廣東省深圳市深圳中學(xué) (518001) 邱際春
2016年AMC12B中第20題是如下組合計(jì)數(shù)問題:
原題呈現(xiàn)A set of teams held a round-robin tournament in which every team played every other team exactly once. Every team won 10 games and lost 10 games; there were no ties. How many sets of three teams {A,B,C} were there in which A beat B, B beat C, and C beat A?
(A)385 (B)665 (C)945
(D)1140 (E)1330
原題譯文若干支球隊(duì)進(jìn)行循環(huán)賽,即每組球隊(duì)與其他球隊(duì)各進(jìn)行一場(chǎng)比賽.已知每組球隊(duì)贏了10場(chǎng)比賽且輸了10場(chǎng)比賽,每場(chǎng)比賽中不出現(xiàn)平局.在三支球隊(duì)組成的集合{A,B,C}中,A贏了B,B贏了C,C贏了A,請(qǐng)問有多少個(gè)這樣的集合?
(A)385 (B)665 (C)945
(D)1140 (E)1330
顯然,這種情況是可能的:將各球隊(duì)圍成一個(gè)圓圈,并且按順時(shí)針的順序使得每支球隊(duì)均打敗接下來的10支球隊(duì).
評(píng)注:此題有一定難度,關(guān)鍵是對(duì)題目的理解的把握,如果能從題干中獲知循環(huán)賽的球隊(duì)數(shù),那么根據(jù)循環(huán)賽的規(guī)則就不難得到本題答案為A.
若考慮將每組球隊(duì)輸或贏的比賽場(chǎng)數(shù)推廣至n場(chǎng),則原題可作如下初步推廣:
若將原題中滿足給定條件的三支球隊(duì)組成的集合{A,B,C}推廣至k支球隊(duì)組成的集合{a1,a2,…,ak},則可進(jìn)一步得到下面的推廣2: