国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

轉(zhuǎn)色期葉面氮素調(diào)控對(duì)釀酒葡萄‘赤霞珠’品質(zhì)的影響

2022-11-13 08:00:34馬婷慧
關(guān)鍵詞:轉(zhuǎn)色苯丙氨酸葉面

張 舒,王 晶,馬婷慧,王 銳

轉(zhuǎn)色期葉面氮素調(diào)控對(duì)釀酒葡萄‘赤霞珠’品質(zhì)的影響

張 舒1,王 晶1,馬婷慧2,王 銳1※

(1. 寧夏大學(xué)農(nóng)學(xué)院,銀川 750021;2. 寧夏農(nóng)林科學(xué)院,銀川 750011)

寧夏賀蘭山東麓現(xiàn)階段水肥一體輕簡(jiǎn)化栽培模式下釀酒葡萄對(duì)氮素營(yíng)養(yǎng)需求發(fā)生了巨大變化,如果繼續(xù)沿用傳統(tǒng)氮肥施用方式可能會(huì)引發(fā)釀酒葡萄成熟過(guò)快、漿果內(nèi)含物累計(jì)不足、果皮中酵母可同化氮偏低等問(wèn)題。以噴清水為對(duì)照,在釀酒葡萄轉(zhuǎn)色期內(nèi)葉面噴施硫酸銨、硝酸銨鈣、尿素、苯丙氨酸及谷氨酸5種水溶性氮源,研究不同氮源對(duì)釀酒葡萄‘赤霞珠’品質(zhì)的影響。結(jié)果表明:轉(zhuǎn)色期葉面氮素調(diào)控的葡萄漿果可溶性固形物以硫酸銨處理最佳,高達(dá)29.21%;花色苷在尿素處理下含量高達(dá)2.28 mg/g,較其余氮素處理提高16.33%~55.10%;單寧含量以苯丙氨酸處理最佳,高達(dá)19.88 mg/g;總酚含量在苯丙氨酸處理下高達(dá)19.56 mg/g,較其余氮素處理提高8.91%~27.34%。綜合分析得出,轉(zhuǎn)色期葉面噴施苯丙氨酸和尿素兩種氮源均可改善釀酒葡萄生長(zhǎng)發(fā)育,提升漿果品質(zhì)。

氮素;尿素;酚;釀酒葡萄;轉(zhuǎn)色期;酵母可同化氮

0 引 言

氮素是釀酒葡萄生長(zhǎng)過(guò)程中不可或缺的礦質(zhì)營(yíng)養(yǎng)元素[1],能促進(jìn)蛋白質(zhì)和葉綠素的形成,提升光合和養(yǎng)分累積能力[2]。它在影響釀酒葡萄生長(zhǎng)發(fā)育和品質(zhì)形成[3]的同時(shí)也是葡萄酒后期發(fā)酵環(huán)節(jié)所需酵母可同化氮的重要來(lái)源。氮素供應(yīng)不足時(shí),會(huì)導(dǎo)致樹體發(fā)育不良,釀酒葡萄產(chǎn)量及品質(zhì)降低,氮過(guò)剩則會(huì)導(dǎo)致果實(shí)貪青晚熟,甚至引發(fā)土壤面源污染[4]。針對(duì)傳統(tǒng)氮肥施用存在的問(wèn)題及釀酒葡萄生育期需氮差異,在釀酒葡萄生產(chǎn)上進(jìn)行精準(zhǔn)氮素調(diào)控顯得尤為重要。

在農(nóng)業(yè)生產(chǎn)中,對(duì)鮮食葡萄的要求沒(méi)有釀酒葡萄高,只要果粒大、產(chǎn)量高、糖酸適中,有較好的外觀和口感就能達(dá)到鮮食葡萄的標(biāo)準(zhǔn)。但釀酒葡萄對(duì)其品質(zhì)具有較高的要求,釀酒葡萄需果粒小、果穗散且漿果含有豐富的糖、酸和酚類物質(zhì)。農(nóng)戶常采用傳統(tǒng)栽培技術(shù),常在釀酒葡萄萌芽期和展葉期施用大量氮肥促進(jìn)枝條生長(zhǎng),在后期控氮促進(jìn)生殖生長(zhǎng)。但采用傳統(tǒng)栽培技術(shù)會(huì)導(dǎo)致釀酒葡萄成熟過(guò)快,漿果內(nèi)含物累計(jì)不足等問(wèn)題,因此,需要改良傳統(tǒng)栽培技術(shù)以有效提高釀酒葡萄品質(zhì)。釀酒葡萄進(jìn)入轉(zhuǎn)色期,樹體營(yíng)養(yǎng)生長(zhǎng)減緩,葉面老化導(dǎo)致角質(zhì)層臘有裂痕,通過(guò)在釀酒葡萄轉(zhuǎn)色期葉面噴施氮肥,不僅能促進(jìn)葉片表皮對(duì)氮素的吸收,還能及時(shí)、高效地滿足漿果對(duì)氮的需求,促進(jìn)漿果中氮素積累,提高漿果內(nèi)含物及酵母可同化氮量,以改善釀酒葡萄品質(zhì)。

