崔芙巖,楊佳穎,王志剛,李賢煜,陳 鵬,楊洪軍, 3,郭 娜
·綜 述·
代謝組學(xué)在中醫(yī)藥領(lǐng)域的應(yīng)用與展望
崔芙巖1, 2,楊佳穎1, 2,王志剛1,李賢煜2,陳 鵬2,楊洪軍2, 3*,郭 娜2*
1. 黑龍江中醫(yī)藥大學(xué)藥學(xué)院,黑龍江 哈爾濱 150000 2. 中國(guó)中醫(yī)科學(xué)院 醫(yī)學(xué)實(shí)驗(yàn)中心,北京 100700 3. 中國(guó)中醫(yī)科學(xué)院 中藥研究所,北京 100700
代謝組學(xué)作為系統(tǒng)生物學(xué)的重要組成部分,與中醫(yī)藥基礎(chǔ)理論的“整體觀”具有一致性,通過(guò)現(xiàn)代分析技術(shù)手段檢測(cè)生物體系內(nèi)代謝產(chǎn)物的變化,更準(zhǔn)確、直接地反映生物體系的終端和表型信息,揭示中醫(yī)藥治療復(fù)雜疾病的作用機(jī)制。將中醫(yī)藥研究與代謝組學(xué)方法相互結(jié)合是中醫(yī)藥現(xiàn)代化進(jìn)程的重要之舉,為探求中醫(yī)藥研究新思路和新方法奠定重要基礎(chǔ)。通過(guò)對(duì)近10年相關(guān)研究成果進(jìn)行歸納,概述代謝組學(xué)在中醫(yī)證候、中藥作用機(jī)制、中藥安全性評(píng)價(jià)和中藥質(zhì)量控制等方面的應(yīng)用和研究進(jìn)展,分析和總結(jié)代謝組學(xué)在中醫(yī)藥領(lǐng)域中的研究方法,并提出代謝組學(xué)在中醫(yī)藥研究中的思考和展望。
代謝組學(xué);中醫(yī)藥;應(yīng)用;證候;作用機(jī)制;安全評(píng)價(jià);質(zhì)量控制
中醫(yī)藥研究一直以整體觀為基礎(chǔ),注重多靶點(diǎn)協(xié)同的聯(lián)合作用機(jī)制,致力于維持人體內(nèi)外平衡以攻克疾病。近些年來(lái)中醫(yī)藥科研成果豐碩,在世界范圍內(nèi)受到越來(lái)越多的認(rèn)可和普及,尤其是在疾病早期干預(yù)、聯(lián)合用藥、腫瘤控制、辨證治療等方面顯示出巨大優(yōu)勢(shì)。但是,中醫(yī)藥治療疾病的科學(xué)內(nèi)涵仍缺乏現(xiàn)代研究的證明。同時(shí),中醫(yī)藥多組分、多靶點(diǎn)、多途徑的特點(diǎn),決定了其作用機(jī)制的復(fù)雜性,也正是中醫(yī)藥研究難以突破的關(guān)鍵問(wèn)題。因此,建立聯(lián)系中醫(yī)藥與現(xiàn)代化研究的重要橋梁已成為現(xiàn)代醫(yī)學(xué)研究的主要焦點(diǎn)。代謝組學(xué)技術(shù)最早由Nicholson教授在1999年提出,即以生物體內(nèi)的小分子代謝物為研究對(duì)象,通過(guò)多種現(xiàn)代分析技術(shù)從整體水平測(cè)定體內(nèi)代謝物的動(dòng)態(tài)變化,多角度解析生命體生理和病理狀態(tài)[1]。代謝組學(xué)的整體性、動(dòng)態(tài)性研究體系與中醫(yī)藥“整體觀”的研究思想不謀而合,與中醫(yī)藥多靶點(diǎn)、多途徑的作用特點(diǎn)相匹配,能精準(zhǔn)分析生物體系功能水平和代謝物的變化,為從微觀上解讀中醫(yī)藥復(fù)雜作用機(jī)制和科學(xué)內(nèi)涵提供嶄新的方法和理論視角,使中西醫(yī)結(jié)合成為了可能[2-5]。
