国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

化學(xué)機(jī)械拋光墊的研究進(jìn)展

2022-07-27 01:56:28曹威鄧朝暉李重陽(yáng)葛吉民
表面技術(shù) 2022年7期
關(guān)鍵詞:拋光液修整磨粒

曹威,鄧朝暉,李重陽(yáng),葛吉民

化學(xué)機(jī)械拋光墊的研究進(jìn)展

曹威a,b,鄧朝暉a,b,李重陽(yáng)a,b,葛吉民a,b

(湖南科技大學(xué) a.難加工材料高效精密加工湖南省重點(diǎn)實(shí)驗(yàn)室 b.機(jī)電工程學(xué)院,湖南 湘潭 411201)

化學(xué)機(jī)械拋光(CMP)作為一種超精密加工技術(shù),在集成電路制造、計(jì)算機(jī)硬盤(pán)、微機(jī)電系統(tǒng)、光學(xué)元件加工等領(lǐng)域得到了廣泛的應(yīng)用。拋光墊設(shè)計(jì)制備、拋光墊磨損、拋光墊修整均會(huì)對(duì)化學(xué)機(jī)械拋光產(chǎn)生影響。首先從拋光墊基體、拋光墊表面紋理、拋光墊結(jié)構(gòu)等3個(gè)方面對(duì)拋光墊設(shè)計(jì)制備相關(guān)研究進(jìn)行了綜述,重點(diǎn)介紹了不同基體材質(zhì)拋光墊的拋光性能,指出了各材質(zhì)拋光墊的優(yōu)缺點(diǎn)。其次,介紹了拋光和修整過(guò)程中的拋光墊磨損,對(duì)比了各研究者建立的拋光墊磨損模型,概述了拋光墊磨損監(jiān)測(cè)技術(shù)的研究現(xiàn)狀,并指出目前拋光墊磨損狀態(tài)的監(jiān)測(cè)手段較為單一,采用融合多傳感器信號(hào)對(duì)拋光墊磨損狀態(tài)進(jìn)行監(jiān)測(cè),可以提高其監(jiān)測(cè)精度。為了進(jìn)一步探究拋光墊修整對(duì)拋光性能的影響,歸納了修整器的結(jié)構(gòu)參數(shù),以及修整參數(shù)對(duì)修整效果的影響,介紹了幾種新型修整器結(jié)構(gòu),并綜述了拋光墊自修整技術(shù)的研究進(jìn)展。最后,總結(jié)了目前關(guān)于研究拋光墊設(shè)計(jì)制備、拋光墊磨損、拋光墊修整等方面存在的問(wèn)題,并對(duì)其發(fā)展前景進(jìn)行了展望。

化學(xué)機(jī)械拋光;拋光墊;設(shè)計(jì)制備;磨損;修整

化學(xué)機(jī)械拋光(CMP)借助于拋光液中化學(xué)試劑的化學(xué)腐蝕和納米磨粒的機(jī)械磨削雙重耦合作用[1],可以在原子水平上實(shí)現(xiàn)材料的去除[2],可以在0.35 μm及其以下尺寸器件上同時(shí)實(shí)現(xiàn)局部和全局平坦化,被廣泛應(yīng)用于光學(xué)元件、計(jì)算機(jī)硬盤(pán)、微機(jī)電系統(tǒng)、集成電路等領(lǐng)域[3-6]。

在CMP過(guò)程中,拋光墊起到了儲(chǔ)存拋光液、輸送拋光液、排出廢物、傳遞加工載荷、保證拋光過(guò)程平穩(wěn)進(jìn)行等作用,其成本占CMP總成本的三分之一左右。在CMP過(guò)程中,拋光墊浸泡在拋光液中會(huì)與工件和磨粒發(fā)生相對(duì)運(yùn)動(dòng),這將引起拋光墊性能的下降,甚至造成拋光墊的廢棄,因而制備質(zhì)量高、性能穩(wěn)定的拋光墊勢(shì)在必行。文中擬綜述CMP拋光墊的研究進(jìn)展,指出目前研究中存在的不足,并對(duì)CMP拋光墊的下一步研究重點(diǎn)進(jìn)行展望,以期為業(yè)界和相關(guān)研究人員提供參考。

1 拋光墊的設(shè)計(jì)與制備

基體、表面紋理和結(jié)構(gòu)是構(gòu)成拋光墊的3個(gè)要素。近年來(lái),研究者們分別探究了三者對(duì)拋光墊性能的影響,并通過(guò)改變基體材質(zhì)、改進(jìn)基體制備工藝、優(yōu)化拋光墊表面紋理及結(jié)構(gòu)來(lái)提高拋光墊的質(zhì)量,增強(qiáng)其性能穩(wěn)定性。

1.1 拋光墊基體

基體是拋光墊的主體部分,拋光墊基體的力學(xué)性能和表面微觀結(jié)構(gòu)在很大程度上影響著拋光墊的拋光性能。Prasad等[7]利用固態(tài)微孔發(fā)泡工藝(SSMF)制備了拋光墊,探究了拋光墊硬度、表面微孔尺寸、孔隙率對(duì)正硅酸乙酯(TEOS)晶圓片的材料去除率(MRR)和表面質(zhì)量的影響。研究表明,MRR會(huì)隨著拋光墊基體的硬度和孔隙率的增加而增加,降低拋光墊的硬度可以明顯減少晶圓表面劃痕的數(shù)量。拋光墊表面的微孔尺寸越大,材料去除得越均勻。Han等[8]使用超細(xì)膠體二氧化鈰磨料,對(duì)TEOS晶圓進(jìn)行了化學(xué)機(jī)械拋光,探究了拋光墊表面粗糙度對(duì)MRR的影響。研究發(fā)現(xiàn),當(dāng)拋光墊表面粗糙度在7 μm以上時(shí),MRR值約為20 nm/min;當(dāng)拋光墊表面粗糙度在7 μm以下時(shí),MRR值約為200 nm/min。Park等[9]使用2種不同類(lèi)型的修整器分別獲得了2種不同的拋光墊表面形貌,并探究了它對(duì)材料去除均勻性的影響。研究結(jié)果顯示,表面形貌較為規(guī)整的拋光墊的吸水性更好,拋光液分布得更加均勻,拋光性能更穩(wěn)定。除了利用實(shí)驗(yàn)探究拋光墊表面形貌對(duì)拋光性能的影響外,也有部分學(xué)者從理論入手探究了拋光墊表面微觀結(jié)構(gòu)對(duì)拋光墊–晶圓間的接觸狀態(tài)和拋光液流動(dòng)的影響。郭亮龍等[10]通過(guò)建立磷酸二氫鉀(KDP)與拋光墊粗糙峰接觸力學(xué)數(shù)學(xué)模型,探究了化學(xué)機(jī)械拋光中機(jī)械作用的影響因素。研究結(jié)果顯示,拋光墊的粗糙峰曲率半徑、孔隙率、彈性模量和摩擦因數(shù)均會(huì)影響化學(xué)機(jī)械拋光中的微機(jī)械作用,四者對(duì)表面接觸應(yīng)力的影響由大到小的順序分別是粗糙峰平均曲率半徑、孔隙率、摩擦因數(shù)、彈性模量。毛美姣等[11]基于彈塑性力學(xué)理論,對(duì)工件–磨粒–拋光墊間的接觸狀態(tài)進(jìn)行了理論分析,計(jì)算了各狀態(tài)下磨粒壓入工件的深度。研究結(jié)果表明,在完全接觸狀態(tài)下,磨粒的壓入深度與拋光墊粗糙峰的實(shí)際接觸面積成反比。曾慶勉[12]借助流體力學(xué)軟件Fluent探究了拋光墊表面微孔對(duì)拋光液流動(dòng)的影響,研究結(jié)果顯示,拋光液流過(guò)拋光墊的粗糙表面時(shí)會(huì)產(chǎn)生漩渦,當(dāng)拋光墊表面孔隙較小或者較淺時(shí),產(chǎn)生的漩渦有助于拋光液的更替,磨粒更不容易堵塞拋光墊的表面微孔。拋光墊表面形貌對(duì)表面接觸應(yīng)力和拋光液流動(dòng)等都有影響,因此在建立材料去除率模型時(shí),也應(yīng)考慮拋光墊表面形貌變化的影響。張朝暉等[13]對(duì)相關(guān)研究進(jìn)行了綜述,并指出拋光墊粗糙峰的概率分布函數(shù)在很大程度上影響著材料去除率模型的準(zhǔn)確性,研究者們應(yīng)予以重視。

