi-sen
Department of Pediatrics, Zhumadian Central Hospital, Zhumadian 463000, China
To investigate the effect of echinacoside on pulmonary vascular remodeling of neonatal rats with hypoxic pulmonary hypertension (HPH) based on protein kinase B (Akt)/extracellular regulated protein kinase (ERK)/nuclear factor-κB (NF-κB) pathway.Wistar neonatal rats were randomly divided into control group, model group, Rhodiola Oral Liquid (大花紅景天口服液, 1.78 mL/kg) group, echinacoside (40 mg/kg) + Akt activator SC79 (0.04 μg/kg) group and echinacoside low- and high-dose (15, 40 mg/kg) groups, with 12 rats in each group. Except the control group, rats in other groups were hypoxic for 15 d to prepare HPH model; Rats in control group were not treated with hypoxia. From 1st day to 15th day of hypoxia, corresponding drugs were given to each administration group, and pulmonary artery pressure of rats in each group was detected on 3rd, 7th, 11th and 15th day. 24 h after the last administration, right ventricular hypertrophy index of rats in each group was detected. Hematoxylin-eosin (HE) staining was used to detect the pulmonary vascular morphology of rats in each group, and percentage of thickness of pulmonary arterioles’ middle vascular wall to the outer diameter of pulmonary arterioles (MT) and percentage of pulmonary arterioles’ middle cross-sectional area to the total cross-sectional area (MA) were calculated. Masson staining was used to detect pulmonary fibrosis of rats in each group. The expressions of Akt/ERK/NF-κB signaling pathway related proteins in lung tissue of rats were detected by Western blotting.Compared with control group, pulmonary artery pressure, right ventricular hypertrophy index, MT, MA and percentage of collagen fiber area in model group were significantly increased (< 0.05), p-Akt, p-ERK1 and p-NF-κB p65 protein expressions in lung tissue were significantly increased (< 0.05). Compared with model group, the above indexes in each dose group of echinacoside and Rhodiola Oral Liquid group were significantly decreased (< 0.05). Akt activator SC79 obviously weakened the protective effect of high-dose echinacoside on pulmonary vascular remodeling in neonatal rats with HPH (< 0.05).Echinacoside can inhibit pulmonary vascular remodeling in neonatal rats with HPH by inhibiting Akt/ERK/NF-κB signaling pathway.
echinacoside; hypoxic pulmonary hypertension; neonatal rats; protein kinase B/extracellular regulated protein kinase/ nuclear factor-κB pathway; pulmonary vascular remodeling
R285.5
A
0253 - 2670(2022)23 - 7449 - 06
10.7501/j.issn.0253-2670.2022.23.015
2022-08-12
胡 冰(1981—),女,主治醫(yī)師,主要從事兒科臨床基礎(chǔ)研究。Tel: 13839937509
[責(zé)任編輯 李亞楠]