弓曉雅,趙 錦,楊曉光
東北大豆農(nóng)田保護(hù)性耕作水熱效應(yīng)的Meta分析*
弓曉雅,趙 錦**,楊曉光
(中國(guó)農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,北京 100193)
基于公開發(fā)表文章中有關(guān)東北地區(qū)保護(hù)性耕作下大豆農(nóng)田土壤溫度和濕度數(shù)據(jù),以傳統(tǒng)耕作(CT)為對(duì)照,免耕(NT)、少耕(RT)、秸稈覆蓋(SM)、免耕秸稈覆蓋(NTSM)為處理,應(yīng)用Meta分析方法定量評(píng)估保護(hù)性耕作措施對(duì)東北大豆農(nóng)田土壤水熱狀況的影響程度。結(jié)果表明:與CT相比,保護(hù)性耕作總體上使東北大豆農(nóng)田0-170cm土層的土壤體積含水量增加了9.2%,使淺層土壤(0-30cm)溫度降低了8.2%;不同氣候條件下4種保護(hù)性耕作措施均能提高土壤濕度;秸稈覆蓋可以提高大豆整個(gè)生育時(shí)期土壤含水量,且在營(yíng)養(yǎng)生長(zhǎng)期對(duì)土壤水熱的影響最大,土壤溫度隨秸稈覆蓋量的增加而增加;保護(hù)性耕作措施降低土壤溫度的幅度隨著土壤黏粒減少而降低,提高土壤濕度的幅度隨土壤深度增加而降低;免耕秸稈覆蓋在不同土壤深度的蓄水保墑效果最明顯,在0-20cm土層提高了32.9%的土壤濕度。綜上,保護(hù)性耕作措施較傳統(tǒng)耕作具有增濕降溫效應(yīng),氣溫、降水、生育時(shí)期、秸稈覆蓋量、土壤類型及土壤深度均對(duì)保護(hù)性耕作下大豆農(nóng)田的土壤水熱狀況產(chǎn)生影響。
東北地區(qū);大豆;保護(hù)性耕作;土壤水熱;Meta分析
大豆作為重要的油料和糧食作物,在國(guó)民生產(chǎn)生活中占據(jù)重要地位。東北地區(qū)是中國(guó)大豆的優(yōu)質(zhì)主產(chǎn)區(qū)[1],2018年僅黑龍江省的大豆播種面積就約占全國(guó)的42.41%,總產(chǎn)量約占41.19%[2]。然而,由于不合理的開發(fā)利用和使用翻耕等傳統(tǒng)的耕作方式,東北地區(qū)正面臨著嚴(yán)重的土壤退化問(wèn)題,包括耕層變淺、水土流失加重、土壤有機(jī)質(zhì)含量下降60%、自然生產(chǎn)力下降20%以上等[3]。保護(hù)性耕作措施是一項(xiàng)能夠?qū)崿F(xiàn)作物穩(wěn)產(chǎn)高產(chǎn)與生態(tài)環(huán)境保護(hù)雙贏的可持續(xù)發(fā)展農(nóng)業(yè)技術(shù),可以增加地表粗糙度,改善土壤理化性質(zhì),提高土壤肥力[4?6],尤其在保水調(diào)溫方面發(fā)揮重要的作用[7?9]。由于不同地區(qū)受氣候生態(tài)環(huán)境因子的制約,保護(hù)性耕作措施的應(yīng)用效果存在明顯區(qū)域特征。因此,探究東北地區(qū)保護(hù)性耕作對(duì)大豆農(nóng)田土壤水熱的影響,對(duì)區(qū)域尺度上科學(xué)合理推廣保護(hù)性耕作措施具有重要意義。
前人圍繞保護(hù)性耕作措施對(duì)東北大豆農(nóng)田土壤水熱的影響,已經(jīng)開展大量研究,表明保護(hù)性耕作與傳統(tǒng)耕作相比可以提高土壤含水量,但不同條件下提高的幅度不一。郭孟潔等[10]通過(guò)16a的試驗(yàn)研究表明,免耕秸稈覆蓋較傳統(tǒng)耕作可增加土壤的田間持水量,提高土壤蓄水保墑能力,且只作用于表層土壤。在春季播種期,免耕措施下的土壤含水量顯著高于傳統(tǒng)耕作(6.6%)[11]。邱野等[12]研究表明,免耕和免耕秸稈覆蓋較傳統(tǒng)耕作可提高25.3%~33.6%土壤含水量;也有研究表明免耕秸稈覆蓋全生育期0-100cm土壤貯水量比傳統(tǒng)耕作顯著高出197mm[13]。保護(hù)性耕作對(duì)東北大豆農(nóng)田土壤溫度的影響不同。楊水源[13]研究表明,免耕、秸稈覆蓋和免耕秸稈覆蓋在整個(gè)生育時(shí)期都表現(xiàn)為降溫效應(yīng),且免耕秸稈覆蓋降溫效應(yīng)最明顯,全生育期0-20cm土壤平均溫度較傳統(tǒng)耕作降低1.1℃。也有研究表明,秸稈覆蓋在結(jié)莢期可以顯著提高土壤溫度,覆蓋量為2500kg·hm?2和5000kg·hm?2時(shí)分別提高6.9%和8.8%[14]。
由于當(dāng)前保護(hù)性耕作對(duì)東北大豆農(nóng)田土壤水熱狀況的研究多基于單點(diǎn)試驗(yàn),而單點(diǎn)試驗(yàn)存在研究站點(diǎn)的氣候和土壤等具有特異性等問(wèn)題,導(dǎo)致無(wú)法在區(qū)域尺度上明確保護(hù)性耕作對(duì)大豆農(nóng)田土壤水熱的影響。Meta分析是對(duì)同一主題下多個(gè)獨(dú)立研究成果進(jìn)行定量、科學(xué)的綜合分析[15]。由于它有明確的文獻(xiàn)選擇標(biāo)準(zhǔn)和使用效應(yīng)值作為統(tǒng)一的數(shù)量結(jié)合指標(biāo),得出的結(jié)果比傳統(tǒng)敘述性綜述結(jié)果更具客觀性和科學(xué)性[16]。因此,本研究采用Meta分析方法,定量東北大豆農(nóng)田4種保護(hù)性耕作措施對(duì)土壤水熱的影響程度,并在此基礎(chǔ)上深入探討氣候特征、生育時(shí)期、土壤類型、土壤深度等特征下保護(hù)性耕作對(duì)東北大豆農(nóng)田土壤水熱的影響,以期在東北區(qū)域尺度上明確保護(hù)性耕作對(duì)大豆農(nóng)田土壤水熱的影響,為東北地區(qū)大豆農(nóng)田科學(xué)推廣應(yīng)用保護(hù)性耕作措施提供理論依據(jù)。
數(shù)據(jù)來(lái)源于中國(guó)知網(wǎng)、萬(wàn)方、維普、the Web of Science等中英文數(shù)據(jù)庫(kù)中已發(fā)表的關(guān)于中國(guó)東北地區(qū)大豆農(nóng)田土壤溫度和濕度的相關(guān)文獻(xiàn),并以“大豆、保護(hù)性耕作/免耕/少耕/秸稈覆蓋/免耕秸稈覆蓋、土壤濕度/土壤水分/土壤含水量、土壤溫度/地溫、soybean、conservation tillage/no-tillage/reduced tillage/straw mulching/no-tillage straw mulching、soil moisture/ moisture/soil moisture content、soil temperature/ground temperature”等中英文為檢索詞進(jìn)行篩選,將檢索到的文獻(xiàn)按以下篩選標(biāo)準(zhǔn)進(jìn)行再次篩選。
(1)研究對(duì)象為中國(guó)東北地區(qū)農(nóng)田,試驗(yàn)作物為大豆;
(2)試驗(yàn)方式為大田試驗(yàn),無(wú)模擬試驗(yàn);
(3)試驗(yàn)的重復(fù)次數(shù)3次及以上;
(4)耕作措施為輪作,提取的數(shù)據(jù)為大豆生長(zhǎng)季土壤溫濕度;
(5)試驗(yàn)處理為免耕(NT)、少耕(RT)、秸稈覆蓋(SM)、免耕秸稈覆蓋(NTSM)中的任意一項(xiàng)及以上,且每個(gè)試驗(yàn)均以傳統(tǒng)耕作(CT)為對(duì)照;
(6)試驗(yàn)中的數(shù)據(jù)易于獲得或可通過(guò)計(jì)算得出;
(7)同一作者同一時(shí)期發(fā)表的文獻(xiàn),要檢查數(shù)據(jù)是否相同,剔除相同的數(shù)據(jù)。
研究具體數(shù)據(jù)來(lái)源情況見表1。
表1 保護(hù)性耕作數(shù)據(jù)來(lái)源的文獻(xiàn)描述統(tǒng)計(jì)
注:NT代表免耕,即在全生育期不進(jìn)行耕作;RT代表少耕,即在全生育期減少耕作次數(shù);SM代表秸稈覆蓋,即在傳統(tǒng)耕作的基礎(chǔ)上,秋收后進(jìn)行秸稈覆蓋;NTSM代表免耕秸稈覆蓋,即在免耕的基礎(chǔ)上,秋收后覆蓋作物秸稈。下同。
Note: NT stands for no-tillage, i.e. no tillage during the whole growth period; RT stands for reduced tillage, i.e. reducing the number of tillage during the whole growth period; SM stands for straw mulching, i.e. on the basis of conventional tillage, straw mulching is carried out after autumn harvest; NTSM stands for no-tillage straw mulching, i.e. on the basis of no-tillage, straw mulching is carried out after autumn harvest. The same as below.