改變拋光墊材質(zhì)、改善拋光墊表面形貌、向拋光墊中浸漬或向拋光墊表面噴涂特殊材料均可以改善基體的力學(xué)性能和表面微觀結(jié)構(gòu),提高拋光墊的拋光性能。在傳統(tǒng)CMP中,游離在拋光液中的磨粒易產(chǎn)生積聚,加工效率較低。在對(duì)固結(jié)磨粒拋光墊進(jìn)行拋光時(shí),雖然可以獲得較高的加工效率,提高磨料的利用率,但是拋光墊中的磨粒黏結(jié)得過(guò)于牢固,磨損磨粒難以及時(shí)掉落,容易在晶圓表面產(chǎn)生劃痕,影響其加工質(zhì)量。為了在保證材料去除率的同時(shí)減少劃痕的產(chǎn)生,研究者們仿照大森整等[14]的冰凍固結(jié)SiO2和水制備冰凍砂輪等方法,將磨料和拋光液直接冰凍,制備了冰凍固結(jié)磨粒拋光墊。在利用冰凍固結(jié)磨粒拋光墊對(duì)晶圓進(jìn)行加工時(shí),上層磨損的磨粒因加工過(guò)程產(chǎn)生的熱量從冰凍拋光墊上及時(shí)脫落,下層固結(jié)的鋒利磨粒則繼續(xù)與晶圓接觸,實(shí)現(xiàn)了材料的去除(如圖1所示[15])。這既避免了磨粒游離帶來(lái)的加工效率低下問(wèn)題,又保證了磨損磨粒的及時(shí)掉落,獲得了較高的加工質(zhì)量。利用冰凍固結(jié)磨粒拋光墊,韓榮久等[16-18]對(duì)微晶玻璃和單晶硅片進(jìn)行了拋光,獲得了較好的拋光效果。孫玉立[19]、沈兆俠[20]、楊張一[21]通過(guò)實(shí)驗(yàn)和仿真明確了單晶硅、微晶玻璃、單晶砷等材料的低溫拋光機(jī)理,優(yōu)化了加工工藝參數(shù),并對(duì)不同槽型冰凍固結(jié)磨料拋光墊的拋光效果進(jìn)行了比較。Nayak等[15]分析了冰凍固結(jié)磨料拋光墊融化的影響因素,建立了拋光墊融化速度預(yù)測(cè)模型,探究了拋光墊融化速度與磨料特性、工件轉(zhuǎn)速、拋光墊轉(zhuǎn)速的關(guān)系,研究發(fā)現(xiàn),磨粒的濃度越高,粒徑越小,工件轉(zhuǎn)速和拋光墊轉(zhuǎn)速越高,冰盤(pán)融化速度越快。雖然采用冰凍固結(jié)磨粒拋光墊可以提高拋光效率,并避免在晶圓表面產(chǎn)生劃痕,但是在制備此類(lèi)拋光墊的過(guò)程中,因重力作用,磨料很容易沉積在拋光液底部,造成磨料分布的不均勻。為了解決這個(gè)問(wèn)題,夏保紅[22]制備了冰粒型固結(jié)磨料拋光墊。與冰凍固結(jié)磨粒拋光墊制備流程不同,制備冰粒型固結(jié)磨粒拋光墊時(shí)需先用霧化噴嘴將拋光液霧化,然后利用液氮將霧化后的拋光液冷凍成冰粒,再在模具中向獲得的冰粒施壓,使之固結(jié)為一體。研究結(jié)果表明,相較于冰凍固結(jié)磨料拋光盤(pán),冰粒型固結(jié)磨粒拋光墊的磨料分布更加均勻,加工效率和加工質(zhì)量更高。邵靂[23]對(duì)比了冰粒型固結(jié)磨粒拋光墊、熱固性固結(jié)磨料拋光墊、游離磨料拋光墊對(duì)單晶鍺片的加工效果,并對(duì)拋光工藝參數(shù)進(jìn)行了優(yōu)化。王勇[24]、湯蘇揚(yáng)[25]分別從熱力學(xué)、摩擦磨損的角度,探究了影響冰粒型固結(jié)磨粒拋光墊拋光效果的因素,進(jìn)一步揭示了冰粒型固結(jié)磨粒拋光墊的拋光機(jī)理。

圖1 冰凍固結(jié)磨粒拋光墊[15]

除了冰凍固結(jié)后的拋光液,聚氨酯、無(wú)紡布等也可以作為拋光墊基體材料對(duì)晶圓進(jìn)行化學(xué)機(jī)械拋光。為了研究拋光墊材質(zhì)對(duì)化學(xué)機(jī)械拋光的影響,徐朝閣[26]對(duì)比了聚氨酯、無(wú)紡布、合成革拋光墊的拋光效果,研究結(jié)果表明,雖然聚氨酯拋光墊和無(wú)紡布拋光墊的材料去除率均高于合成革的,但是由于使用聚氨酯拋光時(shí)材料去除率的下降速度非???,因此選擇使用無(wú)紡布拋光墊對(duì)鈮酸鋰晶體進(jìn)行化學(xué)機(jī)械拋光,這樣可以獲得更好的效果。周海等[27]對(duì)比了帶絨毛的無(wú)紡布拋光墊(科晶)、聚氨酯類(lèi)拋光墊(ICl400)、無(wú)紡布拋光墊(Suba600)的拋光效果,研究結(jié)果表明,在3種拋光墊中科晶拋光墊的拋光效率最高,IC1400的使用壽命最長(zhǎng)。熊偉[28]對(duì)比了聚氨酯拋光墊、聚四氟乙烯拋光墊、無(wú)紡布拋光墊對(duì)鉭酸鋰晶片的拋光效果,研究結(jié)果表明,無(wú)紡布拋光墊容納固體磨料的能力較低、拋光效率較低;聚四氟乙烯拋光墊的硬度較高,拋光效率較高,但拋光后晶片表面的劃痕較多;聚氨酯拋光墊的拋光性能最優(yōu)。龔凱[29]對(duì)比了Politex型阻尼布、Suba600型無(wú)紡布、LP57型聚氨酯等3種材質(zhì)的拋光墊對(duì)氧化鎵的拋光效果,研究結(jié)果表明,利用Suba600對(duì)氧化鎵進(jìn)行化學(xué)機(jī)械拋光時(shí),雖然可以獲得最大的材料去除率,但容易在晶圓表面產(chǎn)生劃痕;利用阻尼布拋光墊和聚氨酯拋光墊對(duì)氧化鎵進(jìn)行化學(xué)機(jī)械拋光均可滿(mǎn)足加工質(zhì)量的要求,且聚氨酯的材料去除率較高。毛美姣等[30]在9種材質(zhì)拋光墊中優(yōu)選了細(xì)帆布、超纖化合布、中密人造植絨、聚氨酯化合物、聚氨酯拋光皮等5種適合YG8硬質(zhì)合金刀片拋光的拋光墊,探究了5種拋光墊在各個(gè)加工時(shí)間段的拋光效果。研究結(jié)果表明,當(dāng)使用細(xì)帆布加工40 min時(shí),材料去除率最高,為47.105 nm/min;當(dāng)使用細(xì)帆布加工80 min時(shí),表面粗糙度最低,為0.039 mm。

在化學(xué)機(jī)械拋光過(guò)程中,改善拋光墊表面形貌有助于提高加工質(zhì)量。目前,研究者們多通過(guò)改進(jìn)修整方式來(lái)改善拋光墊的表面形貌,僅Kim等[31-32]從粗糙峰形貌入手,分析了拋光墊粗糙峰形貌對(duì)晶圓劃擦的影響,并指出粗糙峰半徑與粗糙峰高度標(biāo)準(zhǔn)差之比是影響晶圓劃擦的關(guān)鍵參數(shù),利用金屬板或金屬滾筒向粗糙峰施壓(如圖2所示)可以提高兩者的比例,進(jìn)而減少表面劃痕的數(shù)量,使MRR值增加30%。

圖2 粗糙峰平坦化技術(shù)示意圖[31]

目前使用的聚氨酯拋光墊基體中一般含有大量氣孔,這些氣孔在拋光過(guò)程中起到了運(yùn)輸拋光液、保證化學(xué)腐蝕、排除廢棄物的作用。由于這些氣孔尺寸不一、分布不均勻,因而影響了拋光墊的密度和剛度,會(huì)導(dǎo)致拋光墊表面粗糙峰高度的變化,造成表面形貌測(cè)量誤差[33]。為了解決上述問(wèn)題,Tsai等[4,34]制備了無(wú)孔聚氨酯石墨浸漬拋光墊(如圖3a所示),并探究了石墨含量對(duì)拋光墊性能的影響。研究發(fā)現(xiàn),相較于傳統(tǒng)的聚氨酯拋光墊,石墨浸漬墊的修整磨損率更低,晶圓材料去除率更高,拋光墊親水性能隨著石墨含量的增加而提高。Ho等[35]將Fe浸漬在拋光墊中,利用Fe作為催化劑來(lái)催化SiC晶圓與拋光液中H2O2之間的化學(xué)反應(yīng)(如圖3b所示)。研究發(fā)現(xiàn),與傳統(tǒng)拋光墊相比,F(xiàn)e和Al2O3的質(zhì)量分?jǐn)?shù)分別為1%和3%的拋光墊,可以在不增加晶圓表面粗糙度的條件下使MRR值提高73%。Zhou等[36]向拋光墊表面噴涂改性TiO2(如圖4所示),利用TiO2在UV光的照射下會(huì)釋放出電子并產(chǎn)生空穴的性質(zhì),促進(jìn)CMP中化學(xué)反應(yīng)的進(jìn)行。實(shí)驗(yàn)證明,相較于傳統(tǒng)拋光墊,利用該拋光墊對(duì)SiC進(jìn)行拋光可以提高M(jìn)RR,并獲得具有原子臺(tái)階結(jié)構(gòu)的低粗糙度超光滑晶圓表面。

通過(guò)上述研究可以發(fā)現(xiàn),改變拋光墊材質(zhì)、對(duì)粗糙峰施壓、向拋光墊中浸漬或向拋光墊表面噴涂特殊材料均可以改善拋光墊的拋光性能(如表1所示)。相較于其余2種方法,通過(guò)對(duì)粗糙峰施壓來(lái)優(yōu)化拋光墊更為簡(jiǎn)單方便,有更大的應(yīng)用前景。