本文通過(guò)總結(jié)近10年相關(guān)文獻(xiàn),綜述代謝組學(xué)在中醫(yī)證候、中藥藥效作用機(jī)制、中藥安全性評(píng)價(jià)和中藥質(zhì)量控制的應(yīng)用進(jìn)展,對(duì)代謝組學(xué)研究方法和相關(guān)代謝通路進(jìn)行概括。以疾病為切入點(diǎn),詳細(xì)列出代謝組學(xué)在中醫(yī)證候與疾病及病證結(jié)合和中藥藥效作用機(jī)制方面的研究成果。并對(duì)代謝組學(xué)在中醫(yī)藥研究中存在的問(wèn)題和脂質(zhì)代謝組學(xué)、空間代謝組學(xué)、代謝流分析等前沿技術(shù)進(jìn)行思考和展望,以期為中醫(yī)藥代謝組學(xué)研究提供新思路,為進(jìn)一步揭示中醫(yī)藥科學(xué)內(nèi)涵和推動(dòng)中醫(yī)藥現(xiàn)代化發(fā)展提供參考和指引。
完整的代謝組學(xué)研究流程(圖1)包括樣本前處理、代謝物分析、數(shù)據(jù)分析、代謝物鑒定和代謝通路分析。目前,代謝組學(xué)常用的生物樣本處理方法為溶劑沉淀、固相萃取、液液萃取、超臨界萃取等[6]。中藥材樣本前處理方法中,中藥鮮品一般需液氮冷凍后研磨成粉后進(jìn)行冷凍干燥,再由甲醇、乙腈等有機(jī)溶劑進(jìn)行提取;中藥飲片需根據(jù)所含化合物的類(lèi)別,采用不同溶劑進(jìn)行有效成分的提取。在檢測(cè)方面,代謝組學(xué)由最初的非靶向代謝組學(xué)逐漸發(fā)展到靶向和擬靶向代謝組學(xué),分析方法主要為核磁共振技術(shù)(nuclear magnetic resonance,NMR)和質(zhì)譜法(mass spectrography,MS)。近些年來(lái),NMR成功建立低溫探針、毛細(xì)管探針、脈沖序列等技術(shù),在短時(shí)間內(nèi)可對(duì)多個(gè)樣本進(jìn)行定性和定量[7]。液相色譜(liquid chromatogram,LC)- MS(LC-MS)技術(shù)具有靈敏度高和穩(wěn)定性強(qiáng)的雙重優(yōu)勢(shì),能夠準(zhǔn)確、定量生物樣本中的痕量代謝物,是MS聯(lián)用中應(yīng)用最廣泛的一種技術(shù)[8]。氣相色譜(gas chromatography,GC)-質(zhì)譜聯(lián)用(GC-MS)技術(shù)需對(duì)樣本進(jìn)行衍生化預(yù)處理,適用于分析具有揮發(fā)性質(zhì)的化合物。此外,高分辨質(zhì)譜成像(mass spectrometry imaging,MSI)作為一種新型的分子影像技術(shù),能進(jìn)行代謝物的可視化分析,并結(jié)合MS的結(jié)構(gòu)鑒定能力,獲取代謝物的空間分布信息,常用的質(zhì)譜成像技術(shù)有空氣動(dòng)力輔助電離(air flow assisted ionization,AFAI)質(zhì)譜成像(AFAI-MSI)、基質(zhì)輔助激光解吸電離(matrix-assisted laser desorption ionization,MALDI)質(zhì)譜成像(MALDI-MSI)和解吸電噴霧電離質(zhì)譜成像(desorption electrospray ionization,DESI-MSI)等[9-10]。