酵母可同化氮是葡萄酒發(fā)酵的重要元素之一。國(guó)外釀酒葡萄采取調(diào)虧方式施氮,該類方法可能會(huì)導(dǎo)致釀酒葡萄漿果中無(wú)機(jī)態(tài)氮素、游離氨基酸含量過(guò)低,葡萄汁中酵母可同化氮不足,引發(fā)葡萄酒酒精發(fā)酵環(huán)節(jié)中止[5-6]。氮素是酵母發(fā)酵的動(dòng)力來(lái)源,也是揮發(fā)性物質(zhì)的前體,Herbert等[7]研究發(fā)現(xiàn)施用氮肥可提高葡萄汁中的總氮和氨基酸濃度,提高葡萄汁中的酵母可同化氮濃度有利于調(diào)節(jié)發(fā)酵酒中香氣物質(zhì)的形成[8-10],在發(fā)酵前補(bǔ)充足夠的初始酵母可同化氮較后期添加酵母可同化氮對(duì)葡萄酒的品質(zhì)改善效果更佳[11]。轉(zhuǎn)色期開始及轉(zhuǎn)色后葉面噴施氮肥可以有效提高葡萄的酵母可同化氮含量,促進(jìn)香氣物質(zhì)的合成和酚類物質(zhì)的積累[12]??姵声i等[13]認(rèn)為葡萄果實(shí)酵母可同化氮含量可能主要與銨態(tài)氮含量有關(guān),其含量直接影響葡萄酒中高級(jí)醇、酯類及揮發(fā)性脂肪酸等香氣成分的形成。氮素形態(tài)的不同,對(duì)釀酒葡萄生理特性和品質(zhì)指標(biāo)都有一定的影響。Portu等[14]研究發(fā)現(xiàn)葉面施用尿素和苯丙氨酸可促進(jìn)花色苷、酚類物質(zhì)的生成,改善葡萄和葡萄酒中黃酮含量和果香。釀酒葡萄葉面噴施氮肥后葡萄汁中產(chǎn)生的混合氮源能滿足不同酵母的氮源需求,加快糖的消耗,促進(jìn)乙醇產(chǎn)量的增加[15],促進(jìn)香氣物質(zhì)的生成[16]。初建青等[17]在研究尿素對(duì)氮代謝相關(guān)基因表達(dá)的過(guò)程中發(fā)現(xiàn)適當(dāng)提高尿素水平既可以提高氮代謝基因的表達(dá)水平,又能提高果實(shí)大小等果形指數(shù)。Portu等[18]在對(duì)葡萄酒中酚類物質(zhì)的研究中得出,苯丙氨酸和尿素有助于葡萄酒中花色苷和黃酮醇的生成和積累,但是對(duì)黃烷醇和非類黃酮的影響較小。前人開展轉(zhuǎn)色期不同葉面氮素類型、用量對(duì)含氮化合物、酚類物質(zhì)及氮代謝基因的研究發(fā)現(xiàn)施用硝態(tài)氮更利于提升葡萄葉片中葉綠素含量,而施用銨態(tài)氮對(duì)葡萄形態(tài)指標(biāo)的影響效果更佳[19-22]。

葡萄的低氮利用效率要求選取效果最佳的氮素和施用方式[23],關(guān)于氮素施用方式及施用量對(duì)葡萄產(chǎn)量、品質(zhì)的作用效果已有諸多研究,但有關(guān)釀酒葡萄轉(zhuǎn)色期氮素調(diào)控對(duì)其生理、品質(zhì)及酵母可同化氮的影響的報(bào)道有限。本文旨在研究釀酒葡萄轉(zhuǎn)色期氮素調(diào)控對(duì)葡萄生理特征、品質(zhì)、酵母可同化氮的影響,以期為釀酒葡萄生產(chǎn)實(shí)踐提供參考,為生產(chǎn)優(yōu)質(zhì)葡萄酒提供優(yōu)良原料。

1 材料與方法

1.1 研究區(qū)概況

試驗(yàn)地位于寧夏賀蘭山東麓釀酒葡萄核心產(chǎn)區(qū)永寧縣閩寧鎮(zhèn)立蘭酒莊葡萄基地內(nèi)(38°28′N,105°97′E),該地屬于典型的大陸性氣候,年均氣溫約為8.7 ℃,全年≥10℃活動(dòng)積溫約3 246 ℃,年無(wú)霜期約167 d,年均降水量210 mm左右,年均蒸發(fā)量約1 730 mm,年日照時(shí)數(shù)為2 850~3 105 h。葡萄園土壤類型為礫質(zhì)淡灰鈣土,富含礫石,土質(zhì)疏松,透氣性好,晝夜溫差大。供試材料為8年生釀酒葡萄品種‘赤霞珠’,藤蔓間隔為0.6 m× 3.5 m,南北行向定植,架型為“廠”字型。灌溉方式為滴灌(灌溉定額2 250 m3/hm2),采用內(nèi)置貼片滴灌帶,滴頭流量為2.1 L/h,滴灌帶毛管直徑為16 mm,滴灌帶距地高0.3 m,滴頭間距0.3 m。葡萄園土壤理化性質(zhì)見表1。

表1 葡萄園土壤理化性質(zhì)

1.2 試驗(yàn)設(shè)計(jì)

2021年開展試驗(yàn),試驗(yàn)采用區(qū)組數(shù)等于重復(fù)數(shù)的單因素隨機(jī)區(qū)組設(shè)計(jì),共設(shè)6個(gè)處理。分別為葉面噴施清水、硫酸銨、硝酸銨鈣、尿素、苯丙氨酸及谷氨酸,以葉面噴施清水作為對(duì)照,重復(fù)3次,共18個(gè)小區(qū),各小區(qū)20棵葡萄樹,各處理包含60棵葡萄樹。各處理氮肥用量以1.5‰尿素(質(zhì)量比)等質(zhì)量純氮量進(jìn)行折算(表2),選擇晴朗無(wú)風(fēng)天氣,在09:00之前使用背負(fù)式電動(dòng)噴霧器對(duì)釀酒葡萄葉面正反面以及果實(shí)進(jìn)行全方位噴施,在釀酒葡萄轉(zhuǎn)色期分3次(7月15日、7月31日及8月13日)進(jìn)行葉面噴施。每年春季基施有機(jī)肥30 t/hm2,除試驗(yàn)葉面施氮肥外,不施任何化肥,試驗(yàn)期間各處理灌溉、修剪及病蟲害防治等栽培管理方式與葡萄園一致。

表2 葉面噴施氮素類型及用量

1.3 測(cè)定方法

1.3.1 釀酒葡萄葉片光合特性

于2021年8月22日09:00,采用CI-340手持光合測(cè)量系統(tǒng)(精度±2%)測(cè)定葡萄各標(biāo)記樹的果穗以上成熟完全且未衰老的第12~14片葉片的光合特性指標(biāo):凈光合速率、氣孔導(dǎo)度、蒸騰速率和胞間二氧化碳濃度;葉片水分利用率由光合速率/蒸騰速率算得。采集第12~14片葉片,用裝有干冰的取樣箱迅速帶回實(shí)驗(yàn)室,葉片葉綠素含量采用分光光度法(UV-1800PC,±0.5 nm,上海美譜達(dá)儀器有限公司)測(cè)定;葉面積先用中國(guó)佳能LiDE200掃描儀器(4 800×1 200 dpi)進(jìn)行葉片掃描后使用ImageJ軟件進(jìn)行測(cè)定[24]。

1.3.2 釀酒葡萄形態(tài)及產(chǎn)量

在釀酒葡萄內(nèi)核變成棕色,完全成熟后(9月23日),將每個(gè)小區(qū)標(biāo)記樹的葡萄全部采摘單獨(dú)測(cè)產(chǎn),得到其釀酒葡萄單株產(chǎn)量;將果粒全部剝離后稱質(zhì)量,求取百粒質(zhì)量;隨機(jī)選取釀酒葡萄30粒,用游標(biāo)卡尺(±0.1 mm)測(cè)定其粒徑;隨機(jī)選取釀酒葡萄18穗,用卷尺(±0.1 mm)測(cè)定其果穗長(zhǎng)。

1.3.3 釀酒葡萄漿果品質(zhì)

釀酒葡萄成熟后,各小區(qū)隨機(jī)選取18穗釀酒葡萄裝入相應(yīng)的自封袋內(nèi),用記號(hào)筆標(biāo)記,運(yùn)回實(shí)驗(yàn)室進(jìn)行果實(shí)品質(zhì)的測(cè)定??扇苄怨绦挝镞x取釀酒葡萄30粒采用手持糖量計(jì)法(精度±0.2%)測(cè)定;將所有果實(shí)混合榨汁,可滴定酸采用0.10 mol/L氫氧化鈉的標(biāo)準(zhǔn)溶液滴定法測(cè)定;單寧采用福林-丹寧斯法測(cè)定[25];總酚采用福林-肖卡法測(cè)定;總花色苷采用pH示差法測(cè)定。

1.3.4 釀酒葡萄酵母可同化氮測(cè)定

釀酒葡萄成熟后,采摘完畢后將所有果實(shí)混合榨汁,采用伯胺氮(Primary Amine Nitrogen, PAN)測(cè)定方法和氨氮(AMMONIA)測(cè)定方法,在Y15葡萄酒分析儀上(西班牙BioSystems S.A)進(jìn)行測(cè)定。

可同化氮質(zhì)量濃度(mg/L)=0.82AMMONIA+PAN(1)

1.4 分析與統(tǒng)計(jì)

試驗(yàn)數(shù)據(jù)采用Microsoft Excel 2010軟件進(jìn)行整理,用SPSS 25.0軟件進(jìn)行主成分分析和方差分析,表中所有數(shù)據(jù)均表示為3次重復(fù)的平均值±標(biāo)準(zhǔn)差,并采用最小顯著差異法(Least Significant Difference,LSD)進(jìn)行多重比較(=0.05)。

2 結(jié)果與分析

2.1 葉源氮素調(diào)控對(duì)釀酒葡萄光合特征的影響

如表3所示,葉面積受不同氮源葉面噴施影響有所不同,其中苯丙氨酸和尿素效果最好,較對(duì)照顯著提高23.20%和21.08%。各施氮處理胞間CO2濃度均有不同程度的降低,硝酸銨鈣、尿素和谷氨酸顯著下降5.79%、3.94%和9.38%,硫酸銨和苯丙氨酸無(wú)顯著降低。葉面噴施不同氮素均可提升釀酒葡萄葉片的氣孔導(dǎo)度,苯丙氨酸、硝酸銨鈣、尿素、谷氨酸和硫酸銨依次較對(duì)照顯著提高44.18%、38.86%、37.99%、28.91%和13.26%。葉面噴施尿素和硝酸銨鈣對(duì)葉片凈光合速率提升效果最好,較對(duì)照顯著提高43.46%和39.26%,其次是苯丙氨酸、谷氨酸,分別提高35.10%、24.25%。

表3 葉源氮素調(diào)控對(duì)釀酒葡萄葉片光合特征的影響

注:同列不同小寫字母表示處理間差異顯著(<0.05),下同。

Note: Different lowercase letters at the same column indicate significant difference among treatments (<0.05), the same below.

2.2 葉源氮素調(diào)控對(duì)釀酒葡萄葉片葉綠素含量的影響

如表4所示,噴施各種葉面肥均顯著增加葉綠素a含量,其中噴施硝酸銨鈣和尿素對(duì)葉片葉綠素a含量提高效果最好且數(shù)值相同,較對(duì)照平均顯著提高14.39%。葉綠素b在硝酸銨鈣處理下顯著性最高,較對(duì)照和其他施氮處理顯著提高38.64%、24.49%、35.56%、22.00%和69.44%,只有在谷氨酸處理下葉綠素b含量有所降低。葉面噴施尿素對(duì)類胡蘿卜素影響最佳,較對(duì)照、苯丙氨酸和谷氨酸顯著提高42.31%、15.63%和37.04%,其次為硫酸銨和硝酸銨鈣處理效果較好,較對(duì)照平均顯著提高30.70%。各施氮處理下葉綠素含量均有所提升,其中葉面噴施硝酸銨鈣顯著性最高,較對(duì)照顯著提高20.22%,其余提高效果依次是尿素、苯丙氨酸和硫酸銨。

表4 葉源氮素調(diào)控對(duì)釀酒葡萄葉片葉綠素含量的影響

2.3 葉源氮素調(diào)控對(duì)釀酒葡萄形態(tài)及產(chǎn)量的影響

如表5所示,在葉面噴施不同氮源中,尿素和谷氨酸處理下的果實(shí)粒徑提高最為顯著,較對(duì)照分別顯著提高25.96%、25.34%。穗長(zhǎng)只在谷氨酸下增長(zhǎng)顯著,較對(duì)照及其他處理分別顯著提高13.61%、8.53%、5.57%、4.01%和7.68%。相比對(duì)照,葡萄果實(shí)百粒質(zhì)量除了在硫酸銨處理下顯著降低7.42%外,在其他處理下均有顯著性提高,其中,尿素和谷氨酸最顯著提高了34.93%和34.09%,其余提升效果依次是硝酸銨鈣和苯丙氨酸,分別顯著提升了15.78%和6.05%。釀酒葡萄單株產(chǎn)量在谷氨酸處理下顯著性最高,較噴施清水提高12.66%,硫酸銨、硝酸銨鈣、尿素之間顯著性一致,且數(shù)值相同。

表5 葉源氮素調(diào)控對(duì)釀酒葡萄形態(tài)及產(chǎn)量的影響

2.4 葉源氮素調(diào)控對(duì)釀酒葡萄品質(zhì)及酵母可同化氮的影響

如表6所示,葉面噴施各類氮素均可提高漿果可溶性固形物含量,硫酸銨效果最好,較對(duì)照顯著提高4.75百分點(diǎn)。各類氮素調(diào)控途徑對(duì)漿果可滴定酸和糖酸比影響不大。噴施大部分氮素能增加漿果中單寧、花色苷和總酚含量。單寧在苯丙氨酸處理下顯著性最高,其次是硫酸銨和硝酸銨鈣,較對(duì)照分別顯著提高25.58%、18.89%和15.22%,尿素和谷氨酸無(wú)顯著提升。葉面噴施尿素最顯著增加花色苷含量,較對(duì)照提高85.37%,較其余處理提高10.14%~55.10%。葉面噴施苯丙氨酸對(duì)釀酒葡萄果實(shí)中總酚含量提升效果最好,較對(duì)照顯著提高31.63%,較其余施氮處理顯著提高8.91%~27.34%,其余提升效果依次是尿素、硫酸銨。

酵母可同化氮濃度只在硫酸銨處理下較對(duì)照有所降低,在其余各處理下均有顯著性提高,其中以硝酸銨鈣處理效果最佳,較對(duì)照顯著提高41.95%,較其余施氮處理顯著提高9.40%~48.00%,其余提升效果依次是谷氨酸、尿素、苯丙氨酸,較對(duì)照分別顯著提高29.76%、25.85%、5.37%。

表6 葉源氮素調(diào)控對(duì)釀酒葡萄品質(zhì)和酵母可同化氮的影響

2.5 葉源氮素調(diào)控對(duì)釀酒葡萄光合及品質(zhì)的綜合評(píng)價(jià)

在葉源氮素調(diào)控下釀酒葡萄光合及品質(zhì)的評(píng)價(jià)中,以釀酒葡萄的凈光合速率、胞間CO2濃度、氣孔導(dǎo)度、葉綠素、酵母可同化氮、可溶性固形物、可滴定酸、單寧、花色苷和總酚10個(gè)有代表性的指標(biāo)為評(píng)價(jià)參數(shù),根據(jù)各評(píng)價(jià)參數(shù)降維分析得到3個(gè)主成分,主要貢獻(xiàn)率分別為59.52%、22.13%、11.77%。對(duì)3個(gè)主成分構(gòu)建得分模型,見式(2)~式(4):

1=0.2991+0.3552+0.253+0.3084+0.2825+

0.1596+0.3837+0.3228+0.3399+0.39610(2)

2=?0.2231?0.1582?0.4223+0.2644?0.3795+

0.5816+0.2397+0.348X8+0.0239?0.12710(3)

3=0.4351?0.0422+0.1523?0.4814?0.4095+

0.2866?0.0927?0.1838+0.5089?0.11210(4)

式中1~3表示不同葉源氮素處理各主成分得分,1~10表示釀酒葡萄10個(gè)指標(biāo)數(shù)值,表示不同葉源氮素處理綜合得分。

分別計(jì)算各主成分得分,以各主成分相應(yīng)的方差貢獻(xiàn)率為權(quán)重,對(duì)3個(gè)主成分得分權(quán)重進(jìn)行加和,建立綜合評(píng)價(jià)函數(shù):=0.5951+0.2212+0.1183,計(jì)算綜合得分及排名,如表7所示。

表7 葉源氮素調(diào)控對(duì)釀酒葡萄光合及品質(zhì)的綜合評(píng)價(jià)

注:1~3為不同葉源氮素各主成分得分,為不同葉源氮素綜合得分。

Note:1-3are the scores of each principal component of nitrogen from different leaf sources, andis the comprehensive score of nitrogen from different leaf sources.

由表7可知,在釀酒葡萄轉(zhuǎn)色期葉面噴施不同氮素的綜合效果均高于噴施清水,說(shuō)明在釀酒葡萄轉(zhuǎn)色期進(jìn)行葉面噴施氮素對(duì)其光合特性及果實(shí)品質(zhì)有提高效果,苯丙氨酸和尿素處理提高效果最好,綜合得分排名由大到小依次為苯丙氨酸、尿素、硝酸銨鈣、谷氨酸、硫酸銨、清水。

3 討 論

轉(zhuǎn)色期釀酒葡萄生長(zhǎng)重心主要在漿果的養(yǎng)分積累,因其所需氮素較少,葉面噴施能迅速、高效補(bǔ)充生殖生長(zhǎng)所需氮素,直接進(jìn)入各種代謝途徑,不與其他離子產(chǎn)生拮抗影響吸收[26]。總體來(lái)看,本試驗(yàn)中釀酒葡萄形態(tài)和產(chǎn)量指標(biāo)在不同氮源處理下有所提升,這與Verdenal等[27]研究結(jié)果相符。其中谷氨酸對(duì)釀酒葡萄形態(tài)及產(chǎn)量影響最為明顯,分析原因可能是谷氨酸最易被葉片吸收[28],促進(jìn)釀酒葡萄營(yíng)養(yǎng)生長(zhǎng),影響果實(shí)形態(tài)及產(chǎn)量。

釀酒葡萄光合特性與果實(shí)品質(zhì)息息相關(guān)。本研究表明在某些葉源氮素調(diào)控下,胞間二氧化碳濃度有所下降,而氣孔導(dǎo)度、蒸騰速率和凈光合速率有不同程度提高,說(shuō)明葉面噴施氮素,可有效提升葉肉細(xì)胞光合活性。分析原因,一方面,在轉(zhuǎn)色期葉面噴施氮素能促進(jìn)葉片生長(zhǎng),增加光合面積,另一方面,補(bǔ)充氮素能提高葉綠素含量,利于光合作用。其中在硝酸銨鈣、尿素和谷氨酸處理下胞間二氧化碳濃度較對(duì)照顯著降低了5.79%~9.38%,氣孔導(dǎo)度在苯丙氨酸、硝酸銨鈣、尿素和谷氨酸處理下提高效果最佳,葉片凈光合速率以尿素、硝酸銨鈣、苯丙氨酸和谷氨酸處理最佳。這與汪長(zhǎng)偉[29]研究發(fā)現(xiàn)氣孔導(dǎo)度、蒸騰速率與凈光合速率成正相關(guān),胞間二氧化碳濃度與凈光合速率成負(fù)相關(guān)相符。其中苯丙氨酸和谷氨酸對(duì)凈光合速率的提高十分顯著,這與鄭秋玲等[30]研究得出的在生長(zhǎng)中后期噴施氨基酸源葉面肥能夠顯著改善葉片的光合性能這一結(jié)果一致,表明氨基酸態(tài)氮更易被植物吸收同化,從而降低植物進(jìn)行生理代謝時(shí)所消耗的能量,可有效提高凈光合速率。氣孔導(dǎo)度、蒸騰速率、胞間二氧化碳濃度與凈光合速率的相關(guān)性并非是凈光合速率的決定性因素,還與葉綠素含量、酶活性、溫度、光照等因素有關(guān)。本試驗(yàn)研究得出在硝酸銨鈣處理下葉綠素含量提升效果最佳,類胡蘿卜素含量在尿素處理下顯著性最高。這與王劍等[19]研究發(fā)現(xiàn)硝態(tài)氮更有利于提高葡萄葉片葉綠素含量相符。分析原因,可能是因?yàn)镹O3-是一種信號(hào)物質(zhì),有利于調(diào)控葉綠素的合成。