1.2 拋光墊表面紋理

拋光墊表面的溝槽和突起圖案可以促進(jìn)拋光墊表面拋光液的流動(dòng),增加拋光墊與晶圓之間的摩擦,對(duì)拋光產(chǎn)物的排出、拋光液利用率和MRR有著較大的影響。部分學(xué)者通過(guò)流體動(dòng)力學(xué)仿真和拋光實(shí)驗(yàn),對(duì)比了不同表面紋理拋光墊的拋光性能。楊張一[21]列舉了幾種常見(jiàn)拋光墊表面紋理(如圖5a所示),并對(duì)比了放射狀溝槽冰盤(pán)、柵格狀溝槽冰盤(pán)、普通冰盤(pán)的拋光效果。實(shí)驗(yàn)結(jié)果顯示,相較于普通冰盤(pán),放射狀溝槽冰盤(pán)對(duì)微晶玻璃的材料去除率提高了42%,柵格狀溝槽冰盤(pán)的材料去除率提高了27%。Hong等[37]對(duì)比了表面為同心圓狀紋路、復(fù)合紋路(同心圓和放射狀)的拋光墊的拋光性能,研究結(jié)果顯示,相較于表面紋路為同心圓狀的拋光墊,表面紋路為復(fù)合紋路(如圖5b所示)的拋光墊上拋光液分布得更加均勻,去除材料的均勻性更高,但是拋光液流動(dòng)得較快,這樣限制了化學(xué)反應(yīng),使得MRR值較低。部分學(xué)者從拋光液流動(dòng)的均勻性、加工效率等角度出發(fā),對(duì)拋光墊表面紋理進(jìn)行了設(shè)計(jì)。Li等[38]通過(guò)流體動(dòng)力學(xué)分析設(shè)計(jì)出一種槽深為1.5 mm、槽寬為2 mm的螺旋狀表面紋理(如圖5c所示),研究發(fā)現(xiàn)相較于放射狀紋理拋光墊,該拋光墊上流體分布得更均勻,徑向速度的波動(dòng)更小,利用該拋光墊加工晶圓的表面粗糙度(0.251 nm)比放射紋理狀拋光墊的(0.561 nm)小。Li等[39]從拋光墊磨損的角度出發(fā),提出了分區(qū)拋光墊的概念,并探究了最佳的區(qū)域面積比和對(duì)應(yīng)的磨粒密度。呂玉山等[40-43]、Fang等[44]基于生物學(xué)的葉序理論設(shè)計(jì)了葵花籽粒結(jié)構(gòu)的仿生拋光墊(如圖5d所示),并分別研究了葉序參數(shù)對(duì)接觸壓強(qiáng)、晶片材料去除率、拋光液流動(dòng)狀態(tài)和晶圓表面粗糙度的影響。常規(guī)拋光工藝通常需要消耗數(shù)小時(shí)或數(shù)天的時(shí)間,為了提高平面光學(xué)器件的制造效率,Li等[45]提出了一種晶圓材料去除率預(yù)測(cè)方法,并基于此方法確定了拋光墊表面溝槽分布和拋光時(shí)間,實(shí)驗(yàn)驗(yàn)證了該預(yù)測(cè)方法的可行性和穩(wěn)定性。利用該方法對(duì)光學(xué)玻璃樣品進(jìn)行拋光時(shí),只需14 min就可將其表面輪廓的峰谷值(PV)從1.17 μm降至0.2 μm。Huey等[46]通過(guò)增加拋光墊溝槽深度和拋光墊厚度制備了新型拋光墊IC1010–DV,該拋光墊的壽命是IC1000的2倍。Philipossian等[47]通過(guò)實(shí)時(shí)監(jiān)測(cè)拋光過(guò)程中的摩擦因數(shù),探究了拋光液流速對(duì)拋光墊壽命的影響,為拋光墊表面紋理的設(shè)計(jì)提供了理論支持,研究結(jié)果表明,增加拋光液流速可以在不影響平均材料去除率的情況下,有效延長(zhǎng)拋光墊的壽命。在探究拋光墊表面紋理對(duì)拋光墊力學(xué)性能影響方面,僅有He等[48]提出了基體實(shí)體層和粗糙層的剛度預(yù)測(cè)模型,并通過(guò)有限元模型和實(shí)驗(yàn)分別對(duì)其進(jìn)行了驗(yàn)證,研究發(fā)現(xiàn),相較于常用的均勻?qū)雍瘢║TL)模型,該模型對(duì)帶槽拋光墊實(shí)體層剛度的預(yù)測(cè)精度提高了20%,精確地描繪了拋光墊表面紋理對(duì)拋光墊剛度的影響,可以為拋光墊表面紋理的設(shè)計(jì)優(yōu)化提供理論指導(dǎo)。

圖3 特殊材料浸漬拋光墊

圖4 TiO2和改性TiO2的掃描電鏡圖[36]

表1 各材質(zhì)拋光墊加工效果

Tab.1 Processing effect of polishing pads with various materials

Note: Sa—Three dimensional surface roughness parameters.

圖5 拋光墊表面紋理

目前,拋光墊表面紋理設(shè)計(jì)多基于幾種常見(jiàn)形狀的組合,或是根據(jù)仿生學(xué)進(jìn)行設(shè)計(jì),對(duì)表面紋理設(shè)計(jì)的理論研究得較少。探究拋光墊表面紋理幾何參數(shù)對(duì)拋光性能的影響,建立一個(gè)完整的理論體系指導(dǎo)表面紋理設(shè)計(jì),應(yīng)是研究者們下一步需要研究的內(nèi)容。

1.3 拋光墊結(jié)構(gòu)

除了優(yōu)化拋光墊的表面紋理外,改進(jìn)拋光墊的結(jié)構(gòu)也可以提高拋光質(zhì)量和效率。Kim等[49]探究了孔結(jié)構(gòu)拋光墊的孔密度對(duì)CMP性能的影響(如圖6a所示),研究發(fā)現(xiàn),在拋光過(guò)程中,孔墊表面結(jié)構(gòu)變化較小??酌芏仍礁?,拋光墊晶圓的接觸比越高,溝槽圖案晶圓的凹陷越明顯,表面的劃痕越少?;谄樟炙诡D方程,如果拋光墊彈性模量沿著徑向線性變化,那么在相同的拋光墊變形下,晶圓表面應(yīng)力也沿著徑向發(fā)生線性變化,晶圓材料的去除將更為均勻。基于這種思路,董曉星等[50-51]、Wang等[52-53]提出了功能梯度拋光墊的概念,并探究了功能梯度拋光墊材料的選擇原則,對(duì)功能梯度拋光墊結(jié)構(gòu)進(jìn)行了設(shè)計(jì)和改進(jìn)(如圖6b所示)。實(shí)驗(yàn)結(jié)果顯示,當(dāng)磨粒/橡膠的質(zhì)量比為15∶100~50∶100時(shí),兩者的混合均勻性更好。相較于丙烯酸酯橡膠(ACM)為基體,以氯丁橡膠(CR)為基體的顆粒/橡膠復(fù)合材料的動(dòng)靜態(tài)應(yīng)力更一致。雖然采用單層功能梯度拋光墊提高了晶圓材料的去除均勻性,但是由于各梯度環(huán)內(nèi)磨粒占比不同,各環(huán)內(nèi)普林斯頓比例常數(shù)也不同,因此材料去除均勻性仍有提高的空間。在雙層功能梯度拋光墊中,上層拋光墊的出現(xiàn)避免了磨粒占比對(duì)比例常數(shù)的影響,與單層功能梯度盤(pán)相比,雙層功能梯度盤(pán)上各環(huán)MRR值之差降低了47.75%,拋光墊耐磨性提高了38%。

圖6 孔結(jié)構(gòu)及功能梯度拋光墊示意圖

根據(jù)彈性接觸理論,提高拋光墊的泊松比和彈性模量各向異性、減少拋光墊厚度均可抑制拋光過(guò)程中晶圓邊緣的應(yīng)力集中現(xiàn)象。不同于其他學(xué)者常用單面拋光實(shí)驗(yàn)驗(yàn)證相關(guān)理論,Statake等[54-57]基于有限元分析和雙面拋光實(shí)驗(yàn)驗(yàn)證了這一理論,并提出上薄下厚、上軟下硬的拋光墊結(jié)構(gòu),采用較大的表面溝槽寬高比、較小的加工過(guò)程占空比也可以有效減輕邊緣應(yīng)力集中現(xiàn)象。對(duì)于聚氨酯拋光墊來(lái)說(shuō),拋光液只存在于工件與拋光墊的縫隙中,不能夠滲透到拋光墊內(nèi)部,這將影響拋光過(guò)程中反應(yīng)產(chǎn)物的及時(shí)排出,造成拋光墊表面孔隙的堵塞,進(jìn)而損傷晶圓表面,降低加工質(zhì)量。Tsai等[58-60]通過(guò)從高處噴涂乙烯–醋酸乙烯熱熔膠制備了絲狀結(jié)構(gòu)的拋光墊(如圖7所示)。相較于傳統(tǒng)拋光墊,該拋光墊表面結(jié)構(gòu)更為疏松,拋光墊上拋光液的流動(dòng)性更好,有助于拋光副產(chǎn)品的排出。

拋光墊的結(jié)構(gòu)除了會(huì)影響材料去除均勻性和晶圓表面質(zhì)量,也會(huì)影響拋光墊基體的力學(xué)性能,進(jìn)而影響材料去除率。通過(guò)上面的研究可以發(fā)現(xiàn),目前學(xué)者們大多從材料去除均勻性、晶圓表面質(zhì)量等角度出發(fā)對(duì)拋光墊的結(jié)構(gòu)進(jìn)行改進(jìn),有必要綜合考慮拋光墊的結(jié)構(gòu)對(duì)材料去除率的影響,并對(duì)其進(jìn)行優(yōu)化。

圖7 熱熔膠拋光墊制備過(guò)程[59]

2 拋光墊磨損

在CMP過(guò)程中,利用拋光墊與晶圓之間發(fā)生的相對(duì)運(yùn)動(dòng)來(lái)實(shí)現(xiàn)材料的去除,拋光墊磨損將影響拋光墊的表面形貌,進(jìn)而影響加工的效果。近年來(lái),研究者們分別探究了拋光過(guò)程和修整過(guò)程中的拋光墊磨損,并對(duì)拋光墊磨損監(jiān)測(cè)技術(shù)進(jìn)行了研究。

2.1 拋光及修整過(guò)程中的拋光墊磨損

在拋光過(guò)程中,拋光墊與晶圓的相對(duì)運(yùn)動(dòng)使拋光墊表面粗糙峰逐漸被磨平,拋光墊發(fā)生磨損。針對(duì)拋光過(guò)程中的拋光墊磨損,Li等[61]、唐詠凱等[62]分別分析了拋光過(guò)程中2種工件運(yùn)動(dòng)方式下拋光墊的磨損,建立了拋光墊磨損模型,探究了拋光參數(shù)對(duì)拋光墊磨損均勻性的影響。Belkhir等[63]觀測(cè)了拋光墊磨損后拋光墊表面形貌的變化情況,探究了它對(duì)拋光性能的影響。研究發(fā)現(xiàn),隨著拋光時(shí)間的增加,拋光墊表面出現(xiàn)了劃痕,表面微孔形狀發(fā)生了變化,磨粒和光學(xué)玻璃碎屑在拋光墊上形成了水垢。雖然拋光墊在拋光開(kāi)始后就出現(xiàn)了磨損,但是前2 h內(nèi)拋光墊的磨損較慢。相較于晶圓形狀精度,拋光墊磨損對(duì)晶圓表面粗糙度的影響較小。

