国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于實測車輛荷載的拱橋吊桿疲勞性能研究

2022-10-01 13:18莊一舟劉明明董傳智
關(guān)鍵詞:吊桿拱橋步長

莊一舟,劉明明,董傳智

(1.浙江工業(yè)大學(xué) 土木工程學(xué)院,浙江 杭州 310023;2.中佛羅里達大學(xué) 土木、環(huán)境與建造工程系,佛羅里達 奧蘭多 32816)

對于系桿拱橋來說,吊桿是關(guān)鍵的承載構(gòu)件,它將橋面板自重、車輛及其他外荷載傳遞給主要受力構(gòu)件。由車輛載荷和風(fēng)力載荷引起的周期性應(yīng)力變化會導(dǎo)致吊桿的疲勞損壞。為了避免吊桿在使用期間發(fā)生破壞,相關(guān)管理部門一般定期對吊桿進行檢查更換,維護費用較高[1]。一般橋梁的設(shè)計使用年限為100~120 a,然而在已經(jīng)更換的拱橋中,吊桿的使用年限僅為3~16 a[2],遠低于橋梁的設(shè)計壽命。根據(jù)《公路鋼管混凝土拱橋設(shè)計規(guī)范》,拱橋吊桿的設(shè)計使用年限僅為20 a,然而目前并沒有明確的規(guī)定或者基于力學(xué)的原理來解釋這樣設(shè)置吊桿使用年限的原因。根據(jù)現(xiàn)在的拱橋狀況,有些拱橋的吊桿使用壽命遠遠超過20 a,例如,在更換江山市江山大橋吊索時,發(fā)現(xiàn)大部分吊索狀況良好,表面只存在一點銹蝕。建立服役吊桿的疲勞性能評估方法對橋梁維修中檢查和更換的決策至關(guān)重要。為了正確地進行吊桿疲勞研究,首先需要一種可靠而有效的方法來獲取吊桿的循環(huán)拉應(yīng)力時程。近年來,先進的傳感技術(shù)已經(jīng)可以直接用于測量吊桿的張力。例如,He等[3]提出了一種將光纖布拉格光柵(FBG)傳感器與布里淵光纖時域分析/反射器(BOTDA/R)傳感技術(shù)結(jié)合在一根光纖中進行吊桿拉力監(jiān)測的方法;Bao等[4]提出了一種基于自適應(yīng)稀疏時頻分析方法的時變吊桿張力識別新方法;Feng等[5]提出了一種基于新型非接觸視覺傳感器技術(shù)的精確且經(jīng)濟的拉索張力測量方法。這些技術(shù)已經(jīng)證明了傳感技術(shù)在監(jiān)測橋梁吊桿不同張力方面的能力。然而將這些傳感技術(shù)直接應(yīng)用于拱橋吊桿疲勞研究的報道很少?,F(xiàn)有的大多數(shù)研究表明交通荷載是橋梁吊桿疲勞損傷的主要原因[6]。近年來,動態(tài)稱重(WIM)系統(tǒng)收集的車輛荷載數(shù)據(jù)和有限元模擬相結(jié)合的方法開始被應(yīng)用于橋梁吊桿的疲勞研究。例如,Liu等[7]研究了剛性中心夾對短吊桿疲勞性能的影響,提出了基于車輛載荷模型和從現(xiàn)場監(jiān)測數(shù)據(jù)發(fā)展而來的風(fēng)譜的疲勞壽命評估程序。在上述研究中,首先通過使用WIM數(shù)據(jù)建立了車輛載荷參數(shù)的概率分布;然后將通過蒙特卡羅方法生成的隨機車輛流應(yīng)用于有限元模型,以估計吊桿或焊接細節(jié)的循環(huán)應(yīng)力的時間歷程。這種方法的優(yōu)點是以相對較小的計算消耗估算車輛載荷對橋梁構(gòu)件疲勞性能的影響。汪小超等[8]研究了移動荷載作用下桁架橋的動力響應(yīng)過程;施穎等[9]模擬了輪跡橫向分布對異形鋼箱梁橋面板4種典型疲勞構(gòu)造細節(jié)的疲勞應(yīng)力幅的影響,并對其進行了比較。然而,這幾種方法不考慮實際車輛載荷的時變特性。

