国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

單葉亞純螺旋象函數(shù)的刻畫(huà)和積分表示

2022-10-10 07:13:14錢(qián)繼曉
關(guān)鍵詞:亞純黎曼單葉

錢(qián)繼曉

單葉亞純螺旋象函數(shù)的刻畫(huà)和積分表示

錢(qián)繼曉

(南京理工大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,江蘇 南京 210094)

黎曼映射定理為復(fù)變函數(shù)的性質(zhì)提供了幾何刻畫(huà);Carathéodory收斂定理把函數(shù)像域的收斂與函數(shù)的收斂性緊密聯(lián)系起來(lái)。利用黎曼映射定理、極值原理和Carathéodory收斂定理,研究極點(diǎn)在原點(diǎn)和極點(diǎn)在點(diǎn) (0<<1)的單葉亞純螺旋象函數(shù),得到了相應(yīng)函數(shù)族的解析刻畫(huà)和積分表示。

單葉函數(shù);亞純函數(shù);螺旋象函數(shù)

1 引言

2 單葉亞純螺旋象函數(shù)的刻畫(huà)

,

[1] BIEBERBACH L. über einige extremal probleme im Gebiete der konformen abbildung[J]. Mathematische annalen, 1916, 77(2): 153–172.

[2] LOWNER K. Untersuchungen über schlichte konforme Abbildungen des Einheitskreises[J]. Mathematische annalen, 1923, 89(1): 103–121.

[3] GARABEDIAN P, SCHIFFER M. A proof of the Bieberbach conjecture for the fourth coefficient[J]. Journal of rational mechanics and analysis, 1955, 4: 427–465.

[4] PEDERSON R N. A proof of the Bieberbach conjecture for the sixth coefficient[M]. Carnegie institute of technology, department of mathematics, 1968.

[5] OZAWA M. An elementary proof of local maximality for a6[C]//Kodai Mathematical seminar reports, department of mathematics, Tokyo institute of technology, 1968, 20(4): 437–439.

[6] PEDERSON R N, SCHIFFERR M. A proof of the Bieberbach conjecture for the fifth coefficient[J]. Archive for rational mechanics and analysis, 1972, 45(3): 161–193.

[7] BRANGES L D, A proof of the Bieberbach conjecture[J]. Acta mathematica, 1985, 154(1): 137–152.

[8] PFALTZGRAFF J A, PINCHUK B. A variational method for classes of meromorphic functions[J]. J. Analyse math, 1971, 24: 101–150.

[9] OHNO R. Characterizations for concave functions and integral representations[J]. Topics in finite or infinite dimensional complex analysis, 2013: 203–216.

[10] POMMERENKE C. Boundary behaviour of conformal maps[M]. Springer science & business media, 2013.

Characterization and Integral Representation of Univalent Metamorphic Spirallike Functions

QIAN Ji-xiao

(School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing Jiangsu 210094, China)

The Riemann mapping theorem provides a geometric characterization for the properties of complex functions; the Carathéodory convergence theorem closely links the convergence of the function image field with the convergence of the function. Using the Riemann mapping theorem, the extreme value principle and the Carathéodory convergence theorem, the univalent meromorphic spirallike functions with the pole at the origin and the pole at the p point (0

univalent functions; meromorphic functions; spirallike functions

2022-03-20

江蘇省研究生科研與實(shí)踐創(chuàng)新計(jì)劃項(xiàng)目 (KYCX21–0247)

錢(qián)繼曉(1983—),男,江蘇連云港人,碩士研究生,研究方向:復(fù)分析。

O174.52

A

2095-9249(2022)03-0011-05

〔責(zé)任編校:吳侃民〕

猜你喜歡
亞純黎曼單葉
非齊次二維Burgers方程的非自相似黎曼解的奇性結(jié)構(gòu)
亞純函數(shù)關(guān)于單葉離散值的正規(guī)定理
緊黎曼面上代數(shù)曲線的第二基本定理
算子作用下調(diào)和函數(shù)類(lèi)的單葉半徑
不同因素對(duì)單葉蔓荊無(wú)性繁殖育苗的影響
亞純函數(shù)的差分多項(xiàng)式
數(shù)學(xué)奇才黎曼
少兒科技(2019年4期)2019-01-19 09:01:15
亞純函數(shù)與其差分的唯一性
非等熵 Chaplygin氣體極限黎曼解關(guān)于擾動(dòng)的依賴(lài)性
亞純函數(shù)差分多項(xiàng)式的值分布和唯一性
晋中市| 涡阳县| 石首市| 洞口县| 简阳市| 昌乐县| 屯门区| 景德镇市| 昌平区| 西盟| 璧山县| 呼伦贝尔市| 博客| 康马县| 张家口市| 青岛市| 顺平县| 睢宁县| 偃师市| 普宁市| 辰溪县| 佛山市| 长沙市| 十堰市| 淮南市| 静海县| 景东| 独山县| 新丰县| 光泽县| 黎城县| 黑水县| 宿州市| 家居| 郸城县| 阳曲县| 樟树市| 汉川市| 贺州市| 梁河县| 大新县|