葡萄漿果的品質(zhì)是衡量增施氮肥效果的指標(biāo)之一。糖、酸、單寧、花色苷和總酚是構(gòu)成釀酒葡萄品質(zhì)優(yōu)劣的要素[31]。足夠的糖量是釀酒葡萄能在酵母效用下發(fā)酵成葡萄酒的事物基礎(chǔ)之一。但賀蘭山東麓冬春季的嚴(yán)寒干旱,夏秋季的高溫多雨使釀酒葡萄出現(xiàn)酸含量嚴(yán)重不足的現(xiàn)象。酸度過(guò)低使葡萄酒顏色黯淡無(wú)光且影響口感[32]。本研究表明,相較對(duì)照,在所有葉源氮素中硫酸銨處理最顯著提升可溶性固形物4.75%。這與楊陽(yáng)等[33]發(fā)現(xiàn)在巨峰葡萄著色期葉面噴施尿素可有效提高總糖含量、降低可滴定酸含量結(jié)果有差異。分析原因,所栽培的葡萄品種不同,在葡萄成熟期間對(duì)有機(jī)酸的降解和轉(zhuǎn)化程度不同。酚類物質(zhì)具有抗氧化功能,且與釀酒葡萄品質(zhì)息息相關(guān)。其中花色苷是決定釀酒葡萄外觀品質(zhì)的決定性因素,而單寧的澀味和收斂感造就了釀酒葡萄豐富的口感。李磊等[34]研究發(fā)現(xiàn),施用適量氮肥能提高果實(shí)中花色苷含量,Garde-Cerdán等[20]研究表明,酚類化合物在葉面施用尿素和苯丙氨酸處理下有顯著性提高。與前人研究結(jié)果相似,在苯丙氨酸、硫酸銨和硝酸銨鈣處理下單寧含量顯著提升15.22%~25.58%,花色苷在尿素和苯丙氨酸處理下效果最好,苯丙氨酸對(duì)總酚含量的提升最為顯著,硫酸銨和尿素也可以顯著提升總酚含量。在轉(zhuǎn)色期葉面噴施不同氮源,葡萄漿果內(nèi)可溶性固形物、可滴定酸、單寧、花色苷和總酚含量均有不同程度的變化,分析原因,在釀酒葡萄轉(zhuǎn)色期間,營(yíng)養(yǎng)生長(zhǎng)幾乎停止,補(bǔ)氮措施提高光合作用速率,導(dǎo)致光合作用積累的碳水化合物主要儲(chǔ)存在漿果和活躍的次生代謝途徑,為次生代謝產(chǎn)物合成提供必需的能量和碳骨架等,可以促進(jìn)物質(zhì)的合成并在果實(shí)中儲(chǔ)藏,但由于植物對(duì)不同氮素的吸收和轉(zhuǎn)化能力不同,各物質(zhì)含量提高的效果不同。

酵母可同化氮影響發(fā)酵動(dòng)力學(xué)和風(fēng)味活性代謝物的形成[35],釀酒葡萄漿果內(nèi)酵母可同化氮超過(guò)150 mg/L才能保證發(fā)酵順利進(jìn)行[13]。Garde-Cerdán等[10]研究發(fā)現(xiàn)苯丙氨酸和尿素可顯著提高漿果中氨基酸含量。結(jié)果表明:除了硫酸銨處理下酵母可同化氮濃度降低外,其余處理酵母可同化氮濃度均顯著提高,這與Verdenal等[27]的研究結(jié)果一致。其中,葉面噴施硝酸銨鈣相較其他氮素對(duì)釀酒葡萄漿果內(nèi)酵母可同化氮的補(bǔ)充最為有效,分析原因可能是硝酸銨鈣中鈣離子促進(jìn)了植物對(duì)氮的吸收,更易于葉片和果實(shí)的吸收和轉(zhuǎn)化。這一發(fā)現(xiàn)對(duì)于改善酵母氮的組成和提高葡萄酒品質(zhì)具有重要意義。

4 結(jié) 論

通過(guò)對(duì)釀酒葡萄轉(zhuǎn)色期葉面噴施氮素研究得出如下結(jié)論:釀酒葡萄轉(zhuǎn)色期葉面噴施不同氮素對(duì)葡萄果實(shí)生理及品質(zhì)指標(biāo)影響不同,硫酸銨可提高漿果可溶性固形物,高達(dá)29.21%,硝酸銨鈣有效改善酵母可同化氮濃度和葉片光合生理,噴施尿素對(duì)粒徑、百粒質(zhì)量、凈光合速率、花色苷提升效果最為顯著,苯丙氨酸處理下葉面積、氣孔導(dǎo)度、單寧和總酚含量最高,葉面噴施谷氨酸能改善釀酒葡萄形態(tài)和產(chǎn)量。釀酒葡萄生理及品質(zhì)10個(gè)指標(biāo)的綜合得分以苯丙氨酸和尿素最高,兩種氮源對(duì)各品質(zhì)指標(biāo)提升效果顯著,且苯丙氨酸處理下單寧、總酚高達(dá)19.88、19.56 mg/g,尿素處理下花色苷高達(dá)2.28 mg/g。因此,轉(zhuǎn)色期葉面噴施苯丙氨酸和尿素兩種氮源均可促進(jìn)釀酒葡萄良好品質(zhì)的形成。

本試驗(yàn)通過(guò)轉(zhuǎn)色期葉面噴施氮素,主要研究了對(duì)釀酒葡萄品質(zhì)的影響,而沒(méi)有追蹤氮素的轉(zhuǎn)移運(yùn)輸過(guò)程。下一步研究需深入探討對(duì)其運(yùn)輸及轉(zhuǎn)化方面的影響,深刻理解外源氮對(duì)釀酒葡萄的調(diào)控作用機(jī)理。

[1] 趙常旭,郁繼華,馮致,等.控釋肥對(duì)基質(zhì)栽培番茄產(chǎn)量、品質(zhì)及養(yǎng)分利用率的影響[J].甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,52(2):34-40.