除了將拋光過(guò)程中拋光墊與晶圓的相對(duì)運(yùn)動(dòng)造成的拋光墊表面形貌變化視為拋光墊磨損,學(xué)者們也將修整過(guò)程中因修整器的修整軌跡不均勻引起的拋光墊面型變化視為拋光墊磨損。通過(guò)簡(jiǎn)化修整過(guò)程,研究者們建立了修整過(guò)程中拋光墊磨損模型,探究了修整過(guò)程中不同修整器運(yùn)動(dòng)方式下拋光墊的磨損。Li等[64]通過(guò)分區(qū)域計(jì)算了拋光墊磨損量,以預(yù)測(cè)修整后拋光墊面型,減少了拋光墊磨損預(yù)測(cè)所需的計(jì)算量。Nguyen等[65-67]通過(guò)分析修整器的修整軌跡和修整時(shí)間對(duì)拋光墊面型的影響,建立了拋光墊磨損模型,探究了修整參數(shù)對(duì)拋光墊磨損的影響。相較于只考慮修整軌跡的模型,該模型與實(shí)際情況更相符。在一些修整過(guò)程中,修整器由擺臂帶動(dòng)做近似直線運(yùn)動(dòng),修整器的旋轉(zhuǎn)由拋光墊的旋轉(zhuǎn)帶動(dòng)。針對(duì)此種修整方式,Chen等[68]建立的模型中不僅考慮了磨粒切削的軌跡分布、磨粒與拋光墊的相對(duì)速度、接觸時(shí)間對(duì)拋光墊面型的影響,也考慮了擺臂運(yùn)動(dòng)帶來(lái)的軌跡誤差對(duì)拋光墊面型的影響,模型的精度得到了提高。Pham等[69]在上述模型的基礎(chǔ)上,探究了修整軌跡重疊對(duì)拋光墊表面粗糙度的影響,研究結(jié)果表明,修整軌跡重疊將增大拋光墊的表面粗糙度,可通過(guò)計(jì)算軌跡重疊點(diǎn)對(duì)拋光墊各區(qū)域的粗糙度進(jìn)行預(yù)測(cè)。

雖然通過(guò)簡(jiǎn)化修整過(guò)程探究它對(duì)拋光墊磨損的影響給研究者們理解拋光墊磨損提供了很好的參考依據(jù),但是在實(shí)際加工過(guò)程中修整器磨損和拋光墊力學(xué)性能變化都將對(duì)拋光墊磨損產(chǎn)生影響。利用上述模型(如表2)進(jìn)行的預(yù)測(cè)往往精度不高,僅能用于對(duì)拋光墊磨損引起的面型變化做定性分析。

2.2 拋光墊磨損狀態(tài)監(jiān)測(cè)

拋光墊磨損對(duì)加工質(zhì)量、加工效率都有直接的影響。在CMP過(guò)程中,一般需及時(shí)了解拋光墊的磨損狀態(tài)來(lái)確定下一步操作。依靠操作者的經(jīng)驗(yàn)來(lái)判斷拋光墊磨損狀態(tài)將增加加工成本,影響加工效率,判斷結(jié)果的可靠性較低,由此拋光墊磨損狀態(tài)監(jiān)測(cè)技術(shù)應(yīng)運(yùn)而生。Yin等[70]利用高精度測(cè)角器測(cè)量修整器在在線修整過(guò)程中的傾斜角,獲得了較為精確的拋光墊面型(如圖8a所示)。Chen等[71]利用固定在擺動(dòng)修整臂上的彩色共聚焦傳感器測(cè)量拋光墊表面的高度信息(如圖8b所示),并提出采用拋光墊均勻性(PU)、拋光墊壽命指數(shù)(PELI)等2個(gè)指標(biāo)對(duì)拋光墊性能進(jìn)行評(píng)估。Chen等[72]通過(guò)向拋光墊上的監(jiān)測(cè)元件發(fā)射光束,并觀察監(jiān)測(cè)元件上下表面反射形成的干涉條紋,來(lái)間接獲得拋光墊的表面形貌。在Liao等[73]設(shè)計(jì)的表面形貌監(jiān)測(cè)裝置中,拋光墊上方導(dǎo)軌帶動(dòng)激光位移傳感器、監(jiān)測(cè)平面沿拋光墊徑向移動(dòng),監(jiān)測(cè)平面被限定在傳感器正下方,但其高度可隨著拋光墊表面浮動(dòng)(如圖8c所示)。監(jiān)測(cè)平面的引入避免了拋光墊表面微孔和溝槽對(duì)測(cè)量結(jié)果的影響,提高了監(jiān)測(cè)精度。

拋光墊磨損不僅會(huì)引起光學(xué)信號(hào)的變化,也會(huì)引起聲發(fā)射信號(hào)、力信號(hào)等的變化。目前,已有學(xué)者利用傳感器探測(cè)出釉化的拋光墊與修整后的拋光墊在拋光過(guò)程中產(chǎn)生的聲發(fā)射信號(hào)、力信號(hào)等間接信號(hào)存在的差異[74-75],但是尚未見(jiàn)到有學(xué)者通過(guò)這些信號(hào)對(duì)拋光墊磨損狀態(tài)進(jìn)行監(jiān)測(cè)。應(yīng)進(jìn)一步探究拋光過(guò)程中聲發(fā)射信號(hào)、力信號(hào)等間接信號(hào)與拋光墊磨損狀態(tài)的關(guān)系,融合多傳感器信號(hào)對(duì)拋光墊磨損狀態(tài)進(jìn)行監(jiān)測(cè),以獲得更高的監(jiān)測(cè)精度。

表2 拋光墊磨損模型

Tab.2 Polishing pad wear model

圖8 拋光墊磨損狀態(tài)監(jiān)測(cè)方法

3 拋光墊修整

雖然修整器修整軌跡的不均勻會(huì)對(duì)拋光墊面型產(chǎn)生負(fù)面影響,但是拋光墊修整也能夠有效地去除拋光墊表面的釉化區(qū)域,恢復(fù)拋光墊表面粗糙峰(如圖9所示)[76]。在CMP中,拋光墊修整不可或缺。針對(duì)拋光墊修整,近幾年研究者們除了探究修整過(guò)程對(duì)拋光墊磨損的影響,還探究了修整過(guò)程中修整器結(jié)構(gòu)、修整參數(shù)對(duì)修整性能的影響,制備了親水性固結(jié)磨粒拋光墊,實(shí)現(xiàn)了拋光墊的自修整。

3.1 修整器結(jié)構(gòu)對(duì)修整性能的影響

傳統(tǒng)的金剛石修整器通過(guò)鎳電鍍或合金釬焊的方式使得金剛石磨粒附著于金屬基體上,金剛石磨粒的錐角、尺寸、朝向的不一致,以及高溫釬焊過(guò)程中金屬基體的變形,都將導(dǎo)致各金剛石磨粒的出露高度不一致,影響拋光墊表面的平整度,進(jìn)而影響加工質(zhì)量[9,77]。

部分學(xué)者基于修整實(shí)驗(yàn)探究了金剛石磨粒錐角、尺寸等參數(shù)對(duì)修整性能的影響。Chen等[78]通過(guò)對(duì)比3種不同錐角金剛石筆對(duì)彈性體的修整效果,探究了金剛石錐角對(duì)壓入深度、切削力和犁耕比的影響,確定金剛石錐角為90°時(shí)的修整效果最好。Shin等[79]通過(guò)對(duì)比4個(gè)修整器的修整效果,探究了磨粒尺寸、間距、朝向?qū)π拚Ч挠绊?,研究發(fā)現(xiàn),相較于磨粒尺寸和間距,磨粒朝向?qū)π拚Ч挠绊戄^大。雖然磨粒朝向一致的金剛石修整器與拋光墊間的摩擦因數(shù)最小,拋光墊磨損率最低,但是得益于該修整器可以產(chǎn)生較多的粗糙峰,在磨粒尺寸和間距相同的情況下,該修整器修整的拋光墊對(duì)晶圓的材料去除率是普通修整器修整拋光墊的1.6倍。

圖9 拋光墊的修整效果[76]

除了探究金剛石磨粒錐角、尺寸等參數(shù)對(duì)修整性能的影響,學(xué)者們也對(duì)傳統(tǒng)修整器的結(jié)構(gòu)進(jìn)行了改進(jìn)。Ban等[80]提出減小修整器的整體尺寸,并基于拋光墊面型控制其移動(dòng)速度,可以在拋光墊上不同位置獲得不同拋光墊去除量,進(jìn)一步優(yōu)化拋光墊面型。Liao等[81]在分析修整器的磨損特點(diǎn)時(shí)發(fā)現(xiàn),金剛石修整器邊界處的磨粒更易磨損,因此從修整器基底入手,利用凸形的基底制作金剛石修整器,提高了修整器的修整效率。Kim等[82]通過(guò)控制規(guī)則八面體形狀金剛石磨粒的朝向,制備了一種新型修整器。該修整器中部分金剛石磨粒沿其縱軸豎立,突起高度較高,修整時(shí)首先接觸拋光墊以磨除釉化區(qū)域,其余金剛石通過(guò)其晶體平面附著于基底上,突起高度較低;修整時(shí)較晚接觸或者不接觸拋光墊,以避免過(guò)度切割拋光墊,減輕在線修整過(guò)程中磨粒對(duì)修整器的沖蝕作用。實(shí)驗(yàn)發(fā)現(xiàn),新型修整器與拋光墊間的摩擦因數(shù)受溫度變化的影響較小,該修整器修整的拋光墊材料去除率更高。Tsai等[77]、尹翔等[83]介紹了一種組合型拋光墊修整器。與傳統(tǒng)修整器不同,組合型修整器的金剛石磨粒被釬焊到小磨盤(pán)上,小磨盤(pán)與修整器基盤(pán)通過(guò)螺桿相互連接(如圖10a所示)。相較于傳統(tǒng)金剛石修整器,組合型金剛石修整器需要的金剛石磨粒更少,更容易控制金剛石磨粒的朝向,小磨盤(pán)中的通孔也可以減輕釬焊中變形帶來(lái)的負(fù)面影響,修整效果更好。Tsai等[3,84]通過(guò)在燒結(jié)多晶金剛石基底上雕刻圖案,以獲得與磨粒參數(shù)一致的新型修整器(如圖10b所示),該修整器修整的拋光墊粗糙峰高度更一致,拋光效率高,性能穩(wěn)定。除了利用修整器對(duì)拋光墊進(jìn)行修整,利用高壓水射流沖擊釉化的拋光墊表面也可以很好地恢復(fù)拋光墊的表面形貌。Lee等[85]比較了高壓微噴射拋光墊修整方法與傳統(tǒng)拋光墊修整方法的修整效果,研究結(jié)果顯示,利用高壓微噴射法對(duì)拋光墊進(jìn)行修整時(shí),只需用一半的時(shí)間就可以獲得與修整器相同的效果,拋光墊的修整效率更高,拋光墊壽命更長(zhǎng)。

圖10 新型修整器結(jié)構(gòu)