筆者提出了一種適用于組合結(jié)構(gòu)拱橋吊桿疲勞性能研究的框架。不同于其他概率分析方法,筆者利用WIM系統(tǒng)提供的車輛荷載真實信息來重建車輛的荷載流,將重構(gòu)的車輛荷載應(yīng)用于有限元分析提取的影響線,將時變車輛荷載轉(zhuǎn)換為吊桿拉力。為了提高計算效率,可采取以下3種措施:將軸重簡化為集中力應(yīng)用于車道的中心線;設(shè)置車重閾值(在本研究中為30 kN)以忽略輕型車輛的載荷;在吊桿應(yīng)力歷程計算過程中設(shè)置適當(dāng)?shù)臅r間步長(在本研究中為0.1 s)。利用雨流計數(shù)法提取其中的應(yīng)力循環(huán),基于Miner線性累積損傷理論評估吊桿的疲勞損傷程度,進而預(yù)測其疲勞壽命。

1 橋梁及動態(tài)稱重系統(tǒng)概況

1.1 橋梁概況

九堡大橋全長1 855 m,橋面為雙向行駛,共有6個車道,設(shè)計時速80 km/h。橋梁縱橫斷面布置如圖1,2所示。主橋共3跨,采用188 m+22 m+188 m+22 m+188 m的跨徑組合布置。上部結(jié)構(gòu)是線路結(jié)構(gòu),采用結(jié)合梁鋼拱組合體系拱橋,拱橋主梁為等截面鋼混凝土結(jié)合梁結(jié)構(gòu);鋼類系統(tǒng)的組成構(gòu)件包括主副拱肋、主副拱肋之間的橫向連桿拱頂橫撐以及拱頂橫撐等。吊桿上端與下端依次錨固于主拱肋和鋼主縱梁。全橋共114根吊桿,為平行鋼絲索體系,均為121Φ7 mm。拱橋結(jié)構(gòu)對稱,中跨東側(cè)共有19根吊桿,編號由北至南依次為H1,H2,…,H19,其中跨中吊桿編號為H10。中跨東側(cè)吊桿編號見圖1。

圖1 橋梁縱斷面布置圖Fig.1 Longitudinal section layout of bridge

圖2 橋梁橫斷面布置圖Fig.2 Cross section layout of bridge

1.2 動態(tài)稱重系統(tǒng)

九堡大橋結(jié)構(gòu)監(jiān)測系統(tǒng)由347個傳感器組成,其中有風(fēng)速計、濕度傳感器、溫度傳感器、加速度計、動態(tài)稱重系統(tǒng)、用于撓度傳感的全球定位系統(tǒng)(GPS)、位移傳感器、應(yīng)變計和閉路電視(CCTV)攝像機等。該結(jié)構(gòu)監(jiān)測系統(tǒng)自動化數(shù)據(jù)采集的結(jié)構(gòu)響應(yīng)包括:鋼結(jié)構(gòu)、混凝土結(jié)構(gòu)的應(yīng)力、大橋空間變位和索力變化。其中,動態(tài)稱重系統(tǒng)(圖3)安裝在九堡大橋的6個車道的路面上,該系統(tǒng)可以連續(xù)實時采集車輛經(jīng)過時的車流信息,包括車速、車輛橫向位置、車流方向、車牌、車型、車輛經(jīng)過時間、車輛軸型、各軸軸重以及車輛總重等信息。

圖3 結(jié)構(gòu)監(jiān)測系統(tǒng)的車輛荷載采集系統(tǒng)安裝位置圖Fig.3 Installation position diagram of vehicle load acquisitionsystem for structural monitoring system