篩選到符合條件的有效數(shù)據(jù)共2242對(duì),包括885對(duì)土壤濕度數(shù)據(jù),1357對(duì)土壤溫度數(shù)據(jù)。匯總有效文獻(xiàn)中試驗(yàn)的基本信息(篇名、作者、發(fā)表時(shí)間、地點(diǎn)、經(jīng)緯度、重復(fù)次數(shù)等)及土壤溫度和土壤濕度等數(shù)據(jù),并將土壤類型按照國(guó)際制土壤質(zhì)地分類標(biāo)準(zhǔn)[17]進(jìn)行歸類,文獻(xiàn)中未給出土壤類型的從中國(guó)土壤科學(xué)數(shù)據(jù)庫(kù)查找補(bǔ)齊,未給出年均溫和年降水量數(shù)據(jù)的從中國(guó)氣象科學(xué)數(shù)據(jù)共享服務(wù)網(wǎng)(http://cdc.cma.gov.cn)的氣象資料中補(bǔ)全。
匯總的原始土壤濕度數(shù)據(jù)中存在多種形式的表達(dá),為了能夠充分利用收集到的數(shù)據(jù),明確保護(hù)性耕作對(duì)土壤濕度的影響,需要將原始土壤濕度數(shù)據(jù)進(jìn)行統(tǒng)一處理,將其統(tǒng)一轉(zhuǎn)化為土壤體積含水率。若原始土壤濕度數(shù)據(jù)中有土壤質(zhì)量含水率和體積含水率,則利用每個(gè)文獻(xiàn)中或同期發(fā)表文章中所給出的土壤容重將土壤質(zhì)量含水率全部轉(zhuǎn)化為土壤體積含水率[17],轉(zhuǎn)化公式為
式中,W為土壤質(zhì)量含水率(%);Mw為土壤中水的質(zhì)量(kg);Ms為干土質(zhì)量(kg);V為土壤體積含水率(%);Vw為土壤水容積(m3);Vt為土壤總?cè)莘e(m3);ρw為水的密度(g·cm?3),可近似為1g·cm?3;ρb為土壤容重,即土壤密度(g·cm?3)。
若原始土壤濕度數(shù)據(jù)中無(wú)土壤質(zhì)量或體積含水率,但有土壤貯水量和相對(duì)應(yīng)的土層厚度,則利用式(6)將土壤貯水量轉(zhuǎn)化為土壤體積含水率[17],即
式中,SWS為土壤貯水量(mm);H為土層厚度(mm)
1.3.1 Meta分析概況
采用Meta分析方法定量4種保護(hù)性耕作措施對(duì)東北地區(qū)大豆農(nóng)田土壤溫/濕度的調(diào)控效應(yīng)。將整理好的土壤溫/濕度數(shù)據(jù)按照保護(hù)性耕作類型、氣候特征、生育時(shí)期、秸稈覆蓋量及土壤條件進(jìn)行數(shù)據(jù)分組,通過(guò)計(jì)算保護(hù)性耕作對(duì)土壤溫/濕度的調(diào)控效應(yīng)值進(jìn)而計(jì)算出其95%置信區(qū)間(95%CI),為了便于解釋保護(hù)性耕作對(duì)土壤溫/濕度的影響,需要通過(guò)調(diào)控效應(yīng)值及其95%CI計(jì)算保護(hù)性耕作對(duì)土壤溫/濕度的相對(duì)變化率及其95%CI。
1.3.2 數(shù)據(jù)分組
東北地區(qū)存在不同的保護(hù)性耕作措施,如免耕、少耕、秸稈覆蓋和免耕秸稈覆蓋等,且由于不同地區(qū)的氣候特征和土壤類型不同,大豆不同的生育時(shí)期、土壤深度和秸稈覆蓋量都對(duì)土壤溫度和濕度存在一定影響。因此,將收集到的數(shù)據(jù)按照不同的保護(hù)性耕作措施、氣候特征、生育時(shí)期、秸稈覆蓋量、土壤類型和土壤深度進(jìn)行分組,分組情況見表2-表6。
表2 不同保護(hù)性耕作樣本與傳統(tǒng)耕作(CT,作為對(duì)照)樣本配對(duì)的對(duì)數(shù)描述統(tǒng)計(jì)
表3 不同氣候特征樣本與傳統(tǒng)耕作(CT,作為對(duì)照)樣本配對(duì)的對(duì)數(shù)描述統(tǒng)計(jì)
注:“-”表示不同保護(hù)性耕作措施與傳統(tǒng)耕作方式無(wú)配對(duì)的土壤溫/濕度樣本對(duì)。下同。
Note: “-” indicates soil temperature and soil moisture sample pairs that are not matched between different conservation tillage measures and conventional tillage methods. The same as below.