代謝組學(xué)數(shù)據(jù)預(yù)處理包括基線校正、峰對(duì)齊、峰識(shí)別、歸一化等,可通過(guò)MetaboAnalyst 5.0、Waters Progenesis QI和Compound Discoverer等軟件完成。應(yīng)用最廣泛的數(shù)據(jù)模式識(shí)別方法為主成分分析(principal component analysis,PCA)、偏最小二乘判別分析(partial least squares-discriminant analysis,PLS-DA)、正交偏最小二乘判別分析(orthogonal partial least squares-discriminant analysis,OPLS-DA)等,進(jìn)而采用變量投影重要性指標(biāo)(variable importance in projection,VIP)篩選差異代謝物,通過(guò)HMDB、METLIN、Mass Bank等數(shù)據(jù)庫(kù)鑒定潛在的生物標(biāo)志物,經(jīng)MetaboAnalyst 5.0和京都基因與基因組百科全書(shū)(Kyoto encyclopedia of genes and genomes,KEGG)等進(jìn)行相關(guān)代謝通路分析[11]。
圖1 代謝組學(xué)研究流程和方法
中醫(yī)證候是中醫(yī)基礎(chǔ)和臨床研究的核心,指疾病發(fā)生和發(fā)展過(guò)程中某階段人體特定內(nèi)、外環(huán)境的反應(yīng),結(jié)合相關(guān)病理和辨證論治能夠揭示患者的病因和病性等內(nèi)容。證候具有特定的外候和內(nèi)涵,外候是疾病和病理的外在表現(xiàn),內(nèi)涵是人體疾病表象背后蘊(yùn)藏的發(fā)病機(jī)制和病理變化,其與生物體內(nèi)代謝變化切實(shí)相關(guān),是開(kāi)展中醫(yī)藥研究的重要方向[12]。采用代謝組學(xué)對(duì)代謝物的可量化差異進(jìn)行分析,為臨床中醫(yī)證候的客觀化和精準(zhǔn)化治療提供新的研究思路和技術(shù)[13]。
Guo等[14]結(jié)合靶向和非靶向代謝組學(xué)方法對(duì)穩(wěn)定型冠心病心絞痛實(shí)證和虛證臨床血清樣本進(jìn)行分析,發(fā)現(xiàn)不同證型穩(wěn)定型冠心病心絞痛具有不同的代謝特征,長(zhǎng)鏈不飽和脂質(zhì)代謝紊亂及能量代謝是冠心病心絞痛實(shí)證和虛證之間的關(guān)鍵區(qū)分點(diǎn),脂質(zhì)神經(jīng)酰胺和不飽和脂肪酸可分別作為二者治療的靶點(diǎn),從而表明體內(nèi)差異代謝物是中醫(yī)辨證分型的物質(zhì)基礎(chǔ)。王亮等[15]對(duì)大量臨床血漿樣本的代謝特征進(jìn)行分析,發(fā)現(xiàn)慢性萎縮性胃炎的發(fā)病機(jī)制與葡萄糖、丙氨酸、纈氨酸、谷氨酸、甘氨酸、乳酸等代謝途徑紊亂相關(guān),并發(fā)現(xiàn)慢性萎縮性胃炎脾胃虛寒證和脾胃濕熱證患者在糖代謝、脂代謝、核酸代謝和氨基酸代謝存在顯著差異,揭示慢性萎縮性胃炎同病異證的潛在作用機(jī)制。馬欣等[16]、劉暢等[17]、Gu等[18]分別對(duì)濕熱證非酒精性脂肪肝、乙肝、關(guān)節(jié)炎的代謝組學(xué)特征進(jìn)行研究,3種異病同證中均發(fā)現(xiàn)糖代謝異常。