3.2 修整參數(shù)對(duì)修整性能的影響

除了修整器結(jié)構(gòu)會(huì)對(duì)修整效果產(chǎn)生影響之外,修整壓力和修整時(shí)間等參數(shù)也會(huì)對(duì)修整效果產(chǎn)生影響。Shin等[86]探究了修整壓力對(duì)拋光墊表面形貌和拋光性能的影響,確定40 N為最優(yōu)的修整載荷。Han等[75]探究了在線修整時(shí)間占比對(duì)修整效果的影響,實(shí)驗(yàn)發(fā)現(xiàn),當(dāng)一個(gè)拋光過(guò)程中修整時(shí)間的占比為50%時(shí),拋光墊表面結(jié)構(gòu)就已趨于穩(wěn)定,將在線修整時(shí)間設(shè)置為拋光時(shí)間的50%,不僅可以有效去除拋光墊的釉化區(qū)域,而且可以避免拋光墊的過(guò)修整,延長(zhǎng)拋光墊的壽命。Hooper等[87]對(duì)比了2種修整時(shí)間分配模式下拋光墊的表面輪廓,指出恒定的修整密度不利于提高拋光墊性能。Lee等[88]沿著半徑方向?qū)伖鈮|劃分為8個(gè)環(huán)形區(qū)域,通過(guò)對(duì)比7種修整時(shí)間分配模式的修整效果,探究了修整器在拋光墊各區(qū)域的停留時(shí)間對(duì)拋光墊表面輪廓的影響(如圖11所示)。研究發(fā)現(xiàn),7種修整時(shí)間分配模式都將產(chǎn)生“W”形的拋光墊輪廓,適當(dāng)減少對(duì)拋光墊中間環(huán)的修整時(shí)間,可最大程度地減少拋光墊的磨損,延長(zhǎng)拋光墊的使用壽命。Suzuki等[89]觀察到拋光墊表面粗糙峰與晶圓的接觸形狀一般為橢圓形,各接觸橢圓的主軸方向多與拋光墊轉(zhuǎn)速相切,因此他提出可以通過(guò)調(diào)整修整器的擺臂速度、拋光墊/修整器旋轉(zhuǎn)速度比等修整參數(shù)來(lái)改變接觸橢圓主軸朝向,進(jìn)而提高M(jìn)RR。實(shí)驗(yàn)結(jié)果驗(yàn)證了該方法的有效性,通過(guò)調(diào)整修整參數(shù),MRR值提高了15%。在拋光墊修整過(guò)程中,拋光墊的修整載荷一般固定不變,修整器的磨損將顯著影響拋光墊的修整效果。為了避免修整器磨損對(duì)修整效果的影響,Menk等[90]根據(jù)探測(cè)到的修整扭矩來(lái)動(dòng)態(tài)調(diào)節(jié)修整下的壓力,保證了修整效果的穩(wěn)定性,研究結(jié)果表明,利用該方法對(duì)拋光墊進(jìn)行修整,可至少將拋光墊壽命延長(zhǎng)20%。

利用外部修整器對(duì)拋光墊進(jìn)行修整時(shí),修整器自身的磨損也將對(duì)修整效果產(chǎn)生影響,造成拋光墊拋光性能的不穩(wěn)定,因此部分研究者改變了思路,制備了具有自修整性能的親水性固結(jié)磨粒拋光墊,探究了其自修整性能的影響因素。

3.3 拋光墊自修整

相對(duì)于利用外界附加修整裝置對(duì)拋光墊進(jìn)行在線或者離線修整,利用拋光墊自身性質(zhì)來(lái)實(shí)現(xiàn)拋光墊的自修整可以減少加工步驟,避免修整器磨損對(duì)拋光墊性能的影響。Kim等[91]、Choi等[92]采用親水性聚合物制作了拋光墊,利用它遇水膨脹軟化、易被摩擦去除的特性,首次實(shí)現(xiàn)了拋光墊的自修整。Li等[93]將磨損比作為自修整性能的評(píng)價(jià)指標(biāo),通過(guò)觀測(cè)拋光墊的表面形貌、拋光墊晶圓間的摩擦因數(shù),以及拋光過(guò)程中聲發(fā)射信號(hào)強(qiáng)度的變化,探究了拋光液添加劑對(duì)拋光墊自修整性能的影響。研究結(jié)果顯示,相對(duì)于硝酸鐵、乙二胺(EDA),使用三乙醇胺(TEA)作為拋光液添加劑可以獲得更高的材料去除率,增加磨損比,在拋光過(guò)程中產(chǎn)生的聲發(fā)射信號(hào)更為穩(wěn)定,自修整性能更優(yōu)。Zheng等[94]以工件去除率波動(dòng)為評(píng)價(jià)指標(biāo),探究了拋光墊自修整性能的影響因素,研究發(fā)現(xiàn),相較于金剛石磨粒尺寸、拋光墊中銅粉含量等參數(shù),拋光液中TEA含量和拋光壓力對(duì)自修整性能的影響更大。林魁[95]以溶脹率和鉛筆硬度為評(píng)價(jià)拋光墊基體性能的指標(biāo),以MRR及Sa為拋光墊加工性能的指標(biāo),分別探究了拋光墊基體性能、加工性能的影響因素,對(duì)比了游離磨粒拋光墊、固結(jié)磨粒拋光墊、親水性固結(jié)磨粒拋光墊的加工效果。研究發(fā)現(xiàn),在金剛石磨粒粒徑相同時(shí),利用親水性固結(jié)磨粒拋光墊拋光K9玻璃獲得的工件表面質(zhì)量要明顯優(yōu)于前兩者。

圖11 7種修整時(shí)間分配模式及其修整效果[88]

雖然利用親水性聚合物遇水溶脹特性可以實(shí)現(xiàn)拋光墊的自修整,但是這也將引起拋光墊基體力學(xué)性能的變化,增加拋光參數(shù)對(duì)修整效果的影響。如何應(yīng)對(duì)加工參數(shù)對(duì)拋光墊自修整性能的影響,保證不同加工參數(shù)下拋光墊磨損與修整的動(dòng)態(tài)平衡,避免基體力學(xué)性能變化引起拋光性能的不穩(wěn)定是研究者們需要考慮的問(wèn)題。

4 結(jié)語(yǔ)

目前,國(guó)內(nèi)外學(xué)者在CMP拋光墊的研究方面取得了一系列進(jìn)展。隨著對(duì)加工質(zhì)量、加工效率的要求越來(lái)越高,筆者認(rèn)為可以對(duì)以下幾個(gè)方面進(jìn)行更深入的研究。

1)拋光墊的表面紋理影響著拋光液的流動(dòng)及分布,進(jìn)而影響著拋光質(zhì)量和拋光效率。目前,對(duì)于拋光墊表面紋理的研究多針對(duì)特定的形狀,對(duì)表面紋理設(shè)計(jì)的理論研究較少,有必要進(jìn)一步探究拋光墊表面紋理幾何參數(shù)對(duì)拋光性能的影響,建立一個(gè)完善的理論體系指導(dǎo)表面紋理設(shè)計(jì)。

2)目前,學(xué)者們多利用光學(xué)手段直接監(jiān)測(cè)拋光墊的表面磨損狀態(tài),監(jiān)測(cè)手段較單一。探究拋光過(guò)程中聲發(fā)射信號(hào)、力信號(hào)等間接信號(hào)與拋光墊磨損狀態(tài)的關(guān)系,融合多傳感器信號(hào)對(duì)拋光墊磨損狀態(tài)進(jìn)行監(jiān)測(cè),可以獲得更高的監(jiān)測(cè)精度,發(fā)展前景較好。

3)雖然利用親水性聚合物作為拋光墊的基體可以實(shí)現(xiàn)拋光墊的自修整,而不需要附加修整器,但是拋光墊自修整性能受到拋光參數(shù)的影響,基體遇水溶脹也會(huì)引起其力學(xué)性能的變化,因此需要進(jìn)一步探究加工參數(shù)對(duì)自修整性能的影響,改進(jìn)拋光墊材質(zhì),避免拋光墊遇水溶脹引起拋光性能波動(dòng)過(guò)大。

4)相較于單面化學(xué)機(jī)械拋光,雙面化學(xué)機(jī)械拋光可以獲得更優(yōu)的整體和局部平整度,加工效率更高。目前,針對(duì)雙面化學(xué)機(jī)械拋光墊的研究較少。針對(duì)雙面化學(xué)機(jī)械拋光,探究拋光墊的性能優(yōu)化方法,了解其磨損特點(diǎn),并改進(jìn)其修整方式,具有不可忽視的價(jià)值。

5)除了拋光墊的拋光效率和拋光質(zhì)量,拋光墊的使用壽命也是制造商們選擇拋光墊時(shí)所需要參考的一個(gè)重要指標(biāo)。由于相關(guān)的研究實(shí)驗(yàn)耗時(shí)長(zhǎng)、實(shí)驗(yàn)成本高等,因此目前針對(duì)拋光墊使用壽命的研究較少。開(kāi)展拋光墊壽命研究,并準(zhǔn)確表征拋光墊的使用壽命,可以為制造商們提供更多的參考,有很大的應(yīng)用價(jià)值。

[1] 郜培麗, 張振宇, 王冬, 等. 綠色環(huán)?;瘜W(xué)機(jī)械拋光液的研究進(jìn)展[J]. 物理學(xué)報(bào), 2021, 70(6): 59-73.

GAO Pei-li, ZHANG Zhen-yu, WANG Dong, et al. Re-sea-rch Progress of Green Chemical Mechanical Polishing Slurry[J]. Acta Physica Sinica, 2021, 70(6): 59-73.

[2] 孟凡寧, 張振宇, 郜培麗, 等. 化學(xué)機(jī)械拋光液的研究進(jìn)展[J]. 表面技術(shù), 2019, 48(7): 1-10.

MENG Fan-ning, ZHANG Zhen-yu, GAO Pei-li, et al. Research Progress of Chemical Mechanical Polishing Slurry[J]. Surface Technology, 2019, 48(7): 1-10.

[3] TSAI M Y, CHEN Shun-tong, LIAO Y S, et al. Novel Diamond Conditioner Dressing Characteristics of CMP Polishing Pad[J]. International Journal of Machine Tools and Manufacture, 2009, 49(9): 722-729.

[4] TSAI M Y, YAN Li-wei. Characteristics of Chemical Mechanical Polishing Using Graphite Impregnated Pad[J]. International Journal of Machine Tools and Manufacture, 2010, 50(12): 1031-1037.

[5] WANG Lin, ZHOU Ping, YAN Ying, et al. Chemical- Mechanical Wear of Monocrystalline Silicon by a Single Pad Asperity[J]. International Journal of Machine Tools and Manufacture, 2017, 120: 61-71.

[6] 魯智德. 150 mm以下晶圓氧化硅化學(xué)機(jī)械拋光參數(shù)分析與應(yīng)用研究[D]. 北京: 北京交通大學(xué), 2019: 1-2.