2 有限元模型

2.1 中跨有限元模型

以中跨為例,采用Midas civil軟件建立九堡大橋長為232 m的中跨精細的三維空間有限元模型。根據(jù)九堡大橋主橋結(jié)構(gòu)特點,采用梁單元模擬主拱肋和副拱肋,采用桿單元模擬系桿和吊桿,采用板單元模擬橋面板,采用梁單元模擬主梁鋼結(jié)構(gòu)部分和鋼橫梁。在橋面板上逐節(jié)點施加一個1 N的集中力,對橋梁中跨進行內(nèi)力計算分析,可以得到6個車道的影響線曲線。分析結(jié)果如圖4所示。

圖4 邊跨影響線曲線Fig.4 Side span influence line curve

2.2 車道影響線

通過Midas civil的內(nèi)力分析可以得到696個離散點,通過線性擬合現(xiàn)有的影響點可以推導(dǎo)出每個吊桿拉力影響線,結(jié)果如圖5所示。拉力峰值出現(xiàn)在與吊桿對應(yīng)的縱向位置。研究發(fā)現(xiàn):車道1~6在1 N荷載下,吊桿H1最大拉力分別為0.087,0.071,0.058,0.038,0.025,0.012 N。

圖5 車道影響線Fig.5 Lane influence line

為了將內(nèi)力分析得到的結(jié)果作為計算交通荷載的運算依據(jù),采用傅里葉八階線性擬合的方法對內(nèi)力分析得到的離散影響點進行線性擬合。定義橋面系以西往東的方向為X正軸,車道影響線函數(shù)可以表示為

f(x)=a0+a1·cos(x·ω)+b1·sin(x·ω)+
a2·cos(2x·ω)+b2·sin(2x·ω)+…+
a8·cos(8x·ω)+b8·sin(8x·ω)

(1)

式中:a1,a2,…,a8,b1,b2,…,b8,ω均為擬合常數(shù)。

為了分析傅里葉八階線性擬合結(jié)果的真實性,對6個車道的曲線擬合誤差進行了計算,曲線誤差計算結(jié)果如表1所示。由表1可知:采用傅里葉八階線性擬合對中跨離散影響點擬合的曲線誤差在可接受范圍內(nèi),可以將此方法得到的曲線函數(shù)作為車道影響線函數(shù)的結(jié)果。

表1 采用傅里葉八階線性擬合對中跨離散影響點擬合的曲線誤差

3 吊桿疲勞性能研究

3.1 車輛加載配置

利用動態(tài)稱重系統(tǒng)收集的每輛過往車輛的完整信息可以將時變車輛荷載轉(zhuǎn)換為吊桿時間張力歷程。首先,選擇1 d作為車流數(shù)據(jù)處理的時間間隔,假設(shè)每輛車的速度和車道位置為常數(shù);然后,通過車輛到達時間和速度來確定每輛車在通過橋面的每個時刻的位置;接著,將每輛n軸車簡化為n個集中力施加于傅里葉八階線性擬合的吊桿影響線函數(shù),可以得到單輛車通過橋面時的吊桿應(yīng)力時間歷程;最后,將每天通過的所有車輛的時間應(yīng)力歷程疊加,可以得到不同吊桿從00:00:00—24:00:00的應(yīng)力時間歷程。吊桿H1在2020年6月1日的某一時間段內(nèi)(15 min)的時間應(yīng)力歷程如圖6所示。從圖6中可以看到吊桿H1的應(yīng)力在340~348 MPa波動。

圖6 吊桿H1時間應(yīng)力曲線Fig.6 Time and stress curve of side span H1

該橋日均通過車輛接近60 000輛,程序運算較為繁瑣,為了提高計算效率,采取以下3種措施:將每輛n軸車輛簡化為在其軸位置處的n個集中力,并應(yīng)用于車道的中心線;設(shè)置車輛總重閾值(在本研究中為30 kN)以忽略輕型車輛的載荷[10],因為有閾值和無閾值時疲勞損傷之間的差異非常小;在應(yīng)力計算過程中設(shè)置適當(dāng)?shù)臅r間步長(在本研究中為0.1 s)。