表4 不同生育時(shí)期樣本與傳統(tǒng)耕作(CT,作為對(duì)照)樣本配對(duì)的對(duì)數(shù)描述統(tǒng)計(jì)
表5 不同秸稈覆蓋量的樣本與傳統(tǒng)耕作(CT,作為對(duì)照)樣本配對(duì)的對(duì)數(shù)描述統(tǒng)計(jì)
表6 不同土壤條件樣本與傳統(tǒng)耕作(CT,作為對(duì)照)樣本配對(duì)的對(duì)數(shù)描述統(tǒng)計(jì)
1.3.3 計(jì)算各種保護(hù)性耕作方式對(duì)土壤溫/濕度的調(diào)控效應(yīng)值
以保護(hù)性耕作措施下大豆農(nóng)田的土壤溫/濕度(Xe)與傳統(tǒng)耕作(CT)下大豆農(nóng)田的土壤溫/濕度(Xc)的比值作為響應(yīng)比(R),以響應(yīng)比的自然對(duì)數(shù)(InR)作為效應(yīng)值進(jìn)行計(jì)算[18],即
1.3.4 計(jì)算土壤溫/濕度調(diào)控效應(yīng)值的置信區(qū)間
由于收集的數(shù)據(jù)中缺少標(biāo)準(zhǔn)差或標(biāo)準(zhǔn)誤,因此,無(wú)法得到土壤溫/濕度相對(duì)變化率的95%置信區(qū)間(95%CI)。靴襻法(bootstrap)是非參數(shù)檢驗(yàn)整合分析?重復(fù)取樣檢驗(yàn)法中的一種,它可以在不考慮原始數(shù)據(jù)是否遵循正太分布形式和標(biāo)準(zhǔn)差數(shù)據(jù)是否缺失的情況下計(jì)算出統(tǒng)計(jì)量的置信區(qū)間,對(duì)于樣本量小或標(biāo)準(zhǔn)差數(shù)據(jù)缺失的文獻(xiàn),bootstrap是一種較為準(zhǔn)確的分析方法[19?20]。因此,采用bootstrap計(jì)算95%CI,計(jì)算過(guò)程包括[20]
(1)計(jì)算研究數(shù)為i的每一分組或研究數(shù)為i的所有研究的總效應(yīng)值(初值);
(2)以放回式取樣選取i個(gè)研究并計(jì)算其總效應(yīng)值(靴襻值);
(3)重復(fù)上述取樣方法1000次,按從小到大的順序排列總效應(yīng)值,在兩端分別取2.5%處的值作為95%CI的上限(UL)和下限(LL)。
當(dāng)樣本量較少時(shí),使用偏差校正法(bias- corrected method)對(duì)95%CI進(jìn)行校正,偏差校正后的百分置信區(qū)間的上下限計(jì)算公式分別為
1.3.5 計(jì)算土壤溫/濕度相對(duì)變化率及其對(duì)應(yīng)的置信區(qū)間
為了便于使用土壤溫度和濕度的相對(duì)變化率解釋不同保護(hù)性耕作對(duì)大豆農(nóng)田土壤溫度和濕度的影響,將效應(yīng)值轉(zhuǎn)化為相對(duì)變化率進(jìn)行分析[16],計(jì)算式為
土壤溫/濕度相對(duì)變化率95%CI的上限CIUL和下限CILL計(jì)算式分別為[21]
使用GetData Graph Digitizer軟件提取文獻(xiàn)中用圖表達(dá)的土壤溫濕度數(shù)據(jù);使用Excel2010進(jìn)行數(shù)據(jù)庫(kù)的收集、整理及建立;使用Excel2010和RStudio 4.0.3進(jìn)行Meta分析的指標(biāo)計(jì)算及作圖。
由圖1可知,總樣本(濕度樣本885對(duì),溫度樣本1357對(duì))顯示,與傳統(tǒng)耕作方式(CT)相比,保護(hù)性耕作分別使大豆農(nóng)田土壤濕度顯著提高了9.2%,土壤溫度顯著降低了8.2%。進(jìn)一步分類統(tǒng)計(jì)結(jié)果顯示,各種保護(hù)性耕作措施對(duì)大豆農(nóng)田土壤濕度和溫度的影響不同,其中僅RT顯著提高了1.1%的土壤溫度,NT、SM和NTSM均使土壤溫度有不同程度的降低,分別降低了6.3%、12.7%和3.4%,且三者間差異顯著;各種保護(hù)性耕作措施均不同程度的提高了土壤濕度,依次表現(xiàn)為NTSM(16.1%)>NT(7.4%)>SM(7.3%)>RT(2.2%)。
圖1 不同保護(hù)性耕作與傳統(tǒng)耕作相比大豆農(nóng)田土壤濕度和溫度相對(duì)變化率的統(tǒng)計(jì)結(jié)果
注:土壤濕度為0-170cm土層的土壤體積含水量;土壤溫度為0-30cm土層的溫度。括號(hào)內(nèi)數(shù)據(jù)為配對(duì)的樣本對(duì)數(shù)。虛線表示相對(duì)變化率為0。誤差線表示95%置信區(qū)間(95%CI),95%CI不包含0,說(shuō)明差異顯著(P<0.05),若各分組間95%CI不重疊,則分組間差異顯著(P<0.05)。若某一分組95%CI較大,會(huì)導(dǎo)致分析結(jié)果誤差較大。因此,對(duì)于95%CI較大的分組在分析時(shí)不考慮。下同。
Note: Soil moisture is the soil volumetric water content in the 0-170cm layer. Soil temperature is the temperature of 0-30cm soil layer. Number of sample pairs is conservation tillage measures were paired with conventional tillage methods in parentheses. The dotted line indicates that the relative rate of change is 0. The error bars indicate 95% confidence interval (95%CI), 95%CI does not contain 0, indicating significant differences(P<0.05). If 95%CI between groups did not overlap, indicating significant differences between groups(P <0.05). If 95%CI is too large, the error of analysis results will be large. Therefore, the grouping with too large 95%CI is not considered in the analysis. The same as below.
2.2.1 氣候條件不同
在所有樣本對(duì)中,根據(jù)氣候條件不同,以年降水量550mm和年均溫4℃為標(biāo)準(zhǔn),分別對(duì)4種保護(hù)性耕作措施與傳統(tǒng)耕作方式配對(duì)的土壤溫/濕度樣本對(duì)數(shù)進(jìn)行統(tǒng)計(jì),結(jié)果見圖2。由圖中可見,與CT相比,在年降水量≤550mm條件下,4種保護(hù)性耕作措施均提高了大豆農(nóng)田的土壤濕度,降低了土壤溫度;在年降水量>550mm條件下,NT和NTSM均提高了土壤濕度和溫度,SM提高了土壤濕度,降低了土壤溫度,RT提高了土壤溫度。隨著年降水量增加,4種保護(hù)性耕作措施的土壤濕度相對(duì)變化率不同,其中NT、SM使大豆農(nóng)田的土壤濕度均提高了0.8%,NTSM使土壤濕度降低了2.4%;隨著年降水量的增加,4種保護(hù)性耕作措施使土壤溫度分別提高了17.3%(NTSM)、9.1%(NT)、7.2%(RT)和0.6%(SM)。
與CT相比,在≤4℃和>4℃兩種年均溫條件下,NT、SM和NTSM均提高了大豆農(nóng)田的土壤濕度,降低了土壤溫度,RT均提高了土壤濕度和溫度。隨著年均溫的增加,NT、NTSM處理下土壤濕度分別提高6.5%、13.3%,SM使大豆農(nóng)田的土壤濕度降低了4.2%;隨著年均溫的增加,NT、NTSM處理下土壤溫度分別降低8.9%、13.8%,RT處理下降低了1.4%土壤溫度,但未降低到負(fù)相對(duì)變化率,整體上仍提高了土壤溫度??梢?,不同氣候條件下,NT、RT、SM、NTSM對(duì)大豆農(nóng)田土壤濕度和溫度的影響不同。
2.2.2 生育時(shí)期不同
在所有樣本對(duì)中,分營(yíng)養(yǎng)生長(zhǎng)期和生殖生長(zhǎng)期分別對(duì)保護(hù)性耕作措施與傳統(tǒng)耕作方式配對(duì)的土壤溫/濕度樣本對(duì)數(shù)進(jìn)行統(tǒng)計(jì),結(jié)果見圖3。由圖中可見,與CT(對(duì)照)相比,在兩個(gè)時(shí)期中,NT(免耕)、SM(桔桿覆蓋)、NTSM(免耕秸桿覆蓋)均提高了大豆農(nóng)田的土壤濕度,降低了土壤溫度,在營(yíng)養(yǎng)生長(zhǎng)期分別使大豆農(nóng)田的土壤濕度提高7.1%、7.9%和13.9%,分別使土壤溫度降低12.8%、1.9%和20.2%;在生殖生長(zhǎng)期,分別使大豆農(nóng)田的土壤濕度提高7.7%、7.3%和17.6%,土壤溫度分別降低1.8%、5.2%和3.2%;在兩個(gè)時(shí)期中,RT(少耕)對(duì)大豆農(nóng)田土壤濕度的影響不同,在營(yíng)養(yǎng)生長(zhǎng)期使大豆農(nóng)田的土壤濕度提高了0.4%,在生殖生長(zhǎng)期使大豆農(nóng)田土壤濕度降低了0.04%??梢?,隨著大豆生育時(shí)期推進(jìn),NT、NTSM均提高了土壤濕度和溫度,RT降低了土壤濕度,SM降低了土壤濕度和溫度。
圖2 不同年降水量(a)和年平均氣溫(b)條件下4種保護(hù)性耕作下大豆農(nóng)田土壤濕度(1)和溫度(2)相對(duì)變化率的統(tǒng)計(jì)結(jié)果
圖3 不同生育時(shí)期4種保護(hù)性耕作下大豆農(nóng)田土壤濕度(a)和溫度(b)相對(duì)變化率的統(tǒng)計(jì)結(jié)果
2.2.3 秸稈覆蓋量不同
在所有樣本對(duì)中,分1800~3000kg·hm?2和3000~6000kg·hm?2兩種秸稈覆蓋量分別對(duì)保護(hù)性耕作措施與傳統(tǒng)耕作方式配對(duì)的土壤溫/濕度樣本對(duì)數(shù)進(jìn)行統(tǒng)計(jì),結(jié)果見圖4。由圖中可見,與CT相比,當(dāng)秸稈覆蓋量為1800~3000kg·hm?2時(shí),SM、NTSM均提高了大豆農(nóng)田的土壤濕度,分別為5.2%、7.8%,均降低了3.1%的土壤溫度;當(dāng)秸稈覆蓋量為3000~6000kg·hm?2時(shí),SM降低了0.8%的土壤濕度,提高了6.7%的土壤溫度,NTSM提高了18.8%的土壤濕度??梢?,不同秸稈覆蓋量下,SM和NTSM對(duì)大豆農(nóng)田土壤濕度和溫度相對(duì)變化率的影響不同,SM處理隨著秸稈覆蓋量的增加土壤濕度降低,土壤溫度提高,NTSM正好相反。
圖4 不同秸稈覆蓋量下兩種保護(hù)性耕作下大豆農(nóng)田土壤濕度(a)和溫度(b)相對(duì)變化率的統(tǒng)計(jì)結(jié)果
2.2.4 土壤條件不同
在所有樣本對(duì)中,分3種土壤類型(黏土、壤土和黏壤土)和5個(gè)土壤深度(0-20、20-40、40-60、60-80和80-100cm)分別對(duì)保護(hù)性耕作措施與傳統(tǒng)耕作方式配對(duì)的土壤溫/濕度樣本對(duì)數(shù)進(jìn)行統(tǒng)計(jì),結(jié)果見圖5。由圖中可見,與CT相比,在3種土壤類型上,4種保護(hù)性耕作措施均提高了大豆農(nóng)田的土壤濕度,在黏土和壤土條件下,NTSM提高大豆農(nóng)田土壤濕度均為最大,分別為37.3%和15.4%,NT次之,分別為19.0%和7.1%,SM最小,分別為4.7%和5.2%;在黏壤土條件下,NT提高大豆農(nóng)田土壤濕度最大,為4.9%,NTSM次之,為3.2%,ST最小,為0.7%。同一耕作措施在不同土壤類型條件下對(duì)土壤濕度的影響不同,以NT、NTSM均在黏土上提高土壤濕度最大,在黏壤土上提高土壤濕度最小。在不同土壤類型條件下,4種保護(hù)性耕作措施對(duì)大豆農(nóng)田土壤溫度的影響不同。在黏土和壤土條件下,NT均降低了土壤溫度,分別為19.0%和1.3%,SM在黏土條件下,提高了1.1%的土壤溫度,在壤土條件下降低了5.2%的土壤溫度。NTSM在3種土壤類型條件下均降低了土壤溫度,且在黏土上降低土壤溫度最大,為21.9%,壤土最小,為3.1%。可見,保護(hù)性耕作措施降低土壤溫度的幅度隨著土壤黏粒減少而降低。
與CT相比,在5種土壤深度條件下,NT、NTSM均提高了大豆農(nóng)田的土壤濕度,在0-20cm、20-40cm、40-60cm和80-10cm的土壤深度,SM均提高了大豆農(nóng)田的土壤濕度。在0-20cm、20-40cm、40-60cm和80-10cm的土壤深度,均表現(xiàn)出NTSM提高土壤濕度最大,NT次之,SM最??;在60-80cm土壤深度,NTSM提高土壤濕度最大,NT最小。且隨著土壤深度的增加,3種保護(hù)性耕作措施提高大豆農(nóng)田土壤濕度的幅度均逐漸降低,各土壤深度下NTSM處理分別提高土壤濕度32.9%、18.5%、13.4%、12.4%和1.5%,NT分別為14.2%、9.1%、6.4%、4.9%和4.7%,SM分別為9.8%、6.1%、10.2%、4.5%和3.7%。可見,保護(hù)性耕作提高土壤濕度的幅度隨土壤深度增加而降低。在0-20cm土壤深度,NT、SM和NTSM均降低了大豆農(nóng)田土壤溫度,分別為7.0%、15.%和3.5%,僅RT提高了大豆農(nóng)田1.1%的土壤溫度,且4種措施間差異顯著。
圖5 不同土壤類型(a)和深度(b)下4種保護(hù)性耕作下大豆農(nóng)田土壤濕度(1)和溫度(2)相對(duì)變化率的統(tǒng)計(jì)結(jié)果
3.1.1 保護(hù)性耕作措施對(duì)大豆農(nóng)田土壤濕度和溫度的影響
本研究表明,保護(hù)性耕作措施較傳統(tǒng)耕作均可以提高大豆農(nóng)田土壤含水量,且免耕秸稈覆蓋提高效果最佳。這與邱野等[12]研究表明保護(hù)性耕作提高了土壤含水量,且免耕秸稈覆蓋能明顯改善土壤含水量的研究結(jié)果一致。這可能是因?yàn)槊飧斩捀采w可以減少雨水直接打擊表土和土粒的移動(dòng),減少地氣間水分交換,從而減少地表徑流[22],減少土壤水分蒸發(fā),使土壤不易形成板結(jié)層,耕層土壤結(jié)構(gòu)[23]、土壤容重、孔隙度和水穩(wěn)性團(tuán)聚體數(shù)量[24?26]得到改善,從而提高作物根系孔隙的滲透性[27]、土壤的吸水能力和土壤結(jié)構(gòu)的穩(wěn)定性[24?26],從而提高土壤含水量。
在本研究中,與傳統(tǒng)耕作相比,僅少耕處理提高了大豆農(nóng)田的土壤溫度,這與劉爽等[28]通過(guò)長(zhǎng)期定位試驗(yàn)研究得出少耕措施下的土壤溫度比傳統(tǒng)耕作高出5.27℃較為一致。少耕提高土壤溫度的可能原因包括:(1)與免耕相比,少耕增加了土壤孔隙度,減少了土壤密實(shí)度[29],使少耕的地表反射率較小,凈輻射較高,吸收熱量較多[28];(2)與傳統(tǒng)耕作和秸稈覆蓋相比,少耕減少了對(duì)土壤的擾動(dòng)且地表無(wú)秸稈覆蓋,使少耕可以大面積接受太陽(yáng)輻射且熱量不易散失[28,30]。本研究表明,免耕、秸稈覆蓋和免耕秸稈覆蓋均降低了土壤溫度,且秸稈覆蓋降低土壤溫度最嚴(yán)重。多數(shù)研究表明免耕、秸稈覆蓋和免耕秸稈覆蓋均降低了土壤溫度[11,13,31]。然而,武淑娜等[31]研究表明,傳統(tǒng)耕作+秸稈覆蓋在全生育期內(nèi)較傳統(tǒng)耕作土壤溫度降低1.39℃,楊水源[13]研究表明,免耕秸稈覆蓋較免耕、秸稈覆蓋的降溫效應(yīng)明顯,全生育期內(nèi)較傳統(tǒng)耕作降低了1.13℃,這與本研究得出的結(jié)果不太一致,可能與不同單點(diǎn)試驗(yàn)研究的土壤深度不同等有關(guān),也可能與研究區(qū)域的尺度不同有關(guān)。
3.1.2 不同條件下保護(hù)性耕作措施對(duì)土壤溫度和濕度的影響
保護(hù)性耕作對(duì)土壤水熱的影響在不同的條件下具有不同的響應(yīng)。(1)氣候特征。目前,保護(hù)性耕作已經(jīng)在全球不同氣候區(qū)得到了廣泛評(píng)估及使用,如在熱帶、亞熱帶及溫帶氣候區(qū)[32]。在德國(guó)溫帶氣候區(qū)秸稈覆蓋可以改善土壤水熱狀況[33],與本研究結(jié)果一致,東北地區(qū)也屬于溫帶氣候區(qū),秸稈覆蓋可以明顯改善土壤水熱狀況。在東北寒冷的北方地區(qū)(年均降水量為530mm,年均溫為1.5℃),免耕是一種廣泛應(yīng)用于大豆生產(chǎn)的耕作方式[34]。也有研究表明免耕適用于年降水量≤500mm和年均溫≤10℃的黃土高原地區(qū)[33],在本研究中當(dāng)年降水量≤550mm和年均溫>4℃時(shí),免耕的降溫效應(yīng)加劇,當(dāng)年降水量>550mm和年均溫≤4℃時(shí)降溫效應(yīng)明顯得到緩解。這可能是由于黃土高原與東北地區(qū)的地形氣候不同所致。在干旱地區(qū)也同樣適合保護(hù)性耕作的應(yīng)用[35],研究表明秸稈覆蓋可用于西北干旱區(qū)[36],少耕是最適合東北旱作黑土區(qū)的保護(hù)性耕作方式[28],這與本研究結(jié)果一致,在年降水量≤550mm和年均溫>4℃時(shí)秸稈覆蓋和少耕仍然可以提高土壤含水量,緩解干旱。在濕潤(rùn)及降水較多的地區(qū),保護(hù)性耕作的應(yīng)用較少[32],可能是因?yàn)楸Wo(hù)性耕作在潮濕的環(huán)境中容易誘發(fā)植物病害[37],導(dǎo)致在該地區(qū)無(wú)法推廣應(yīng)用。由此可見,由于氣候條件不同,保護(hù)性耕作對(duì)土壤水熱的影響不同,導(dǎo)致其應(yīng)用具有區(qū)域性。
(2)生育時(shí)期。隨著作物生育進(jìn)程的變化,保護(hù)性耕作對(duì)土壤水熱的影響也發(fā)生變化。研究表明,秸稈覆蓋在作物整個(gè)生育期可以提高土壤含水量[38],但由于作物生長(zhǎng)后期群體變大,葉片蒸騰增加,降水增多[29],秸稈覆蓋的增濕效應(yīng)將逐漸減弱[39?40],與本研究結(jié)果一致。王兆偉等[40]研究表明秸稈覆蓋對(duì)土壤溫度的響應(yīng)主要表現(xiàn)在作物生長(zhǎng)前期,與本研究結(jié)果一致。然而,在本研究中,免耕秸稈覆蓋在生殖生長(zhǎng)期的土壤含水量逐漸增多,可能是由于免耕提高了土壤容重,減少了土壤孔隙度[41],使土壤蒸發(fā)變慢,土壤含水量較營(yíng)養(yǎng)時(shí)期有所提高。因此,秸稈覆蓋在大豆整個(gè)生育時(shí)期可以提高土壤含水量,且在大豆?fàn)I養(yǎng)生長(zhǎng)時(shí)期對(duì)土壤水熱的響應(yīng)最大。
(3)秸稈覆蓋量。秸稈覆蓋量會(huì)影響土壤的水熱狀況[42]。前人研究表明,在0-200cm土層中,秸稈覆蓋下農(nóng)田土壤含水量隨覆蓋量的增加而增加[43],這與本研究結(jié)果較為一致。在本研究中,免耕秸稈覆蓋的土壤含水量隨著秸稈覆蓋量增加而提高,而秸稈覆蓋處理下降低,進(jìn)行Meta分析時(shí)只對(duì)已發(fā)表的文獻(xiàn)進(jìn)行綜合常常會(huì)帶有系統(tǒng)性的正偏差[16]可能是導(dǎo)致上述結(jié)果的原因。多數(shù)研究表明[14,44],秸稈覆蓋下的土壤溫度隨覆蓋量的增加而降低,但李佳文[45]研究表明,在大豆播種后覆蓋秸稈,鼓粒中期-成熟期土壤溫度隨秸稈覆蓋量增加而增加,與本研究結(jié)果較為一致。因此,秸稈覆蓋下的土壤溫度隨秸稈覆蓋量的增加逐漸增加,但可能與大豆生育時(shí)期有關(guān)。
(4)土壤條件。土壤類型顯著影響土壤含水量,并且隨著土質(zhì)變粗土壤保水能力逐漸減弱[46]。本研究中,保護(hù)性耕作在壤土上提高土壤含水量比黏壤土上高,這可能是由于黏壤土黏粒含量比壤土高,較高的黏粒含量將限制大豆根系對(duì)土壤的穿透[47],因而在壤土中大豆根系的穿透力比黏壤土好,壤土的通氣透水性也較黏壤土好,土壤水分可下滲到深層土壤中。若收集的土壤深度數(shù)據(jù)在土壤類型中分布不均勻,則可能出現(xiàn)壤土的含水量比黏壤土高的現(xiàn)象。也有研究表明,免耕較深耕無(wú)覆蓋和深松有覆蓋在砂壤土上比黏壤土上節(jié)水效果好[48];免耕覆蓋較傳統(tǒng)耕作在砂質(zhì)壤土上的保水效果比在砂土和砂質(zhì)黏壤土好[49]。本研究未考慮土壤深度與土壤類型的協(xié)同作用對(duì)土壤含水量的影響,未來(lái)還需進(jìn)一步進(jìn)行研究。Yusefi等[50]通過(guò)研究秸稈覆蓋對(duì)淺層含鹽地下水土壤溫度的影響,表明秸稈覆蓋在壤土上土壤溫度的波動(dòng)率小于砂土,而在壤土和砂土上相同[17],這與本研究得出保護(hù)性耕作降低土壤溫度的幅度隨著土壤黏粒減少而降低不一致,這可能與土壤組成中的粉粒、砂粒含量有關(guān)。
在干旱條件下,作物對(duì)深層土壤水分的需求量大于表層土壤水分[51]。保護(hù)性耕作措施可以提高深層土壤含水量,是旱地農(nóng)業(yè)水分調(diào)控的主要技術(shù)之一[40]。在本研究中,各保護(hù)性耕作措施在不同的土壤深度均顯著提高了大豆農(nóng)田的土壤含水量,且免耕秸稈覆蓋在各土層提高土壤含水量最大,免耕次之,且在0-20cm耕層中土壤溫度降低幅度小。因此,保護(hù)性耕作提高土壤濕度的幅度隨土壤深度增加而降低。
本研究采用Meta分析方法定量了不同保護(hù)性耕作措施及不同條件下保護(hù)性耕作措施對(duì)土壤水熱的影響,其結(jié)果具有普遍性,但仍存在不足。其不足主要表現(xiàn)在:(1)由于國(guó)內(nèi)外做大豆研究的人較少,搜集的文獻(xiàn)數(shù)量受到限制;(2)未考慮到土壤類型與土壤深度,秸稈覆蓋量與大豆生育時(shí)期的協(xié)同作用及其它因素相互間的作用對(duì)土壤水熱的影響,也未考慮不同作物品種、施肥等對(duì)土壤水熱的影響;(3)本研究只對(duì)東北地區(qū)進(jìn)行了綜合分析,未考慮保護(hù)性耕作措施在東北不同氣候區(qū)的適用性。
(1)Meta分析表明,與傳統(tǒng)耕作相比,保護(hù)性耕作措施總體上具有增濕降溫效應(yīng),分別使土壤濕度顯著提高9.2%,土壤溫度顯著降低8.2%。
(2)保護(hù)性耕作對(duì)土壤水熱的影響因氣候條件的不同而不同,但在不同氣候條件下4種保護(hù)性耕作措施均能提高土壤濕度。
(3)秸稈覆蓋在大豆整個(gè)生育時(shí)期可以提高土壤含水量,且在大豆?fàn)I養(yǎng)生長(zhǎng)時(shí)期對(duì)土壤水熱的影響最大,土壤溫度還隨秸稈覆蓋量的增加而增加,但可能與大豆生育時(shí)期有關(guān)。
(4)保護(hù)性耕作降低土壤溫度的幅度隨著土壤黏粒減少而緩和,提高土壤濕度的幅度隨土壤深度增加而降低,其中免耕秸稈覆蓋不同土壤深度的蓄水保墑效果最明顯,在0-20cm土層提高了32.9%的土壤濕度。
[1] 李根.基于效率視角的中國(guó)大豆國(guó)際競(jìng)爭(zhēng)力提升問(wèn)題研究[D].長(zhǎng)春:吉林財(cái)經(jīng)大學(xué),2016.
Li G.Study on the improvement of China's soybean international competitiveness based on the perspective of efficiency[D].Changchun:Jilin University of Finance and Economics,2016.(in Chinese)
[2] 國(guó)家統(tǒng)計(jì)局.國(guó)家數(shù)據(jù)[EB/OL].https://data.stats.gov.cn/ easyquery.htm?cn=E0103, https://data.stats.gov.cn/easyquery. htm?cn=C01, 2021-01-15.
National Bureau of Statistics.National data [EB/OL]. https://data.stats.gov.cn/easyquery.htm?cn=E010,https:// data.stats.gov.cn/easyquery.htm?cn=C01,2021-01-15.(in Chinese)
[3] 張興義,劉曉冰.中國(guó)黑土研究的熱點(diǎn)問(wèn)題及水土流失防治對(duì)策[J].水土保持通報(bào),2020,40(4):340-344.
Zhang X Y,Liu X B.Key issues of mollisols research and soil erosion control strategies in China[J].Bulletin of Soil and Water Conservation,2020,40(4):340-344.(in Chinese)
[4] Gao Q Q,Ma L X,Fang Y Y,et al.Conservation tillage for 17 years alters the molecular composition of organic matter in soil profile[J].Science of The Total Environment,2020, 762:143116.
[5] Sana R U,Ijaz S S,Khan K S,et al.Soil nutrient status and crop productivity after 6 years of conservation tillage in a subtropical dryland[J].Arabian Journal of Geosciences, 2021,14(3):180.
[6] Topa D,Cara I G,Jit?reanu G.Long term impact of different tillage systems on carbon pools and stocks, soil bulk density,aggregation and nutrients:a field meta-analysis[J]. Catena,2021,199:105102.
[7] Huang Y W,Tao B,Zhu X C,et al.Conservation tillage increases corn and soybean water productivity across the Ohio River Basin[J].Agricultural Water Management,2021, 254:106963.
[8] Hou X Q,Li R.Interactive effects of autumn tillage with mulching on soil temperature,productivity and water use efficiency of rainfed potato in loess plateau of China[J]. Agricultural Water Management,2019,224(C):105747.
[9] Li H Y,Zhang Y H,Zhang Q,et al.Converting continuous cropping to rotation including subsoiling improves crop yield and prevents soil water deficit:a 12-yr in-situ study in the Loess Plateau,China[J].Agricultural Water Management, 2021,256:107062.
[10] 郭孟潔,李建業(yè),李健宇,等.實(shí)施16年保護(hù)性耕作下黑土土壤結(jié)構(gòu)功能變化特征[J].農(nóng)業(yè)工程學(xué)報(bào),2021,37(22): 108-118.
Guo M J,Li J Y,Li J Y,et al.Changes of soil structure and function after 16-year conservation tillage in black soil[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(22):108-118.(in Chinese)
[11] 陳學(xué)文,張曉平,梁愛珍,等.不同耕作方式對(duì)黑土農(nóng)田土壤溫濕效應(yīng)的影響[J].大豆科學(xué),2011,30(5):764-768.
Chen X W,Zhang X P,Liang A Z,et al.Effects of different tillage methods on soil temperature and humidity in black soil[J].Soybean Science,2011,30(5):764-768.(in Chinese)
[12] 邱野,王瑄.耕作模式對(duì)坡耕地土壤水分和大豆產(chǎn)量的影響[J].農(nóng)業(yè)工程學(xué)報(bào),2018,34(22):128-137.
Qiu Y,Wang X.Effects of tillage patterns on soil moisture and soybean yield in sloping farmland[J].Transactions of the Chinese Society of Agricultural Engineering,2018, 34(22):128-137.(in Chinese)
[13] 楊水源.耕作覆蓋方式對(duì)旱作大豆產(chǎn)量及土壤水熱效應(yīng)影響的研究[D].呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué),2017.
Yang S Y.Effects of tillage and mulching methods on soybean yield and soil hydrothermal effect in dry farming [D].Hohhot:Inner Mongolia Agricultural University,2017. (in Chinese)
[14] 董云云,王飛,韓劍橋.地表覆蓋對(duì)大豆田土壤水熱鹽及產(chǎn)量的影響[J].水土保持通報(bào),2020,40(01):43-50.
Dong Y Y,Wang F,Han J Q.Effects of land cover on soil moisture,heat,salt and yield of soybean field[J].Bulletin of Soil and Water Conservation,2020,40(1):43-50.(in Chinese)
[15] Gurevitch J,Koricheva J,Nakagawa S,et al.Meta-analysis and the science of research synthesis[J].Nature: International Weekly Journal of Science,2018, 555(7695): 175-182.
[16] 鄭鳳英,陸宏芳,彭少麟.整合分析在生態(tài)學(xué)應(yīng)用中的優(yōu)勢(shì)及存在的問(wèn)題[J].生態(tài)環(huán)境,2005(3):417-421.