Zhao Changxu, Yu Jihua, Feng Zhi, et al. The effect of controlled release fertilizer on the yield, quality and nutrient utilization of tomato grown in substrate[J]. Journal of Gansu Agricultural University, 2017, 52(2): 34-40. (in Chinese with English abstract)

[2] 鄭睿,康紹忠,胡笑濤,等. 水氮處理對(duì)荒漠綠洲區(qū)釀酒葡萄光合特性與產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(4):133-141.

Zheng Rui, Kang Shaozhong, Hu Yongxiao, et al. Effects of water and nitrogen conditions on the diurnal variation of photosynthetic characteristics and yield of grapevine in arid oasis region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(4): 133-141. (in Chinese with English abstract)

[3] 謝海霞,何帥,侯振安. 全球紅葡萄氮素營(yíng)養(yǎng)及氮肥施用效果研究[J].安徽農(nóng)業(yè)科學(xué),2009,37(32):15804-15806.

Xie Haixia, He Shuai, Hou Zhenan. Nitrogen nutrition and nitrogen application effect of global red grape[J]. Anhui Agricultural Sciences, 2009, 37(32): 15804-15806. (in Chinese with English abstract)

[4] 王維剛,史海濱,李仙岳,等. SWAT模擬耕作方式與鹽分對(duì)區(qū)域土壤氮運(yùn)移及作物產(chǎn)量影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(3):55-65.

Wang Weigang, Shi Haibin, Li Xianyue, et al. Effects of tillage modes and salinity on regional nitrate nitrogen transport and crop yields using a SWAT model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(3): 55-65. (in Chinese with English abstract)

[5] Chengpeng M, Hui Z, Xiaoyan Y, et al. Effects of yeast assimilable nitrogen content on fermentation and aroma components of Cabernet Sauvignon wine[J]. China Brewing, 2015, 34(1): 131-136.

[6] 祝霞,劉琦,趙丹丹,等. 干白葡萄酒增香釀造工藝參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(18):282-291.

Zhu Xia, Liu Qi, Zhao Dandan, et al. Parameter optimization aroma enhancement fermentation technology of dry white wine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 282-291. (in Chinese with English abstract)

[7] Herbert P, Santos L, Alves A. Simultaneous quantification of primary, secondary amino acids, and biogenic amines in musts and wines using OPA/3-MPA/FMOC-Cl fluorescent derivatives[J]. Journal of Food Science, 2001, 66(9): 1319.

[8] Barbosa C, Falco V, Mendes-Faia A. Nitrogen addition influences formation of aroma compounds, volatile acidity and ethanol in nitrogen deficient media fermented by Saccharomyces cerevisiae wine strains[J]. Journal of Bioscience & Bioengineering, 2009, 108(2): 99-104.

[9] Carrau F M, Karina M, Laura F, et al. Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: Effects of yeast assimilable nitrogen on two model strains[J]. Fems Yeast Research, 2008, 8(7): 1196-1207.

[10] Garde-Cerdán T, Ancín-Azpilicueta C. Effect of the addition of different quantities of amino acids to nitrogen-deficient must on the formation of esters, alcohols, and acids during wine alcoholic fermentation[J]. LWT-Food Science and Technology, 2008, 41(3): 501-510.

[11] Mendes-Ferreira A, Barbosa C, Inês A, et al. The timing of diammonium phosphate supplementation of wine must affects subsequent H2S release during fermentation[J]. Journal of Applied Microbiology, 2009, 108(2): 540-549.

[12] Cheng X, Ma T, Wang P, et al. Foliar nitrogen application from veraison to preharvest improved flavonoids, fatty acids and aliphatic volatiles composition in grapes and wines[J]. Food Research International, 2020,137:109566.

[13] 繆成鵬,張暉,楊曉雁,等. 可同化氮含量對(duì)赤霞珠葡萄酒發(fā)酵和香氣成分的影響[J]. 中國(guó)釀造,2015,34(1):131-136.

Liao Chengpeng, Zhang Hui, Yang Xiaoyan, et al. Effects of yeast assimilable nitrogen content on fermentation and aroma components of Cabernet Sauvignon wine[J]. China Brewing, 2015, 34(1): 131-136. (in Chinese with English abstract)

[14] Portu J, López-Alfaro I, Gómez-Alonso S, et al. Changes on grape phenolic composition induced by grapevine foliar applications of phenylalanine and urea[J]. Food Chemistry, 2015, 180: 171-180.

[15] Sturgeon J Q, Bohlscheid J C, Edwards C G. The effect of nitrogen source on yeast metabolism and H2S formation[J]. Journal of Wine Research, 2013, 24(3): 182-194.

[16] Torrea D, Varela C, Ugliano M, et al. Comparison of inorganic and organic nitrogen supplementation of grape juice - Effect on volatile composition and aroma profile of a Chardonnay wine fermented with Saccharomyces cerevisiae yeast[J]. Food Chem, 2011, 127(3): 1072-1083.

[17] 初建青,王文艷,房經(jīng)貴,等. 葉面噴施尿素對(duì)葡萄氮代謝相關(guān)基因表達(dá)的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2012,18(2):405-416.

Chu Jianqing, Wang Wenyan, Fang Jinggui, et al. Effects of foliar applied urea on expression of genes related to nitrogen metabolism in Fujiminori grapevine[J]. Journal of Plant Nutrition and Fertilizer, 2012, 18(2): 405-416. (in Chinese with English abstract)

[18] Portu J, Gonzalez-Arenzana L, Hermosin-Gutierrez I, et al. Phenylalanine and urea foliar applications to grapevine: Effect on wine phenolic content[J]. Food Chemistry, 2015, 180: 55-63.

[19] 王劍,李炳銳,李曉鵬,等. 利用葡萄氮代謝基因的表達(dá)評(píng)價(jià)不同氮肥肥效[J]. 園藝學(xué)報(bào),2016,43(1):1-14.