3.2 應(yīng)力計算的時間步長

時間步長是張力計算中的一個關(guān)鍵問題。如果時間步長過大,可能無法捕捉到張拉應(yīng)力的峰值;時間步長太短可能會導(dǎo)致不必要的計算工作量。本節(jié)將研究不同時間計算步長(即0.1,0.2,0.5,1.0,2.0 s)的影響。同樣,以2020年6月1日為例,某輛4軸貨車通過橋面系吊桿H1的張拉應(yīng)力歷程如圖7所示。由圖7可知:除2.0 s以外,時間步長為0.1,0.2、0.5,1.0 s的時間歷史的峰值幾乎相同,都可以精確地捕捉到張力峰值。為了盡可能降低提取應(yīng)力循環(huán)產(chǎn)生的疲勞損傷誤差,本研究將時間步長設(shè)置為0.1 s。

圖7 不同計算步長下的H1時間拉力曲線Fig.7 Hanger 1 time tension curve under differentcalculation steps

3.3 吊桿疲勞損傷的計算

因為影響線計算的張拉應(yīng)力沒有考慮車輛荷載動態(tài)效應(yīng)產(chǎn)生的影響,所以計算得出的張應(yīng)力應(yīng)考慮乘以動態(tài)放大系數(shù),以更貼近真實值。我國橋梁設(shè)計規(guī)范將動力放大系數(shù)定義為橋梁基礎(chǔ)頻率的函數(shù),當(dāng)橋基頻率小于1.5 Hz時,動態(tài)放大系數(shù)可取為1.05。美國州公路及運輸協(xié)會載荷與阻力系數(shù)設(shè)計(AASHTO LRFD)[11]提出:在疲勞極限狀態(tài)下,除橋面接縫外所有部件的動態(tài)載荷容限(沖擊系數(shù))為0.15。馬麟等[12]采用車橋耦合振動分析方法研究了某大跨度拱橋的動力放大系數(shù),該橋主跨1 385 m,基頻為0.086 8 Hz。結(jié)果表明:與中國橋梁設(shè)計規(guī)范相比,采用AASHTO LRFD規(guī)范的規(guī)定進行取值更加合理。在此基礎(chǔ)上,將疲勞分析的動態(tài)放大系數(shù)保守設(shè)置為1.15。

將吊桿的拉應(yīng)力σ定義為

(2)

式中:Td為恒載引起的吊桿張力;Tv為車輛荷載引起的張力;F為動態(tài)放大系數(shù);A為吊桿的橫截面積。

將時間步長設(shè)置為0.1 s,在吊桿的時間應(yīng)力曲線中波峰和波谷數(shù)量較多,為了獲取有效波峰和波谷,用雨流計數(shù)算法[13]處理張應(yīng)力σ的應(yīng)力歷程,所得結(jié)果為吊桿的應(yīng)力均值、幅值和循環(huán)數(shù)的關(guān)系圖(圖8)。利用提取的應(yīng)力循環(huán)關(guān)系,使用Miner線性累積損傷理論[14]計算拱橋吊桿的疲勞損傷,即

(3)

式中:ni為當(dāng)應(yīng)力幅為Si時的循環(huán)數(shù);Ni為當(dāng)應(yīng)力幅為Si時的疲勞壽命;D為疲勞損傷。

圖8 2020年6月1日吊桿H1雨流計數(shù)圖Fig.8 Rain-flow count of hanger 1 on 1 June 2020

該橋吊桿為平行鋼絲索體系,均為121Φ7 mm。根據(jù)曾勇等[15-16]的研究,吊桿的S—N曲線近似為

logN=13.95-1.5logS

(4)

以往的研究表明吊桿的疲勞壽命是平均應(yīng)力水平和應(yīng)力幅的函數(shù)[17]。因此,將應(yīng)力幅Sm修正為

(5)