Zheng F Y,Lu H F,Peng S L.Advantages and disadvantages in ecological meta-analyses[J].Ecology and Environmental Sciences,,2005(3):417-421.(in Chinese)
[17] 呂貽忠,李保國(guó).土壤學(xué)[M].北京:中國(guó)農(nóng)業(yè)出版社,2006
Lv Y Z,Li B G.Soil science[M].Beijing:China Agriculture Press,2006.(in Chinese)
[18] 鄭鳳英,彭少麟.Meta分析中幾種常用效應(yīng)值的介紹[J].生態(tài)科學(xué),2001(Z1):81-84.
Zheng F Y,Peng S L.The introduction of several commonly used effect values in meta-analysis[J].Scientia Ecologica Sinica,2001(Z1):81-84.(in Chinese)
[19] Adams D C,Gurevitch J,Rosenberg M S.Resampling tests for Meta-Analysis of Ecological Data[J].Ecology,1997, 78(4):1277-1283.
[20] 鄭鳳英,陸宏芳,彭少麟.整合分析中的非參數(shù)檢驗(yàn):重復(fù)取樣檢驗(yàn)法的實(shí)例應(yīng)用[J].生態(tài)環(huán)境,2004(4):616-618.
Zheng F Y,Lu H F,Peng S L.Nonparametric test in integrated analysis: a case study of repeated sampling test method[J].Ecology and Environment,2004(4):616-618.(in Chinese)
[21] 鄭侃,何進(jìn),李洪文,等.中國(guó)北方地區(qū)深松對(duì)小麥玉米產(chǎn)量影響的Meta分析[J].農(nóng)業(yè)工程學(xué)報(bào),2015,31(22):7-15.
Zheng K,He J,Li H W,et al.Meta-analysis on maize and wheat yield under subsoiling in Northern China[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(22):7-15.(in Chinese)
[22] Montenegro A A A,Abrantes J R C B,Lima J L M P D,et al.Impact of mulching on soil and water dynamics under intermittent simulated rainfall [J].Catena,2013,109:139- 149.
[23] 張華英,劉景輝,趙寶平,等.保護(hù)性耕作對(duì)風(fēng)沙區(qū)農(nóng)田土壤物理性狀及玉米產(chǎn)量的影響[J].干旱地區(qū)農(nóng)業(yè)研究, 2016,34(3):108-114.
Zhang H Y,Liu J H,Zhao B P,et al.Effects of conservation tillage on soil physical properties and maize yield in wind-sand area[J].Agricultural Research in the Arid Areas,2016,34(3):108-114.(in Chinese)
[24] Shaver T M,Peterson G A,Ahuja L R,et al.Soil sorptivity enhancement with crop residue accumulation in semiarid dryland no-till agroecosystems[J].Geoderma,2013,192: 254-258.
[25] 田慎重,王瑜,李娜,等.耕作方式和秸稈還田對(duì)華北地區(qū)農(nóng)田土壤水穩(wěn)性團(tuán)聚體分布及穩(wěn)定性的影響[J].生態(tài)學(xué)報(bào),2013,33(22):7116-7124.
Tian S Z,Wang Y,Li N,et al.Effects of tillage and straw systems on soil water-stable aggregate the distribution and stability in the North China Plain[J].Acta Ecologica Sinica,2013,33(22):7116-7124. (in Chinese)
[26] 沈曉琳,王麗麗,汪洋,等.保護(hù)性耕作對(duì)土壤團(tuán)聚體、微生物及線蟲群落的影響研究進(jìn)展[J].農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),2020,37(3):361-370.
Shen X L,Wang L L,Wang Y,et al.Effects of conservation tillage on soil aggregates, microorganisms and nematode communities[J].Journal of Agricultural Resources and Environment,2020,37(3):361-370.(in Chinese)
[27] 曹敏建.耕作學(xué)(第二版) [M].北京:中國(guó)農(nóng)業(yè)大學(xué)出版社,2013:88-89.
Cao M J.Farming science (second edition)[M].Beijing: China Agricultural University Press,2013:88-89.(in Chinese)
[28] 劉爽,張興義.保護(hù)性耕作下黑土水熱動(dòng)態(tài)研究[J].干旱地區(qū)農(nóng)業(yè)研究,2010,28(6):15-22.
Liu S,Zhang X Y. Dynamics of soil water and temperature under conservational soil tillage[J]. Agricultural Research in the Arid Areas,2010, 28(6):15-22. (in Chinese)
[29] 賈洪雷,馬成林,劉昭辰,等.北方旱作農(nóng)業(yè)區(qū)蓄水保墑耕作模式研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2007(12):190-194.
Jia H L,Ma C L,Liu Z C,et al. Overview of study on the tillage mode of water storage and soil moisture conservation for dry farming region in Northern China[J]. Journal of Agricultural Machinery,2007(12):190-194.(in Chinese)
[30] 于慶峰,苗慶豐,史海濱,等.耕作方式對(duì)秸稈覆蓋玉米田春播期土壤水熱鹽狀況的影響[J].水土保持研究,2019, 26(3):265-268.
Yu Q F,Miao Q F,Shi H B,et al.Effects of tillage methods on soil water, heat and salt of field maize in the period of spring sowing[J].Research of Soil and Water Conservation, 2019,26(3):265-268.(in Chinese)
[31] 武淑娜,楊樹青,李文娟,等.覆蓋耕作對(duì)嶺南旱作大豆土壤水熱及產(chǎn)量的影響[J].節(jié)水灌溉,2019(8):48-53.
Wu S N,Yang S Q,Li W J,et al.Effects of mulch tillage on soil moisture,heat and yield of soybean under upland cultivation in Lingnan[J].Water Saving Irrigation,2019(8): 48-53.(in Chinese)
[32] 劉爽,王雅,徐志超.保護(hù)性耕作在不同氣候區(qū)域研究現(xiàn)狀[J].山西農(nóng)業(yè)科學(xué),2018,46(5):862-866.
Liu S,Wang Y,Xu Z C.Research status of conservation tillage in different climate areas[J].Journal of Shanxi Agricultural Sciences,2018,46(5):862-866.(in Chinese)
[33] Dahiya R,Ingwersen J,Streck T.The effect of mulching and tillage on the water and temperature regimes of a loess soil:experimental findings and modeling[J].Soil & Tillage Research,2007,96(1):52-63.
[34] Chen Y,Liu S,Li H,et al.Effects of conservation tillage on corn and soybean yield in the humid continental climate region of Northeast China[J].Soil & Tillage Research, 2011,115:56-61.
[35] Kassam A,Friedrich T,Derpsch R,et al.Conservation agriculture in the dry Mediterranean climate[J].Field Crops Research,2012,132:7-17.
[36] 宋亞麗.秸稈帶狀覆蓋不同種植方式和播量對(duì)旱地冬小麥土壤水分的影響[D].蘭州:甘肅農(nóng)業(yè)大學(xué),2016.
Song Y L.Effects of straw strip mulching on soil water content of winter wheat in dryland [D].Lanzhou:Gansu Agricultural University,2016.(in Chinese)
[37] Sturz A V,Carter M R,Johnston H W.A review of plant disease, pathogen interactions and microbial antagonism under conservation tillage in temperate humid agriculture[J]. Soil & Tillage Research,1997,41(3):169-189.
[38] 曹雪.黃土高原坡耕地不同耕作措施水土保持效應(yīng)研究[D].楊凌:西北農(nóng)林科技大學(xué),2017.
Cao X.Effects of different tillage measures on soil and water conservation of sloping farmland in the Loess Plateau[D]. Ynagling:Northwest A & F University,2017.(in Chinese)
[39] 蔡太義,賈志寬,黃耀威,等.中國(guó)旱作農(nóng)區(qū)不同量秸稈覆蓋綜合效應(yīng)研究進(jìn)展Ⅰ:不同量秸稈覆蓋的農(nóng)田生態(tài)環(huán)境效應(yīng)[J].干旱地區(qū)農(nóng)業(yè)研究,2011,29(5):63-68.