LU Zhi-de. Analysis and Application Research of Silicon Oxide Chemical Mechanical Planarization Parameters for Wafers below 150 mm[D]. Beijing: Beijing Jiaotong Uni-versity, 2019: 1-2.

[7] PRASAD A, FOTOU G, LI Shou-tian. The Effect of Poly-mer Hardness, Pore Size, and Porosity on the Perfor-mance of Thermoplastic Polyurethane-Based Chemical Mechanical Polishing Pads[J]. Journal of Materials Resea-rch, 2013, 28(17): 2380-2393.

[8] HAN S, KIM H J, HONG M K, et al. Effect of Pad Surface Roughness on Material Removal Rate in Chemi-cal Mechanical Polishing Using Ultrafine Colloidal Ceria Slurry[J]. Electronic Materials Letters, 2013, 9(2): 155- 159.

[9] PARK K, JEONG H. Investigation of Pad Surface Topo-graphy Distribution for Material Removal Uniformity in CMP Process[J]. Journal of the Electrochemical Society, 2008, 155(8): H595.

[10] 郭亮龍, 董會(huì), 黃姝珂, 等. KDP無(wú)磨粒拋光微機(jī)械作用力學(xué)模型建立與仿真[J]. 制造技術(shù)與機(jī)床, 2020(6): 54-60.

GUO Liang-long, DONG Hui, HUANG Shu-ke, et al. Modeling and Simulation of Micro-Mechanical Interac-tion in KDP Abrasive-Free Polishing[J]. Manufacturing Technology & Machine Tool, 2020(6): 54-60.

[11] 毛美姣, 許慶, 劉靜莉, 等. 硬質(zhì)合金化學(xué)機(jī)械拋光工件-磨粒-拋光墊接觸狀態(tài)研究[J]. 中國(guó)機(jī)械工程, 2021, 32(17): 2074-2081.

MAO Mei-jiao, XU Qing, LIU Jing-li, et al. Contact States of Workpiece-Abrasive Particles-Polishing Pad in Cemented Carbide CMP Processes[J]. China Mechanical Engineering, 2021, 32(17): 2074-2081.

[12] 曾慶勉. 計(jì)及表面形貌特征的CMP流體力學(xué)特征研究[D]. 天津: 河北工業(yè)大學(xué), 2018: 52-53.

ZENG Qing-mian. Study on the Characteristics of CMP Hydrodynamics Considering the Surface Morphology[D]. Tianjin: Hebei University of Technology, 2018: 52-53.

[13] 張朝輝, 耿旭, 李梓萬(wàn), 等. 化學(xué)機(jī)械拋光中的接觸狀態(tài)研究概述[J]. 表面技術(shù), 2020, 49(3): 50-56.

ZHANG Chao-hui, GENG Xu, LI Zi-wan, et al. An Over-view of Research on Contact State in Chemical Mechani-cal Polishing[J]. Surface Technology, 2020, 49(3): 50-56.

[14] 大森整. 冷凍砂輪的制造及其帶來(lái)的鏡面磨削效果[C]// 砥粒加工學(xué)會(huì)學(xué)術(shù)講演會(huì)講演論文集, 1995: 91- 192.

OHMORI Hitoshi. Manufacture of Frozen Grinding Wheel and Its Mirror Grinding Effect[C]// Proceedings of the Academic Lecture of Abrasive Machining Society, 1995: 91-192.

[15] NAYAK B, RAMESH BABU N. Influence of Tool and Workpiece Interface Temperature Rise on the Life of Ice Bonded Abrasive Polishing Tool[J]. Wear, 2020, 462/463: 203511.

[16] 韓榮久, 裴舒, 王淑榮, 等. 微晶玻璃及其拋光[J]. 航空精密制造技術(shù), 2000, 36(1): 7-12.

HAN Rong-jiu, PEI Shu, WANG Shu-rong, et al. Crystalline Glass and Its Polishing[J]. Aviation Precision Manufacturing Technology, 2000, 36(1): 7-12.

[17] 韓榮久, 安貴生, 劉要武, 等. 光學(xué)材料的淺低溫拋光方法[J]. 航空精密制造技術(shù), 1999, 35(6): 1-5.

HAN Rong-jiu, AN Gui-sheng, LIU Yao-wu, et al. The Shallow Low Temperature Polishing Method of Optical Material[J]. Aviation Precision Manufacturing Technology, 1999, 35(6): 1-5.

[18] 韓榮久, 孫恒德, 徐德全, 等. 單晶硅片的低溫拋光技術(shù)[J]. 光學(xué)精密工程, 1998, 6(5): 104-109.

HAN Rong-jiu, SUN Heng-de, XU De-quan, et al. Cryo-genic Polishing Technology of Monocrystalline Silicon Wafer[J]. Optics and Precision Engineering, 1998, 6(5): 104-109.

[19] 孫玉利. 冰凍固結(jié)磨料化學(xué)機(jī)械拋光單晶硅片的基礎(chǔ)研究[D]. 南京: 南京航空航天大學(xué), 2008: 105-107.

SUN Yu-li. Basic Research on CMP of Silicon Wafer with Ice Fixed Abrasives[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008: 105-107.

[20] 沈兆俠. 冰盤(pán)化學(xué)機(jī)械拋光單晶砷化鎵片的機(jī)理及工藝研究[D]. 揚(yáng)州: 揚(yáng)州大學(xué), 2010: 43-44.

SHEN Zhao-xia. Study on the Mechanism and Techno-logy of Ice Chemical Mechanical Polishing Single Crystal GaAs Wafer[D]. Yangzhou: Yangzhou University, 2010: 43-44.

[21] 楊張一. 開(kāi)槽冰凍固結(jié)磨料拋光墊的拋光性能研究[D]. 南京: 南京航空航天大學(xué), 2013: 53-55.

YANG Zhang-yi. Study on Polishing Performance of Ice Fixed Abrasive Polishing Pad with Grooves[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 53-55.

[22] 夏保紅. 冰粒型固結(jié)磨料拋光墊及其研拋性能基礎(chǔ)研究[D]. 南京: 南京航空航天大學(xué), 2015: 59-60.

XIA Bao-hong. Basic Research on Polishing Performance of Fixed-Abrasive Polishing Pad with Ice Particles[D]. Nanjing: Nanjing University of Aeronautics and Astro-nautics, 2015: 59-60.

[23] 邵靂. 冰粒型固結(jié)磨料研拋單晶鍺片的機(jī)理及其工藝研究[D]. 南京: 南京航空航天大學(xué), 2016: 49-50.

SHAO Li. Research on CMP Mechanism and Process for Monocrystalline Germanium Wafers with Ice-Fixed Abra-sive Polishing Pad[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 49-50.

[24] 王勇. 冰粒型固結(jié)磨具拋光鍺單晶片的基礎(chǔ)研究[D]. 南京: 南京航空航天大學(xué), 2017: 52-53.

WANG Yong. Basic Research on Polishing Monocrystal-line Germanium Slices with Ice-Fixed Abrasive Tools[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 52-53.

[25] 湯蘇揚(yáng). 單晶鍺片低溫研拋機(jī)理及工藝研究[D]. 南京: 南京航空航天大學(xué), 2018: 53-54.

TANG Su-yang. Research on Mechanism and Process of Polishing Monocrystalline Germanium Wafers at Low Temperature[D]. Nanjing: Nanjing University of Aero-nautics and Astronautics, 2018: 53-54.

[26] 徐朝閣. 鈮酸鋰晶體納米力學(xué)及化學(xué)機(jī)械拋光研究[D]. 大連: 大連理工大學(xué), 2014: 35-36.

XU Chao-ge. Nanomechanics and Chemical Mechanical Polishing of Lithium Niobate Crystals[D]. Dalian: Dalian University of Technology, 2014: 35-36.

[27] 周海, 王黛萍, 王兵, 等. 拋光墊在藍(lán)寶石襯底化學(xué)機(jī)械拋光中的應(yīng)用研究[J]. 機(jī)械設(shè)計(jì)與制造, 2009(8): 88- 90.

ZHOU Hai, WANG Dai-ping, WANG Bing, et al. Study the Application of Pad in Chemical Mechanical Polishing for Sapphire Wafer[J]. Machinery Design & Manufacture, 2009(8): 88-90.

[28] 熊偉. 化學(xué)機(jī)械拋光中拋光墊的作用研究[D]. 廣州: 廣東工業(yè)大學(xué), 2006: 58-59.

XIONG Wei. Study on Pad Performance in Chemical Mechanical Polishing[D]. Guangzhou: Guangdong Uni-ver-sity of Technology, 2006: 58-59.

[29] 龔凱. 單晶氧化鎵研拋加工技術(shù)研究[D]. 鎮(zhèn)江: 江蘇大學(xué), 2018: 54-55.

GONG Kai. Research on Single Crystal Osmium Oxide Lapping and Polishing Processing Technology[D]. Zhen-jiang: Jiangsu University, 2018: 54-55.

[30] 毛美姣, 吳鋒, 胡自化. 拋光墊特性對(duì)硬質(zhì)合金刀片CMP加工效果的影響[J]. 表面技術(shù), 2017, 46(12): 270- 276.

MAO Mei-jiao, WU Feng, HU Zi-hua. Effects of Poli-shing Pad Characteristics on CMP(Chemical Mechanical Polishing) Result of Cemented Carbide Tool[J]. Surface Technology, 2017, 46(12): 270-276.

[31] KIM S, SAKA N, CHUN J H, et al. Modeling and Mitigation of Pad Scratching in Chemical-Mechanical Polishing[J]. CIRP Annals, 2013, 62(1): 307-310.

[32] KIM S, SAKA N, CHUN J H. The Effect of Pad-Asperity Curvature on Material Removal Rate in Chemical- Mechanical Polishing[J]. Procedia CIRP, 2014, 14: 42-47.

[33] MCGRATH J, DAVIS C. Polishing Pad Surface Charac-terisation in Chemical Mechanical Planarisation[J]. Journal of Materials Processing Technology, 2004, 153/154: 666- 673.

[34] TSAI M Y, CHEN C Y, HE Ying-rong. Polishing Charac-teristics of Hydrophilic Pad in Chemical Mechanical Polishing Process[J]. Materials and Manufacturing Pro-cesses, 2012, 27(6): 650-657.

[35] HO J K, HUANG C Y, TSAI M Y, et al. Investigation of Polishing Pads Impregnated with Fe and Al2O3Particles for Single-Crystal Silicon Carbide Wafers[J]. Applied Sciences, 2016, 6(3): 89.