非酒精性脂肪肝和乙肝合并濕熱證的谷氨酸和核苷酸代謝異常,濕熱證關(guān)節(jié)炎患者血漿中脯氨酸、糖基去氧膽酸水平升高,尿素、游離脂肪酸和多不飽和磷脂酰膽堿水平降低。腸道菌群對(duì)體內(nèi)代謝具有調(diào)控作用,Lin等[19]結(jié)合代謝組學(xué)和16S rRNA測(cè)序技術(shù)對(duì)脾陽(yáng)虛患者的血液、尿液和糞便等臨床樣本進(jìn)行綜合代謝和微生物分析,發(fā)現(xiàn)擬桿菌等活性菌與膽汁酸代謝,乙醛酸和二羧酸代謝,鞘脂代謝,色氨酸代謝,丙氨酸、天冬氨酸和谷氨酸代謝密切相關(guān),腸道微生物與脾陽(yáng)虛證候體內(nèi)代謝差異相關(guān)。Jiang等[20]基于MALDI-MS技術(shù)首次全面分析腎陰虛合并糖尿病患者的代謝組學(xué)和蛋白質(zhì)組學(xué)特征。結(jié)果發(fā)現(xiàn),腎陰虛合并糖尿病患者的肌酐、檸檬酸、氧化三甲胺、苯丙氨酸和酪氨酸水平降低,丙氨酸、甘氨酸和?;撬崴缴撸@些代謝物變化與氨基酸代謝、能量代謝和腸道菌群的改變有關(guān),闡明中醫(yī)辨證論治的分子基礎(chǔ)。
以上研究表明,代謝組學(xué)通過(guò)分析同病異證、異病同證、同病異治和異病同治的差異代謝物和代謝途徑,從而揭示中醫(yī)證候的科學(xué)內(nèi)涵。在同病異治上,慢性萎縮性胃炎脾胃虛寒證和脾胃濕熱證2種證型患者的纈氨酸、乳果糖、異丁酸、肌肽等含量不同,可作為分析同一疾病2種證型的潛在依據(jù)[15];在異病同治上,肝纖維化和肺纖維化存在相似的代謝軌跡,尿液樣本中均發(fā)現(xiàn)腎上腺素紅、異檸檬酸、硫酸吲哚酚等相同的生物標(biāo)志物,這些相同的代謝物及變化趨勢(shì)為肝、肺纖維化的異病同治提供重要參考[21]。綜合上述文獻(xiàn)結(jié)果表明,代謝組學(xué)在中醫(yī)證候的研究已由單一的證候向病證結(jié)合方向發(fā)展,將中醫(yī)證候與疾病相結(jié)合,逐漸將中醫(yī)證候的診斷和分析精確到點(diǎn),以促進(jìn)中醫(yī)臨床對(duì)疾病的預(yù)防和早期治療。代謝組學(xué)在中醫(yī)證候研究中的應(yīng)用見(jiàn)表1。
中藥及中藥復(fù)方從整體調(diào)節(jié)人體疾病,最終起到標(biāo)本兼治的作用,在長(zhǎng)期慢性疾病的治療上逐漸突顯出優(yōu)勢(shì),以達(dá)到臨床干預(yù)的預(yù)期效果。中藥多成分、多靶點(diǎn)、整體性的特點(diǎn),增加了中藥藥效研究的困難程度,迫切需要建立一種在中醫(yī)藥理論指導(dǎo)下且符合中醫(yī)藥自身特點(diǎn)的現(xiàn)代化研究方法。代謝組學(xué)從整體出發(fā),通過(guò)對(duì)生物體內(nèi)代謝產(chǎn)物變化規(guī)律的認(rèn)識(shí),全面闡釋中藥對(duì)疾病的治療機(jī)制[41]。中醫(yī)藥在防治心腦血管疾病上具有豐富的臨床經(jīng)驗(yàn)和用藥歷史,Xu等[42]基于UPLC-Q-TOF/MS和MALDI-MS 2種代謝組學(xué)分析方法研究益心舒膠囊對(duì)心力衰竭的作用機(jī)制,2種方法對(duì)心力衰竭代謝網(wǎng)絡(luò)研究具有互補(bǔ)性,其分析結(jié)果相互驗(yàn)證。