Wang Jian, Li Bingrui, Li Xiaopeng, et al. Evaluation of N fertilizers effect based on the expression of N metabolic genes[J]. Acta Horticulture Sinica, 2016, 43(1): 1-14. (in Chinese with English abstract)

[20] Garde-Cerdán T, Lopez R, Portu J, et al. Study of the effects of proline, phenylalanine, and urea foliar application to Tempranillo vineyards on grape amino acid content. Comparison with commercial nitrogen fertilisers[J]. Food Chem, 2014, 163: 136-141.

[21] Gutiérrez-Gamboa G, Garde-Cerdán T, Gonzalo-Diago A, et al. Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard[J]. LWT-Food Science and Technology, 2017, 75: 147-154.

[22] Gutiérrez-Gamboa G, Garde-Cerdán T, Portu J, et al. Foliar nitrogen application in Cabernet Sauvignon vines: Effects on wine flavonoid and amino acid content[J]. Food Research International, 2017, 96: 46-53.

[23] Los A, Rs B, Ras C, et al. Ideal nitrogen concentration in leaves for the production of high-quality grapes cv 'Alicante Bouschet' (L.) subjected to modes of application and nitrogen doses-ScienceDirect[J]. European Journal of Agronomy, 2020.

[24] 付詩(shī)寧,魏新光,鄭思宇,等. 滴灌水肥一體化對(duì)溫室葡萄生理特性及水肥利用效率的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(23):61-72.

Fu Shining, Wei Xinguang, Zheng Siyu, et al. Effects of integrated management of water and fertilizer on the physiological characteristics and water-fertilizer use efficiency of grapes in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(23): 61-72. (in Chinese with English abstract)

[25] 姜璐,包怡紅,賈雨彤,等. 18個(gè)品種藍(lán)靛果營(yíng)養(yǎng)成分分析及綜合品質(zhì)評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(7):326-335.

Jiang Lu, Bao Yihong, Jia Yutong, et al. Nutritional component analysis and comprehensive quality evaluation of 18 different varieties of Lonicera caerulea[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(7): 326-335. (in Chinese with English abstract)

[26] 孫聰偉,陳展,趙艷卓,等. 不同施肥方式下葡萄幼苗對(duì)15N-尿素的吸收、分配和利用[J]. 華北農(nóng)學(xué)報(bào),2017,32(增刊1):260-264.

Sun Congwei, Chen Zhan, Zhao Yanzhuo, et al. Absorption, distribution and utilization of15N in jumeigui seedlings under different fertilization methods [J]. Acta Agriculturae Boreal-Sinica, 2017, 32(Suppl 1): 260-264. (in Chinese with English abstract)

[27] Verdenal T, Spangenberg J E, Zufferey V, et al. Effect of fertilisation timing on the partitioning of foliar-applied nitrogen incv. Chasselas: A15N labelling approach[J]. Australian Journal of Grape & Wine Research, 2015, 21(1): 110-117.

[28] Sally J B, Paul A H. Implications of nitrogen nutrition for grapes, fermentation and wine[J]. Australian Journal of Grape and Wine Research, 2005, 11(3): 242-295.

[29] 汪長(zhǎng)偉. 葡萄光合特性和果實(shí)品質(zhì)研究[D]. 合肥:安徽農(nóng)業(yè)大學(xué),2018.

Wang Changwei. Study on Photosynthetic Characteristics and Fruit Quality of Grape[D]. Hefei: Anhui Agricultural University, 2018. (in Chinese with English abstract)

[30] 鄭秋玲,韓真,王慧,等. 不同葉面肥對(duì)赤霞珠葡萄果實(shí)品質(zhì)及樹體貯藏養(yǎng)分的影響[J]. 中外葡萄與葡萄酒,2009(7):13-16,19.

Zheng Qiuling, Han Zhen, Wang Hui, et al. Effects of different foliar fertilizers on fruit quality and storage nutrients of Cabernet Sauvignon grapevine[J]. Chinese and Foreign Grapes and Wine, 2009(7): 13-16, 19. (in Chinese with English abstract)

[31] 何英霞,蔣玉梅,李霽昕,等. 不同酶和酵母對(duì)干紅葡萄酒香氣影響的差異分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(增刊1):325-332.

He Yingxia, Jiang Yumei, Li Jixin, et al. Effection of different yeasts and maceration enzymes on aromatic components of cabernet gernischt red wine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(Suppl. 1): 325-332. (in Chinese with English abstract)

[32] 李治葦,張萍,李慶,等. 釀酒葡萄果實(shí)發(fā)育過(guò)程中糖酸積累規(guī)律的研究[J]. 食品安全質(zhì)量檢測(cè)學(xué)報(bào),2021,12(19):7738-7743.

Li Zhiwei, Zhang Ping, Li Qing, et al. Study on the accumulation regularity of sugar and acid in the development process of wine grape fruit[J]. Journal of Food Safety Quality Testing, 2021, 12(19): 7738-7743. (in Chinese with English abstract)

[33] 楊陽(yáng),鐘曉敏,閆志剛,等. 氮素形態(tài)對(duì)巨峰葡萄果實(shí)品質(zhì)的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2010,16(4):1037-1040.

Yang Yang, Zhong Xiaomin, Yan Zhigang, et al. Effects of nitrogen forms on nitrate accumulation and quality of “Kyoho” grape fruit[J]. Journal of Plant Nutrition and Fertilizer, 2010, 16(4): 1037-1040. (in Chinese with English abstract)

[34] 李磊,王銳,紀(jì)立東,等. 氮肥施用量對(duì)釀酒葡萄初果期生長(zhǎng)及產(chǎn)量品質(zhì)的影響[J]. 北方園藝,2016(21):32-36.

Li Lei, Wang Rui, Ji Lidong, et al. Effects of nitrogen fertilizer application on beginning growth, yield and quality of wine grape[J]. North Horticulture, 2016(21): 32-36. (in Chinese with English abstract)

[35] Son H S, Lim K S, Chung H J, et al. Metabolic phenotyping of berries in different six grape () cultivars[J]. Journal of the Korean Society for Applied Biological Chemistry, 2014, 57(4): 491-502.