[36] ZHOU Yan, PAN Guo-shun, ZOU Chun-li, et al. Che-mical Mechanical Polishing (CMP) of SiC Wafer Using Photo-Catalyst Incorporated Pad[J]. ECS Journal of Solid State Science and Technology, 2017, 6(9): 603-608.

[37] HONG S, BAE S, CHOI S, et al. A Numerical Study on Slurry Flow with CMP Pad Grooves[J]. Microelectronic Engineering, 2020, 234: 111437.

[38] LI Jun, HUANG Jun-yang, HUA Cheng-xu, et al. Design of Surface Grooves on a Polishing Pad Based on Slurry Uniform Flow[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(9): 4795-4803.

[39] LI M, ZHU Y W, LI J, et al. Wear of Polishing Pad and Pattern Optimization of Fixed Abrasive Pad[C]// 13th Inter-national Symposium on Advances in Abrasive Tech-no-logy/1st Cross-Strait Conference on Precision Machi-ning, 2010: 82-89.

[40] 呂玉山, 張?zhí)? 王軍, 等. 葉序結(jié)構(gòu)拋光墊表面的拋光液流場(chǎng)分析[J]. 潤(rùn)滑與密封, 2011, 36(3): 24-29.

LYU Yu-shan, ZHANG Tian, WANG Jun, et al. Analysis of the Polishing Slurry Flow on the Polishing Pad Surface with Phyllotaxis Pattern[J]. Lubrication Engineering, 2011, 36(3): 24-29.

[41] 王軍, 邢雪嶺, 呂玉山, 等. 基于仿生結(jié)構(gòu)錫拋光墊的拋光接觸壓力分析[J]. 中國(guó)機(jī)械工程, 2011, 22(14): 1651-1655.

WANG Jun, XING Xue-ling, LYU Yu-shan, et al. Poli-shing Contact Pressure Analysis Based on Bionic Stan-num Polishing Pad[J]. China Mechanical Engineering, 2011, 22(14): 1651-1655.

[42] 呂玉山, 張遼遠(yuǎn), 王軍, 等. 拋光墊提高化學(xué)機(jī)械拋光接觸壓強(qiáng)分布均勻性研究[J]. 兵工學(xué)報(bào), 2012, 33(5): 617-622.

LYU Yu-shan, ZHANG Liao-yuan, WANG Jun, et al. Con-tact Pressure Distribution during Chemical Mechani-cal Polishing with Bionic Cutting Polishing Pad[J]. Acta Armamentarii, 2012, 33(5): 617-622.

[43] LYU Yu-shan, WANG Jun, LIU Yue-ming, et al. Develop-ment of a Novel Polishing Pad with a Phyllotactic Pattern, and Experimental Studies[J]. Journal of Electronic Mate-rials, 2014, 43(7): 2738-2746.

[44] FANG Cong-fu, ZHAO Zai-xing, HU Zhong-wei. Pattern Optimization for Phyllotactic Fixed Abrasive Pads Based on the Trajectory Method[J]. IEEE Transactions on Semi-con-ductor Manufacturing, 2017, 30(1): 78-85.

[45] LI Wei-si, ZHOU Ping, GENG Zhi-chao, et al. A Global Correction Process for Flat Optics with Patterned Poli-shing Pad[J]. Journal of Manufacturing Science and Engi-neering, 2019, 141(9): 1-10.

[46] HUEY S, MEAR S T, WANG Yu-chun, et al. Technologi-cal breakthrough in pad life improvement and its impact on CMP CoC[C]// 10th Annual IEEE/SEMI. Advanced Semiconductor Manufacturing Conference and Workshop. ASMC 99 Proceedings (Cat No 99CH36295), 1999: 54-58.

[47] PHILIPOSSIAN A, OLSEN S. Effect of Slurry Flow Rate on Pad Life during Interlayer Dielectric CMP[J]. Journal of the Electrochemical Society, 2004, 151(6): G436.

[48] HE Dong-shan, ZHOU Ping, YAN Ying, et al. Nonlinear Compression Behavior of the Grooved Polishing Pad: A Model and Its Validation[J]. ECS Journal of Solid State Science and Technology, 2017, 6(4): 178-183.

[49] KIM H J, CHOI J K, HONG M K, et al. Contact Behavior and Chemical Mechanical Polishing (CMP) Performance of Hole-Type Polishing Pad[J]. ECS Journal of Solid State Science and Technology, 2012, 1(4): 204-209.

[50] 董曉星, 金明生, 王禮明, 等. 用于梯度功能研磨拋光盤(pán)的SiC或Al2O3顆粒/橡膠復(fù)合材料的制備及性能[J]. 復(fù)合材料學(xué)報(bào), 2020, 37(6): 1434-1441.

DONG Xiao-xing, JIN Ming-sheng, WANG Li-ming, et al. Preparation and Properties of SiC or Al2O3Parti-cles/Rubber Composites Applied on Functionally Graded Lapping and Polishing Plate[J]. Acta Materiae Composi-tae Sinica, 2020, 37(6): 1434-1441.

[51] JIN Ming-sheng, DONG Xiao-xing, WANG Li-ming, et al. Design and Mechanical Properties of Particle-Rein-forced Polymer-Matrix Functionally Graded Materials Applied on Elastic Polishing Pad[J]. Ceramics Interna-tional, 2020, 46(2): 1680-1689.

[52] WANG Li-ming, ZHAO Zhang-feng, ZHU Dong-jie, et al. Novel Functionally Graded and Composite-Structured Lapping and Polishing Plate for Better Uniformity of Material Removal[J]. The International Journal of Advan-ced Manufacturing Technology, 2020, 108(5): 1887-1898.

[53] JIN Ming-sheng, WANG Li-ming, YE Sen-bin, et al. A Novel Functionally Graded Lapping and Polishing Me-thod for the Improvement of Material Removal Uni-formity[J]. Journal of Manufacturing Processes, 2020, 50: 102-110.

[54] SATAKE U, ENOMOTO T, OBAYASHI Y, et al. Redu-cing Edge Roll-off during Polishing of Substrates[J]. Precision Engineering, 2018, 51: 97-102.

[55] SATAKE U, ENOMOTO T, MATSUDA K. Improvement of Edge Surface Flatness by a New Stacked Polishing Pad[J]. Procedia CIRP, 2012, 1: 675-676.

[56] ENOMOTO T, SATAKE U, MIYAKE T, et al. A Newly Developed Polishing Pad for Achieving High Surface Flatness without Edge Roll off[J]. CIRP Annals, 2011, 60(1): 371-374.

[57] SATAKE U, HARADA S, ENOMOTO T. Viscoelastic Behavior of Polishing Pad: Effects on Edge Roll-off during Silicon Wafer Polishing[J]. Precision Engineering, 2020, 62: 30-39.

[58] TSAI S L, HUANG F Y, YAN B H, et al. A New Polishing Pad of EVA-Adhesive-Dressed-with-SiC-Grits Polishing Face and Its Applications in Silicon Wafer Polishing[J]. Advanced Materials Research, 2010, 126- 128: 539-544.

[59] TSAI S L, TSAI Y C, KE J H, et al. A Study on Polishing Silicon Wafers by Hot Melt Adhesive Polishing Pads with Abrasives Coated in Different Ways[J]. Materials and Manufacturing Processes, 2011, 26(5): 713-721.

[60] TSAI S L, KE H Z, KE J H, et al. Development of Hot Melt Adhesive Pad and Its Application to Polishing of Monocrystalline Silicon[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226(1): 92-102.

[61] LI M, ZHU Y W, LI J, et al. Modeling of polishing pad wear in chemical mechanical polishing[C]// 10th Interna-tional Conference on Machining and Advanced Manufac-turing Technology, 2010: 318-321.

[62] 唐詠凱, 李軍, 花成旭, 等. 拋光墊磨損非均勻性研究[J]. 光學(xué)技術(shù), 2017, 43(3): 222-227.

TANG Yong-kai, LI Jun, HUA Cheng-xu, et al. Research on Wear Nonuniformity of Polishing Pad[J]. Optical Te-chnique, 2017, 43(3): 222-227.

[63] BELKHIR N, BOUZID D, HEROLD V. Morphological Behavior and Wear of Polyurethane Pads Used in Glass Polishing Process[J]. Precision Engineering, 2012, 36(4): 641-649.

[64] LI Z C, BAISIE E A, ZHANG X H. Diamond Disc Pad Conditioning in Chemical Mechanical Planarization (CMP): A Surface Element Method to Predict Pad Surface Shape[J]. Precision Engineering, 2012, 36(2): 356-363.

[65] NGUYEN N Y, TIAN Y B, ZHONG Z W. Improvement of the Pad Wear Shape in Fixed Abrasive Chemical- Mechanical Polishing for Manufacturing Optical Compo-nents[C]// International Conference on Optical and Pho-tonic Engineering, 2015: 138-143.

[66] NGUYEN N Y, ZHONG Z W, TIAN Ye-bing. An Analy-tical Investigation of Pad Wear Caused by the Conditioner in Fixed Abrasive Chemical-Mechanical Polishing[J]. The International Journal of Advanced Manufacturing Tech-nology, 2015, 77(5): 897-905.

[67] NGUYEN N Y, ZHONG Z W, TIAN Y B. Analysis and Improvement of the Pad Wear Profile in Fixed Abrasive Polishing[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(5): 1159-1165.

[68] CHEN C C A, PHAM Q P. Study on Diamond Dressing for Non-Uniformity of Pad Surface Topography in CMP Process[J]. The International Journal of Advanced Manu-facturing Technology, 2017, 91(9): 3573-3582.

[69] PHAM Q P, CHEN C C A. Study on Pad Cutting Rate and Surface Roughness in Diamond Dressing Process[J]. International Journal of Precision Engineering and Manu-facturing, 2017, 18(12): 1683-1691.

[70] YIN Jin, JIAO Xiang. In Situ Monitoring and Controlling Surface Shape of the Polishing Pad in Continuous Poli-shing[J]. Optical Engineering, 2018, 57(7): 1.

[71] CHEN C C A, LI J C, LIAO Wei-cheng, et al. Dynamic Pad Surface Metrology Monitoring by Swing-Arm Chro-matic Confocal System[J]. Applied Sciences, 2020, 11(1): 179.

[72] CHEN Jun, XU Xue-ke, WEI Chao-yang, et al. The Real- Time Monitoring Surface Figure of Optical Elements in Continuous Polishing[C]// SPIE Proceedings 7th Inter-national Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufac-turing Technologies, 2014: 1-7.