在心力衰竭進(jìn)展過(guò)程中發(fā)現(xiàn)21種差異代謝物,主要與脂肪酸、磷脂酰膽堿、膽汁酸、氨基酸和丙酮酸等代謝途徑相關(guān)。經(jīng)益心舒膠囊治療后,棕櫚油酸、花生四烯酸、乳酸等16種代謝物具有明顯的回調(diào)趨勢(shì)。此外,利用MALDI-MS在心肌組織凋亡位置進(jìn)一步對(duì)棕櫚油酸、棕櫚酸、花生四烯酸和乳酸4個(gè)生物標(biāo)志物的變化趨勢(shì)進(jìn)行驗(yàn)證,闡明益心舒膠囊的作用機(jī)制。Liu等[43]采用代謝組學(xué)方法評(píng)價(jià)腦心通膠囊干預(yù)腦缺血大鼠疾病模型的整體療效,在大鼠腦缺血后12 h的血漿中鑒定28種生物標(biāo)志物,氨基酸、脂質(zhì)、神經(jīng)遞質(zhì)和能量代謝發(fā)生顯著變化。腦心通膠囊治療后發(fā)現(xiàn)大鼠神經(jīng)功能缺損和腦梗死面積減小,谷氨酰胺、PE(17∶0)、LySoPE(20∶1)、LysoPE(24∶0)以及LysoPE(24∶1)等逐漸回調(diào),說(shuō)明藥物通過(guò)調(diào)節(jié)單胺類(lèi)神經(jīng)遞質(zhì)代謝、氨基酸代謝、能量代謝和脂質(zhì)代謝等多種途徑發(fā)揮作用,以達(dá)到治療腦缺血的目的。除此之外,還有學(xué)者對(duì)天麻鉤藤湯[44]、四妙勇安湯[45]、保元湯[46]和四逆湯[47]等中藥復(fù)方的心腦血管疾病治療機(jī)制進(jìn)行研究,為全面闡釋中藥治療心腦血管疾病的物質(zhì)基礎(chǔ)和新藥研發(fā)提供理論依據(jù)。Wang等[48]基于快速解析液相色譜-四極桿-飛行時(shí)間質(zhì)譜(rapid resolution liquid chromatography-quadrupole-time of flight mass spectrometry,RRLC-Q-TOF/MS)分析人參治療脾虛證前后患者尿代謝組學(xué)數(shù)據(jù),發(fā)現(xiàn)15種與脾虛證和藥物作用機(jī)制相關(guān)的生物標(biāo)志物,藥物通過(guò)調(diào)節(jié)脂質(zhì)、氨基酸、能量、嘧啶和腸道菌群等代謝途徑發(fā)揮作用,突顯參芪治療脾虛證患者在調(diào)節(jié)脂質(zhì)代謝和腸道菌群代謝方面的特點(diǎn)。細(xì)胞代謝組學(xué)能直觀體現(xiàn)疾病狀態(tài)下某種細(xì)胞的代謝情況和藥物刺激對(duì)細(xì)胞代謝的作用[49],Ma等[50]結(jié)合細(xì)胞代謝組學(xué)和UPLC-Q-TOF/MS的方法研究香附對(duì)三陰性乳腺癌的抗癌機(jī)制,發(fā)現(xiàn)其抑制腫瘤細(xì)胞的有氧分解、核苷酸代謝、氨基酸代謝、脂肪酸代謝和嘌呤代謝等,打破細(xì)胞三磷酸腺苷(adenosine triphosphate,ATP)產(chǎn)生和消耗的平衡,抑制腫瘤細(xì)胞的增殖,從而誘導(dǎo)細(xì)胞凋亡。多組學(xué)聯(lián)合應(yīng)用為中藥藥效作用機(jī)制提供更全面的分析,Lv等[51]基于LC-MS/MS的靶向代謝組學(xué)、轉(zhuǎn)錄組學(xué)和16S rRNA測(cè)序技術(shù),從腸道菌群與代謝水平研究葛根芩連湯對(duì)大腸癌小鼠的治療機(jī)制。結(jié)果發(fā)現(xiàn),葛根芩連湯通過(guò)調(diào)節(jié)甘油磷脂和鞘脂代謝途徑發(fā)揮對(duì)大腸癌細(xì)胞的抑制作用,并與PD-1抗體聯(lián)合用藥后能逐漸恢復(fù)T細(xì)胞功能狀態(tài),說(shuō)明中藥復(fù)方葛根岑連湯結(jié)合PD-1阻斷免疫治療可成為治療直腸癌的新策略。
表1 代謝組學(xué)在中醫(yī)證候研究中的應(yīng)用
Table 1 Application of metabolomics in Chinese medicine syndrome research
證候疾病研究技術(shù)及方法代謝途徑文獻(xiàn) 氣虛證冠心病1H-NMR、GC-MS能量代謝、糖代謝、絲氨酸代謝、纈氨酸代謝、2羥基丙酸代謝、氧化應(yīng)激反應(yīng)22-24 心肌梗死、心力衰竭GC-MS、UPLC-Q-TOF/MS氨基酸代謝、葡萄糖代謝、脂肪酸代謝、能量代謝、花生四烯酸代謝、膽固醇代謝25-26 血瘀證冠心病1H-NMR氨基酸代謝、脂質(zhì)代謝、糖代謝、脂肪酸代謝、酮體合成27-28 心力衰竭UPLC-Q-TOF/MS氨基酸代謝、脂質(zhì)代謝、能量代謝29 銀屑病UPLC-Q-TOF/MS脂質(zhì)代謝、氧化應(yīng)激反應(yīng)30 實(shí)證、虛證冠心病UPLC-Q-TOF/MS、UPLC-MS/MS脂質(zhì)代謝、氨基酸代謝、糖代謝、不飽和脂肪酸代謝14 痰瘀證高血脂GC-MS亮氨酸代謝、糖代謝、脂質(zhì)代謝、能量代謝、氧化應(yīng)激反應(yīng)31 濕熱證慢性胃炎1H-NMR丙氨酸代謝、纈氨酸代謝、谷氨酸代謝、甘氨酸代謝、脂質(zhì)代謝、核苷酸代謝、糖代謝15 非酒精性脂肪肝GC-MS谷氨酸代謝、亞油酸代謝、核苷酸代謝、蔗糖代謝、賴(lài)氨酸代謝、半乳糖代謝16 乙肝GC-MS天門(mén)冬氨酸代謝、谷氨酸代謝、酪氨酸代謝、能量代謝、脂肪酸代謝、核苷酸代謝17 關(guān)節(jié)炎UPLC-Q-TOF/MS、GC-MS脂質(zhì)代謝、氨基酸代謝、葡萄糖代謝、抗壞血酸代謝、乙醛酸代謝、二羧酸代謝18 肝郁脾虛/UPLC-Q-TOF/MS氨基酸代謝、核苷酸代謝32 抑郁癥GC-MS能量代謝、甘氨酸代謝、絲氨酸代謝、蘇氨酸代謝、纈氨酸代謝、亮氨酸代謝、半乳糖代謝33 非酒精性脂肪肝1H-NMR脂肪酸代謝、能量代謝、氨基酸代謝、糖代謝34 脾陽(yáng)虛/1H-NMR、UPLC-Q-TOF/MS、16S rRNA能量代謝、脂質(zhì)代謝、糖代謝、鞘脂代謝、色氨酸代謝、丙氨酸代謝、天冬氨酸代謝、谷氨酸代謝、膽汁酸代謝、腸道菌群代謝19,35-36 腎陰虛/UPLC-MS/MS酪氨酸代謝、組氨酸代謝、吡啶代謝、甾體激素類(lèi)代謝37 大腸癌GC-MS亞麻酸代謝、亞油酸代謝、半乳糖代謝、核苷酸代謝、糖酵解、三羧酸循環(huán)、精氨酸代謝、脯氨酸代謝、花生四烯酸代謝、膽汁酸合成38 糖尿病MALDI- MS苯丙氨酸代謝、酪氨酸代謝、?;撬岽x、膽汁酸代謝、甘氨酸代謝、絲氨酸代謝20 腎陽(yáng)虛/UPLC-MS氨基酸代謝、能量代謝、甲胺代謝、膽汁酸代謝、尿素循環(huán)、短鏈脂肪酸代謝39 不育GC-MS丙氨酸代謝、天冬氨酸代謝、谷氨酸代謝、精氨酸代謝、脯氨酸代謝、亮氨酸代謝、谷胱甘肽代謝、鳥(niǎo)氨酸代謝、纈氨酸代謝40