式中:σm,σu分別為平均應(yīng)力和極限抗拉強度。因此式(4)中的應(yīng)力幅S應(yīng)替換為Sm。

最終計算所得吊桿的日疲勞損傷值如圖9所示。從橋梁中跨到兩邊橋頭,吊桿的疲勞值呈下降趨勢。中跨吊桿的疲勞值約為邊跨的6倍。

圖9 2020年6月1日吊桿日疲勞損傷值Fig.9 Daily fatigue damage value of the hangerson 1 June 2020

3.4 疲勞損傷評估和壽命預(yù)測

筆者收集了九堡大橋2020年6—8月的動態(tài)稱重數(shù)據(jù)用于計算吊桿的疲勞損傷。吊桿的日平均疲勞損傷值可表示為

(6)

式中:Di為第i天的疲勞損傷值;l為月份的天數(shù)。吊桿6—8月的日平均疲勞損傷如圖10所示。

圖10 2020年6—8月吊桿日均疲勞損傷值Fig.10 Average daily fatigue damage value of hangerfrom June to August 2020

假設(shè)通過該橋的車輛數(shù)目與車輛載重在短期內(nèi)沒有大幅度地增加或降低,可以將2020年6—8月的吊桿日疲勞值作為吊桿未來幾年內(nèi)的吊桿日疲勞值進行計算,那么吊桿的疲勞壽命T可表示為

(7)

2020年6—8月日平均疲勞損傷得出的疲勞壽命如圖11所示。由圖11可知:從橋兩端到橋跨中,吊桿的疲勞壽命呈現(xiàn)下降趨勢。以2020年6—8月的日均疲勞值進行預(yù)測時,吊桿的疲勞壽命均超過500 a,最短為651 a。跨中吊桿疲勞壽命最低,在役橋梁吊桿管理養(yǎng)護、更換時應(yīng)優(yōu)先考慮跨中的吊桿。2020年6—8月動態(tài)稱重數(shù)據(jù)與疲勞壽命比較如表2所示。由表2可知:在2020年6—8月期間,當(dāng)日均通過車輛數(shù)量、平均車重均以低于20%的幅度增長時,吊桿疲勞損傷值呈現(xiàn)數(shù)量級增長,2020年6—7月的預(yù)測疲勞壽命值相差接近2倍,2020年7—8月的預(yù)測疲勞壽命值相差接近9倍,2020年8月預(yù)測數(shù)據(jù)顯示中跨吊桿的疲勞壽命僅為246 a。從橋兩端到橋跨中,吊桿疲勞壽命的減小速度是逐漸增大的,交通荷載的增長可以顯著加速疲勞損傷的發(fā)展,吊桿疲勞性能的研究不應(yīng)根據(jù)經(jīng)驗作判斷,而應(yīng)基于長期的現(xiàn)場實測車輛載荷。

圖11 2020年6—8月日平均疲勞損傷得出的疲勞壽命Fig.11 Fatigue life derived from average fatigue damagefrom June to August 2020

表2 2020年6—8月動態(tài)稱重數(shù)據(jù)與疲勞壽命比較

Petrini等[6]用概率的方法模擬了一座大跨度懸索橋未來一年里所受到的風(fēng)荷載與列車荷載,對吊桿的疲勞損傷進行了估算,在風(fēng)荷載或者列車荷載的單獨作用下,橋塔附近吊桿的疲勞壽命均超過1 000 a。汪小超等[8]采用了蒙特卡洛法考慮車輛荷載的橫向分布,對大跨度懸索橋在車流荷載作用下吊桿的疲勞損傷進行了評估。結(jié)果顯示:當(dāng)僅僅采用1個月的車流數(shù)據(jù)進行疲勞壽命預(yù)測時,吊桿的疲勞壽命均超過5 000 a;當(dāng)采用1月與8月的數(shù)據(jù)進行疲勞預(yù)測時,兩者所得結(jié)果相差超過25倍。對吊桿疲勞壽命進行評估分析時,僅采用單日或者單月的數(shù)據(jù)可能得到差距很大的預(yù)測值,采用盡可能大的時間跨度下的數(shù)據(jù)會得到更合理的預(yù)測結(jié)果。