Cai T Y,Jia Z K,Huang Y W,et al.Research progress of comprehensive effect under different rates straw mulch on the rainfed farming areas,China I:effect of different rates of straw mulch on farmland ecoenviroment[J].Agricultural Research in the Arid Areas,2011,29(05):63-68.(in Chinese)
[40] 王兆偉,郝衛(wèi)平,龔道枝,等.秸稈覆蓋量對(duì)農(nóng)田土壤水分和溫度動(dòng)態(tài)的影響[J].中國(guó)農(nóng)業(yè)氣象,2010,31(2):244-250.
Wang Z W,Hao W P,Gong D Z,et al.Effects of straw mulch amount on dynamic changes of soil moisture and temperature in farmland[J].Chinese Journal of Agrometeorology, 2010,31(2):244 -250.(in Chinese)
[41] 鄒文秀,韓曉增,嚴(yán)君,等.耕翻和秸稈還田深度對(duì)東北黑土物理性質(zhì)的影響[J].農(nóng)業(yè)工程學(xué)報(bào),2020,36(15):9-18.
Zou W X,Han X Z,Yan J,et al.Effects of incorporation depth of tillage and straw returning on physical properties of black soil in Northeast China[J].Transactions of the Chinese Society of Agricultural Engineering,2020,36(15): 9-18.(in Chinese)
[42] 趙宏波,何進(jìn),李洪文,等.秸稈還田方式對(duì)種床土壤物理性質(zhì)和小麥生長(zhǎng)的影響[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018, 49(S1): 60-67.
Zhao H B,He J,Li H W,et al.Effects of straw returning manners on seedbed soil physical properties and winter wheat growth[J].Transactions of the Chinese Society for Agricultural Machinery,2018,49(S1):60-67.(in Chinese)
[43] 劉婷,賈志寬,張睿,等.秸稈覆蓋對(duì)旱地土壤水分及冬小麥水分利用效率的影響[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2010,38(7):68-76.
Liu T,Jia Z K,Zhang R,et al.Effects of straw mulching on soil moisture and water use efficiency of winter wheat in dryland[J].Journal of Northwest A & F University(Natural Science Edition),2010,38(7):68-76.(in Chinese)
[44] 張敬濤,劉婧琦,趙桂范,等.免耕栽培不同秸稈覆蓋量下土壤溫度變化研究[J].中國(guó)農(nóng)學(xué)通報(bào),2015,31(27):224- 228.
Zhang J T,Liu J Q,Zhao G F,et al.Study on soil temperature variation of no-till cultivation with different amounts of stalk mulch[J].Chinese Agricultural Science Bulletin,2015, 31(27):224-228.(in Chinese)
[45] 李佳文.傳統(tǒng)耕作條件下農(nóng)田土壤水熱及大豆生長(zhǎng)對(duì)秸稈覆蓋時(shí)期與覆蓋量的響應(yīng)研究[D].哈爾濱:東北農(nóng)業(yè)大學(xué),2020.
Li J W.Responses of soil hydro-thermal and soybean growth on straw mulching period and straw mulching quantity under conventional tillage[D].Harbin:Northeast Agricultural University,2020.(in Chinese)
[46] 馬麗,王青,沈凇濤,等.岷江上游雜谷腦流域耕作區(qū)壤土和粉壤土的理化性質(zhì)及肥力異質(zhì)性[J].干旱區(qū)資源與環(huán)境,2018,32(11):144-149.
Ma L,Wang Q,Shen S T,et al.The heterogeneity of physicochemical properties of cultivated soil and silt loam in Zagunao river basin,the upper Minjiang river[J].Journal of Arid Land Resources and Environment,2018,32(11): 144-149.(in Chinese)
[47] Alston D G,Schmitt D P.Population density and spatial pattern of Heterodera glycines in relation to soybean phenology[J].Journal of Nematology,1987,19(3):336-345.
[48] 車建明,劉洪祿,趙立新.夏玉米免耕節(jié)水效果的研究[J].灌溉排水,2002(1):53-54.
Che J M,Liu H L,Zhao L X. Water-saving effects of non-tillage in corn[J].Irrigation and Drainage,2002(1):53- 54.(in Chinese)
[49] 劉連華,陳源泉,楊靜,等.免耕覆蓋對(duì)不同質(zhì)地土壤水分與作物產(chǎn)量的影響[J].生態(tài)學(xué)雜志,2015,34(2):393-398.
Liu L H,Chen Y Q,Yang J,et al.Effects of no-tillage mulch on soil moisture and crop yield of different texture[J]. Chinese Journal of Ecology,2015,34(2):393-398. (in Chinese)
[50] Yusefi A,Firouzi A F,Aminzadeh M.The effects of shallow saline groundwater on evaporation,soil moisture, and temperature distribution in the presence of straw mulch[J]. Hydrology Research,2020,51(4):720-738.
[51] Zegada-Lizarazu W,Iijima M.Hydrogen stable isotope analysis of water acquisition ability of deep roots and hydraulic lift in sixteen food crop species[J].Plant Production Science, 2004,7(4):427-434.
Hydrothermal Effects of the Conservation Tillage in Soybean Farmland in Northeast China: a Meta-analysis
GONG Xiao-ya, ZHAO Jin,YANG Xiao-guang
(College of Resources and Environment, China Agricultural University, Beijing 100193, China)
Based on the soil temperature and humidity data of soybean farmland under conservation tillage in Northeast China in the published article, the impact of conservation tillage measures on the soil hydrothermal status of soybean farmland in Northeast China was quantitatively assessed by using conventional tillage (CT) as a control, no-tillage (NT), reduced tillage (RT), straw mulching (SM), and no-till straw mulching (NTSM) as treatments. The results showed: compared with CT, conservation tillage increased the soil volume water content of 0-170cm soil layer in soybean farmland in Northeast China by 9.2%, and reduced the temperature of the shallow soil layer (0-30cm) by 8.2%. Four conservation tillage could increase soil moisture under different climatic conditions; straw mulching could increase soil moisture content throughout the growth period of soybeans, and the effect on soil hydrothermal was greatest during the nutrition period of soybean, and soil temperature increased with the increase of straw mulching; the magnitude of soil temperature reduction by conservation tillage decreases with the decrease of soil clay particles, the magnitude of soil moisture increased by conservation tillage decreases with the increase of soil depth. Among them, NTSM at different soil depths was the most obvious effect of water storage and moisture retention, and the soil moisture in the soil layer of 0-20cm was increased by 32.9%. In summary, conservation tillage could increase soil moisture but reduce soil temperatures. Temperature, precipitation, growth period, straw mulching amount, soil type and soil depth all had an impact on soil hydro-thermality in soybean farmland under conservation tillage.
Northeast China; Soybean; Conservation tillage; Soil hydrothermal; Meta-analysis
10.3969/j.issn.1000-6362.2022.11.001
弓曉雅,趙錦,楊曉光.東北大豆農(nóng)田保護(hù)性耕作水熱效應(yīng)的Meta分析[J].中國(guó)農(nóng)業(yè)氣象,2022,43(11):867-880
2021?12?30
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2019YFA0607402);中國(guó)農(nóng)業(yè)大學(xué)2115人才工程
趙錦,副教授,研究方向?yàn)闅夂蜃兓瘜?duì)農(nóng)業(yè)的影響與適應(yīng),E-mail:jinzhao@cau.edu.cn
弓曉雅,E-mail:gongxiaoya111@163.com