代謝組學(xué)在中藥藥效及作用機(jī)制研究中的應(yīng)用見(jiàn)表2。在中醫(yī)藥現(xiàn)代化研究中,利用代謝組學(xué)結(jié)合多元統(tǒng)計(jì)分析,對(duì)生物整體代謝輪廓進(jìn)行描述,探討中藥治療循環(huán)系統(tǒng)[42-48]、神經(jīng)系統(tǒng)[56-59]、消化系統(tǒng)[60-68]、免疫系統(tǒng)[78-81]和惡性腫瘤[70-72]等疾病的作用機(jī)制,推動(dòng)中藥作用機(jī)制的深入研究。綜合上述文獻(xiàn)結(jié)果表明,基于復(fù)雜的代謝通路和網(wǎng)絡(luò)關(guān)聯(lián),運(yùn)用細(xì)胞代謝組學(xué)和16S rRNA測(cè)序技術(shù),能闡述生物體內(nèi)不同層次的生命過(guò)程,將代謝組學(xué)結(jié)合多組學(xué)整合數(shù)據(jù),逐漸精確對(duì)生物標(biāo)志物的篩選,提高中藥藥效研究成果的準(zhǔn)確性。
表2 代謝組學(xué)在中藥藥效及作用機(jī)制研究中的應(yīng)用
Table 2 Application of metabolomics in efficacy and mechanism research of TCM
疾病中藥研究技術(shù)及方法代謝通路文獻(xiàn) 循環(huán)系統(tǒng)疾病益心舒膠囊MALDI-MS、UPLC-Q-TOF/ MS糖酵解、嘌呤代謝、花生四烯酸代謝、膽固醇代謝、氨基酸代謝42 腦心通膠囊UPLC-Q-TOF/MS氨基酸代謝、能量代謝、脂質(zhì)代謝43 天麻鉤藤湯UPLC-Q-TOF/MS脂肪酸代謝、氨基酸代謝、不飽和脂肪酸合成44 四妙勇安湯HPLC-MS/MS丙酮酸代謝、?;撬岽x、次?;撬岽x45 保元湯1H-NMR、LC-MS短鏈脂肪酸代謝、中鏈脂肪酸代謝、初級(jí)膽汁酸代謝、次級(jí)膽汁酸代謝、氨基酸代謝46 四逆湯GC-MS、UPLC-Q-TOF/MS、轉(zhuǎn)錄組學(xué)乳酸代謝、丙氨酸代謝、琥珀酸代謝、糖代謝、花生四烯酸代謝47 人參RRLC-Q-TOF/MS能量代謝、氨基酸代謝、碳水化合物代謝、脂質(zhì)代謝、嘧啶代謝、尿素循環(huán)、腸道菌群代謝48 丹參三七UPLC-MS/MS脂質(zhì)代謝、氨基酸代謝52 丹紅注射液HPLC-FLD甘氨酸代謝、絲氨酸代謝、蘇氨酸代謝、組氨酸代謝53 黃連解毒湯1H-NMR、轉(zhuǎn)錄組學(xué)葡萄糖代謝、亮氨酸代謝、谷氨酸代謝、能量代謝54
續(xù)表2
中醫(yī)藥在疾病防治和養(yǎng)生保健領(lǐng)域有效運(yùn)用的同時(shí),中藥毒性和安全性問(wèn)題也一直備受關(guān)注,使中醫(yī)藥研究面臨嚴(yán)峻挑戰(zhàn)。由于中藥成分和作用機(jī)制的復(fù)雜性,很難用傳統(tǒng)的安全性評(píng)價(jià)方法來(lái)全面分析藥物的毒性。迄今為止,中藥毒性和安全性評(píng)價(jià)仍缺乏標(biāo)準(zhǔn)和客觀依據(jù),制約了中醫(yī)藥現(xiàn)代化的發(fā)展。代謝組學(xué)是一種有效、無(wú)創(chuàng)的中藥毒性評(píng)價(jià)方法,是分析和闡明中藥毒性作用機(jī)制的有力工具,有助于建立科學(xué)的現(xiàn)代化中醫(yī)藥臨床用藥安全評(píng)價(jià)體系。