Effects of foliar nitrogen regulation on the quality of wine grape ‘Cabernet Sauvignon’ during veraison

Zhang Shu1, Wang Jing1, Ma Tinghui2, Wang Rui1※

(1.,,750021,;2.,750011,)

The integrated light and simplified cultivation of water and fertilizer has been widely applied at the eastern foothills of Helan Mountain in western China. However, it is a high demand for the nitrogen nutrition of wine grapes at the current stage. This study aims to demonstrate the regulation of the foliar nitrogen on wine the grape 'Cabernet Sauvignon' during the veraison period, with the location in the Lilan Winery, Yongning County, Ningxia Hui Autonomous Region, China (38°28′N, 105°97′E). The test material was 8-year-old wine grape 'Cabernet Sauvignon'. A single-factor randomized block design was utilized with the number of blocks equal to the number of replicates. A total of six subjects were chosen for the experiment, including ammonium sulfate, calcium ammonium nitrate, urea, phenylalanine, glutamic acid, and control (water), which were reused three times each. Among them, 20 vines were used per replicate subject and 60 vines per treatment for a total of 18 plots. The amount of nitrogen fertilizer in each treatment was converted to 1.5‰ urea and other quality pure nitrogen. The foliage was firstly sprayed with nitrogen fertilizer three times (July 15, July 31, and August 13) during the veraison period. The photosynthetic indicators of wine grapes were then measured after ten days (August 22), including the net photosynthetic rate, transpiration rate, intercellular CO2concentration, stomatal conductance, leaf area, water use efficiency, and chlorophyll. Once the wine grapes were ripe (September 23), the morphology and yield were determined, including the particle size, spike length, 100-grain mass, and yield plant. At the same time, the quality indicators of wine grapes were also determined in this case, including the soluble solids, titratable acids, tannins, anthocyanins, total phenols, and yeast assimilable nitrogen. A variance analysis was carried out on the measured photosynthetic, morphological, yield, and quality indicators, in order to evaluate the different treatments, photosynthesis, and quality indicators of wine grapes. Three principal components were then obtained to establish a comprehensive evaluation function. The scores were calculated and sorted for the optimal treatment. The result indicated that all five treatments improved the physiology and quality of wine grapes, compared with the control group. The best performance (up to 29.21%) was achieved by spraying ammonium sulfate on the soluble solids in the berries. Furthermore, the greatest synergy was also obtained in the chlorophyll and yeast assimilable nitrogen under the calcium ammonium nitrate, which increased by 20.22% and 41.95%, respectively, compared with the control. The best effect was obtained under the urea treatment for the net photosynthetic rate, particle size, 100-grain mass, titratable acid, and anthocyanin. Phenylalanine presented the best effect on the leaf area, stomatal conductance, tannins, and total phenols. Glutamic acid improved the morphology and yield of wine grapes. Specifically, the spike length and yield plant significantly increased by 13.61% and 12.66%, respectively, compared with the control group. Three principal components contributed 59.52%, 22.13% and 11.77%, respectively, compared with the nitrogen fertilizer treatment. Phenylalanine and urea gained the highest scores for ten indicators, such as the wine grape physiology and quality. The titratable acid was best treated with urea, indicating the best acid value of 0.68% in the production area. Moreover, the anthocyanin content was as high as 2.28 mg/g under the urea treatment, which was higher than the rest of nitrogen treatments. There was the best effect of Phenylalanine on the increasing tannin content, up to 19.88 mg/g, which was 5.63%-24.87% higher than that of the rest nitrogen treatments. By contrast, the total phenolic content was as high as 19.56 mg/g under phenylalanine treatment, which was 8.91%-27.34% higher than the others. In conclusion, foliar spraying phenylalanine and urea during the veraison stage can be expected to improve the physiological characteristics of wine grapes and the quality of berries. The traditional cultivation techniques can also be optimized to promote low nitrogen application efficiency. The finding can provide a strong reference for the wine grape production in mountain areas.

nitrogen; urea; phenols; wine grape; veraison; yeast assimilable nitrogen

10.11975/j.issn.1002-6819.2022.15.035

S663.1

A

1002-6819(2022)-15-0323-07

張舒,王晶,馬婷慧,等. 轉(zhuǎn)色期葉面氮素調(diào)控對(duì)釀酒葡萄‘赤霞珠’品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(15):323-329.doi:10.11975/j.issn.1002-6819.2022.15.035 http://www.tcsae.org

Zhang Shu, Wang Jing, Ma Tinghui, et al.Effects of foliar nitrogen regulation on the quality of wine grape ‘Cabernet Sauvignon’ during veraison[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(15): 323-329. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.15.035 http://www.tcsae.org

2021-11-17

2022-05-10

寧夏自然科學(xué)基金項(xiàng)目(2020AAC03281);寧夏農(nóng)業(yè)科技自主創(chuàng)新專項(xiàng)(NKYZZ-J-19-04)

張舒,研究方向?yàn)橹参餇I(yíng)養(yǎng)與農(nóng)業(yè)資源利用。Email:zs541882@163.com.

王銳,博士,教授,研究方向?yàn)獒劸破咸褷I(yíng)養(yǎng)與施肥。Email:amwangrui@126.com.

猜你喜歡
轉(zhuǎn)色苯丙氨酸葉面
噴施葉面阻隔劑對(duì)抑制小麥吸收鎘的效果初報(bào)
膠東地區(qū)設(shè)施栽培奧尼爾和米斯蒂藍(lán)莓花色苷代謝研究
2009~2019 年吉林省新生兒高苯丙氨酸血癥的發(fā)病率及治療效果分析
香菇菌棒轉(zhuǎn)色期胞外酶活性變化
食用菌(2020年1期)2020-02-18 08:17:22
安全生物轉(zhuǎn)色解決激素轉(zhuǎn)色的品質(zhì)困擾
葉面施鈣對(duì)冬棗品質(zhì)的影響
葡萄轉(zhuǎn)色期干梗掉粒 多是潰瘍病
嶺石葉面鐵肥 缺鐵黃化
酮苯丙氨酸鈣原料藥有關(guān)物質(zhì)的鑒定與含量測(cè)定
大白菜葉面噴施氮肥效果試驗(yàn)
上海蔬菜(2015年2期)2015-12-26 05:03:40
偏关县| 眉山市| 申扎县| 安达市| 东乡| 石林| 三穗县| 双城市| 娄底市| 新河县| 繁昌县| 邵东县| 梧州市| 凭祥市| 荔浦县| 象州县| 潍坊市| 兴安盟| 读书| 泊头市| 东乌珠穆沁旗| 云龙县| 广饶县| 黔西| 简阳市| 夹江县| 马鞍山市| 乳山市| 太和县| 微博| 余江县| 林芝县| 淄博市| 德阳市| 屏东市| 鹤岗市| 商河县| 荥阳市| 龙井市| 怀安县| 曲周县|