3.5 疲勞損傷評估預(yù)測分析

影響吊桿疲勞壽命的因素很多,其中包括車輛荷載、環(huán)境侵蝕、橋梁初始設(shè)計缺陷、動力效應(yīng)、風(fēng)荷載和溫度荷載等。筆者方法在評估在役吊桿時也存有一些弊端:1) 在進行疲勞分析時只考慮了單一的影響因素;2) 在使用雨流計算法進行分析時,在眾多的峰谷里可能沒有準(zhǔn)確地捕捉到對疲勞壽命影響較大的波峰和波谷;3) 針對動態(tài)效應(yīng)放大系數(shù)應(yīng)先根據(jù)不同工程作不同分析,再得出相應(yīng)的值,而本研究只是取了規(guī)范里的值。吊桿疲勞壽命預(yù)測是十分具有挑戰(zhàn)性的研究,在實際工程應(yīng)用中橋梁所承受的外荷載,即車輛等外激勵荷載不僅難以實時地精確測試[18],而且很難對多個外部荷載作用下的隨機結(jié)構(gòu)響應(yīng)以及在橋梁長期使用過程中外部荷載可能發(fā)生的變化進行表征和建模。在未來的研究中,應(yīng)該致力于研究多個影響因素情況下疲勞損傷評估和壽命預(yù)測。

4 結(jié) 論

筆者提出了一個研究組合結(jié)構(gòu)拱橋吊桿在現(xiàn)場實測車輛荷載作用下疲勞性能的框架?;趯崪y動態(tài)稱重系統(tǒng)收集的實時車輛數(shù)據(jù),以九堡大橋為研究對象,對吊桿疲勞性能進行了研究,得出如下結(jié)論:1) 從橋兩端到橋跨中吊桿的疲勞壽命呈現(xiàn)下降趨勢,在役橋梁吊桿管理養(yǎng)護、更換時應(yīng)優(yōu)先考慮中跨的吊桿;2) 吊桿疲勞壽命的減小速度是逐漸增大的,車輛數(shù)量、車輛總重小幅度的增加會造成吊桿疲勞損傷值數(shù)量級增長,因此在實際工程中針對吊桿疲勞性能的研究不應(yīng)根據(jù)經(jīng)驗作判斷,而應(yīng)基于長期的現(xiàn)場實測車輛載荷;3) 在對吊桿疲勞壽命進行評估分析時,僅采用單日或者單月的數(shù)據(jù)可能得到差距很大的預(yù)測值,采用盡可能大的時間跨度下的數(shù)據(jù)會得到更合理的預(yù)測結(jié)果。

猜你喜歡
吊桿拱橋步長
連續(xù)梁拱橋吊桿更換過程中內(nèi)力重分布研究*
人行懸索橋吊桿的損傷識別
大跨鋼管混凝土拱橋吊桿破斷動力響應(yīng)與結(jié)構(gòu)強健性分析
基于Armijo搜索步長的BFGS與DFP擬牛頓法的比較研究
一種改進的變步長LMS自適應(yīng)濾波算法
基于變步長梯形求積法的Volterra積分方程數(shù)值解
董事長發(fā)開脫聲明,無助消除步長困境
蘆溪
水里的“小拱橋”
下承式拱橋吊桿張拉相互影響研究
吐鲁番市| 成都市| 庐江县| 静安区| 察哈| 德化县| 固原市| 桂东县| 包头市| 义马市| 南和县| 上蔡县| 康保县| 凤山县| 佛坪县| 凉城县| 漳州市| 上蔡县| 永春县| 五华县| 广东省| 潜江市| 青浦区| 定兴县| 彰化县| 班戈县| 渑池县| 原平市| 宝清县| 邢台县| 津南区| 龙山县| 隆林| 鄂托克前旗| 靖边县| 平度市| 旬阳县| 惠安县| 黄山市| 泗水县| 佳木斯市|