[73] LIAO D, ZHANG Q, XIE R, et al. Deterministic Mea-sure-ment and Correction of the Pad Shape in Full- Aperture Polishing Processes[J]. Journal of the European Optical Society: Rapid Publications, 2015, 10: 15049.

[74] LEE E S, CHA Ji-wan, KIM S H. Evaluation of the Wafer Polishing Pad Capacity and Lifetime in the Machining of Reliable Elevations[J]. International Journal of Machine Tools and Manufacture, 2013, 66: 82-94.

[75] HAN Ruo-chen, SAMPURNO Y, PHILIPOSSIAN A. Fractional in Situ Pad Conditioning in Chemical Me-chani-cal Planarization[J]. Tribology Letters, 2017, 65(1): 21.

[76] FUJITA T. Evaluation of Correlation between Chemical Modification State of Pad and Polishing Rate in Oxide Chemical Mechanical Planarization[J]. Thin Solid Films, 2020, 709: 138233.

[77] TSAI M Y, PENG Jian-da. Investigation of a Novel Diamond Disk's Effect on Pad Topography in Oxide Chemical Mechanical Polishing[J]. Materials and Manu-fac-turing Processes, 2010, 25(12): 1440-1448.

[78] CHEN C C A, PHAM Q P, LI Yi-ting, et al. Study on Quasi-Orthogonal Machining of Elastomer Pad by Single- Point Diamond Tool[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(5): 2555- 2565.

[79] SHIN C, KULKARNI A, KIM K, et al. Diamond Struc-ture-Dependent Pad and Wafer Polishing Performance during Chemical Mechanical Polishing[J]. The Interna-tional Journal of Advanced Manufacturing Technology, 2018, 97(1): 563-571.

[80] BAN Xin-xing, ZHAO Hui-ying, ZHU Xue-liang, et al. Improvement and Application of Pad Conditioning Accuracy in Chemical Mechanical Polishing[J]. Optical Engineering, 2018, 57(9): 1.

[81] LIAO Y S, YANG C T. Investigation of the Wear of the Pad Conditioner in Chemical Mechanical Polishing Pro-cess[J]. Advanced Materials Research, 2009, 76/77/78: 195-200.

[82] KIM H, HONG S, SHIN C, et al. Investigation of the Pad-Conditioning Performance Deterioration in the Chemical Mechanical Polishing Process[J]. Wear, 2017, 392/393: 93-98.

[83] 尹翔, 劉偉, 苗苗. 組合式金剛石修整器修整應(yīng)用研究[J]. 超硬材料工程, 2019, 31(4): 43-48.

YIN Xiang, LIU Wei, MIAO Miao. Application of Combined Diamond Dresser in CMP Process[J]. Super-hard Material Engineering, 2019, 31(4): 43-48.

[84] TSAI M Y, SUNG J C. Dressing Behaviors of PCD Conditioners on CMP Polishing Pads[J]. Advanced Materials Research, 2009, 76/77/78: 201-206.

[85] LEE H, SEIKE Y, LI Zhong-lin, et al. Characterization of Slurry Residues in Pad Grooves for Diamond Disc and High Pressure Micro Jet Pad Conditioning Processes[J]. Japanese Journal of Applied Physics, 2006, 45(50): 1325- 1327.

[86] SHIN C, QIN Hong-yi, HONG S, et al. Effect of Conditioner Load on the Polishing Pad Surface during Chemical Mechanical Planarization Process[J]. Journal of Mechanical Science and Technology, 2016, 30(12): 5659- 5665.

[87] HOOPER B J, BYRNE G, GALLIGAN S. Pad Con-ditioning in Chemical Mechanical Polishing[J]. Journal of Materials Processing Technology, 2002, 123(1): 107-113.

[88] LEE H, LEE S. Investigation of Pad Wear in CMP with Swing-Arm Conditioning and Uniformity of Material Removal[J]. Precision Engineering, 2017, 49: 85-91.

[89] SUZUKI N, MISONO H, SHAMOTO E, et al. Material Removal Efficiency Improvement by Orientation Control of CMP Pad Surface Asperities[J]. Precision Engineering, 2020, 62: 83-88.

[90] MENK G E, DHANDAPANI S, GARRETSON C C, et al. Method for Improved CMP Pad Conditioning Perfor-mance[C]// 2010 IEEE/SEMI Advanced Semiconductor Manufacturing Conference (ASMC), 2010: 149-153.

[91] KIM H, KIM H, JEONG H, et al. Self-Conditioning of Encapsulated Abrasive Pad in Chemical Mechanical Polishing[J]. Journal of Materials Processing Technology, 2003, 142(3): 614-618.

[92] CHOI J Y, JEONG H D. A Study on Polishing of Molds Using Hydrophilic Fixed Abrasive Pad[J]. International Journal of Machine Tools and Manufacture, 2004, 44(11): 1163-1169.

[93] LI Jun, HUANG Jian-dong, XIA Lei, et al. Effect of Chemical Additive on Fixed Abrasive Pad Self-Condi-tioning in CMP[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(1): 107-113.

[94] ZHENG Fang-zhi, ZHU Nan-nan, ZHU Yong-wei, et al. Self-Conditioning Performance of Hydrophilic Fixed Abrasive Pad[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(5): 2217-2222.

[95] 林魁. 固結(jié)磨料研磨拋光墊的性能評(píng)價(jià)及自修整機(jī)理的研究[D]. 南京: 南京航空航天大學(xué), 2010: 41-42.

LIN Kui. Performance Evaluation and Self-Conditioning of Fixed-Abrasive Pad[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010: 41-42.

Polishing Pad in Chemical Mechanical Polishing

a,b,a,b,a,b,a,b

(a. Hunan Provincial Key Laboratory of High Efficiency and Precision Machining of Difficult-to-Cut Materials, b. School of Mechanical Engineering, Hunan University of Science and Technology, Hunan Xiangtan 411201, China)

As an ultra-precision machining technology, chemical mechanical polishing (CMP) has been widely used in integrated circuit manufacturing, computer hard disk, micro electro mechanical system, optical element processing and other fields. The design and preparation, the wear status and the conditioning of the polishing pad all have influence on CMP. In this paper, the research on the design and preparation of polishing pad is summarized from three aspects: polishing pad substrate, polishing pad surface texture and polishing pad structure. The polishing effect of the polishing pad with different substrates is introduced emphatically and therefore their advantages and disadvantages are concluded. Besides, the polishing pad wear in the processes of polishing and conditioning is introduced, and the wear models of polishing pad established by different researchers are compared. The research status of the polishing pad wear monitoring technology is introduced, and the fact that the current monitoring method of polishing pad wear is relatively simple is pointed out thus, which can be improved by fusion of multi-sensor signals to get higher monitoring accuracy. Next, in order to further explore the influence of polishing pad conditioning on polishing performance, the structure parameters of the conditioner and the effect of conditioning parameters on the conditioning are studied. Subsequently, several conditioners with new structures are introduced, and the research progress of polishing pad self-conditioning technology is summarized. Finally, through the analysis of the three aspects above, the existing problems in the research of polishing pad design and preparation, polishing pad wear, and polishing pad conditioning, and the prospect of polishing pad development are discussed.

chemical mechanical polishing; polishing pad; design and preparation; wear; conditioning

TG175

A

1001-3660(2022)07-0027-15

10.16490/j.cnki.issn.1001-3660.2022.07.003

2021–06–18;

2021–11–17

2021-06-18;

2021-11-17

湖南省高新技術(shù)產(chǎn)業(yè)科技創(chuàng)新引領(lǐng)計(jì)劃(2020GK2003);湖南省自然科學(xué)基金(2020JJ4024);國(guó)家自然科學(xué)基金–浙江兩化融合聯(lián)合基金資助項(xiàng)目(U1809221);長(zhǎng)株潭國(guó)家自主創(chuàng)新示范區(qū)專(zhuān)項(xiàng)(2017XK2302)

Special Fund for the Construction of Hunan Innovative Province (2020GK2003); Natural Science Foundation of Hunan Province (2020JJ4024); National Natural Science Foundation of China-Joint Fund for the Integration of IT application with Industrialization in Zhejiang (U1809221); CZT National Independent Innovation Demonstration Zone Special Project (2017XK2302)

曹威(1997—),男,碩士,主要研究方向?yàn)榛瘜W(xué)機(jī)械拋光與工具制備。

CAO Wei (1997-), Male, Master, Research focus: chemical mechanical polishing and tool preparation.

鄧朝暉(1968—),男,教授,主要研究方向?yàn)楦咝е悄芫苤圃臁?/p>

DENG Zhao-hui (1968-), Male, Professor, Research focus: high efficiency intelligent precision manufacturing.

曹威, 鄧朝暉, 李重陽(yáng), 等. 化學(xué)機(jī)械拋光墊的研究進(jìn)展[J]. 表面技術(shù), 2022, 51(7): 27-41.

CAO Wei, DENG Zhao-hui, LI Zhong-yang, et al. Polishing Pad in Chemical Mechanical Polishing[J]. Surface Technology, 2022, 51(7): 27-41.

責(zé)任編輯:彭颋

猜你喜歡
拋光液修整磨粒
磨粒類(lèi)型對(duì)K9玻璃剪切增稠拋光的影響
磁流變拋光液制備過(guò)程中的氣泡動(dòng)力學(xué)模型
基于凸多面體碰撞檢測(cè)的虛擬砂輪建模研究
超精密表面研拋磨粒的研究進(jìn)展
單個(gè)鐵氧體磨粒尺寸檢測(cè)電磁仿真
水基拋光液的分散性改善方法和應(yīng)用研究綜述
單點(diǎn)金剛石修整筆的現(xiàn)狀分析及發(fā)展趨勢(shì)
微晶剛玉磨粒磨削20CrMnTi鋼的數(shù)值模擬研究
日本5R型曲軸連桿頸磨床修整器的維修
一種研磨拋光機(jī)供液系統(tǒng)的設(shè)計(jì)
宜州市| 乌拉特前旗| 浮山县| 龙江县| 无极县| 河津市| 达尔| 中方县| 浮山县| 东兰县| 涿鹿县| 吉林市| 曲松县| 徐州市| 永州市| 紫阳县| 金华市| 雷州市| 红桥区| 鄂尔多斯市| 遂昌县| 新安县| 杨浦区| 延庆县| 灵台县| 石泉县| 平乐县| 崇义县| 探索| 三明市| 礼泉县| 卓资县| 江口县| 胶南市| 庄浪县| 瓦房店市| 浦北县| 长宁县| 澳门| 龙陵县| 长丰县|