馬錢(qián)子具有一定的腎毒性,使其臨床用藥受到一定局限。Fan等[82]基于1H-NMR的代謝組學(xué)方法對(duì)馬錢(qián)子給藥后大鼠血清和尿液樣本進(jìn)行分析,并結(jié)合組織病理學(xué)驗(yàn)證馬錢(qián)子的腎毒性,發(fā)現(xiàn)大鼠血清樣本中葡萄糖、肌酸、乳酸和不飽和脂肪酸等代謝途徑發(fā)生改變,尿液樣本中的葡萄糖、肌酸、氧化三甲胺、琥珀酸、酮戊二酸、乳酸和檸檬酸等代謝途徑發(fā)生改變,說(shuō)明馬錢(qián)子的腎毒性作用機(jī)制可能與葡萄糖代謝和肌酸代謝的紊亂相關(guān)。Wang等[83]建立空氣流動(dòng)輔助解吸(air flow assisted desorption)電噴霧電離質(zhì)譜成像(AFAD-ESI-MS)技術(shù)的原位代謝組學(xué)方法,分析馬兜鈴酸給藥后大鼠腎臟組織中代謝產(chǎn)物的變化。基于AFAD-ESI-MS的分析能夠可視化已知和未知內(nèi)源性代謝物的獨(dú)特分布和變化,成功發(fā)現(xiàn)大鼠腎臟中與脂質(zhì)代謝、膽堿代謝、組胺代謝、賴(lài)氨酸代謝等相關(guān)的38種代謝產(chǎn)物發(fā)生顯著變化,進(jìn)一步分析與藥物毒性密切相關(guān)的原位生物標(biāo)志物,揭示潛在的藥物毒性分子作用機(jī)制。Ruan等[84]基于1H-NMR的代謝組學(xué)方法發(fā)現(xiàn)何首烏會(huì)引起小鼠氧化應(yīng)激和線粒體功能障礙,導(dǎo)致小鼠能量代謝、氨基酸代謝和嘧啶代謝等途徑發(fā)生紊亂,并引起炎癥反應(yīng)。代謝組學(xué)分析表明,何首烏引起的肝毒性具有明顯的非線性,低劑量組毒性最大,中劑量組毒性較小,其肝臟損傷的減弱可能與何首烏的抗氧化能力有關(guān)。Yan等[85]對(duì)何首烏的腎毒性作用機(jī)制進(jìn)行分析,隨著給藥時(shí)間的延長(zhǎng),何首烏的毒性逐漸影響膽汁酸、膽紅素、酪氨酸等正常代謝,導(dǎo)致腎臟生化指標(biāo)發(fā)生異常,腎毒性明顯。補(bǔ)骨脂具有一定的肝毒性,Yu等[86]通過(guò)1H-NMR法檢測(cè)補(bǔ)骨脂給藥后大鼠血清樣本中的內(nèi)源性代謝物,發(fā)現(xiàn)補(bǔ)骨脂素導(dǎo)致纈氨酸、異亮氨酸、異丁酸、丙氨酸、丙酮酸、谷氨酰胺、檸檬酸、不飽和脂質(zhì)、膽堿、肌酸、苯丙氨酸和對(duì)羥基苯甲酸鹽濃度顯著升高,乙醇和二甲基砜濃度顯著降低。結(jié)果表明,長(zhǎng)期服用補(bǔ)骨脂可引起代謝輪廓發(fā)生顯著變化,丙氨酸代謝、谷氨酸代謝、尿素循環(huán)、甘氨酸代謝和絲氨酸代謝等發(fā)生紊亂。
代謝組學(xué)在中藥毒性及安全性評(píng)價(jià)中的應(yīng)用見(jiàn)表3。肝臟和腎臟分別作為藥物代謝和排泄的主要場(chǎng)所,同時(shí)也是反映藥物毒性的主要器官,中藥引起的肝毒性和腎毒性問(wèn)題不容小覷。眾多學(xué)者對(duì)雷公藤[90-91]、朱砂[94]、甘遂[95]、雄黃[96]、蒼耳子[104-105]等肝、腎毒性的作用機(jī)制進(jìn)行研究,并結(jié)合生化指標(biāo)檢測(cè)毒性,從而達(dá)到對(duì)中藥毒性的防治。此外,中藥的生殖毒性、神經(jīng)毒性、心臟毒性等也不能忽視。綜合上述文獻(xiàn)結(jié)果表明,代謝組學(xué)為探究中藥毒性提供了新的機(jī)遇,然而篩選生物標(biāo)志物的影響因素較多,如何篩選與中藥毒性密切相關(guān)的代謝物成為代謝組學(xué)研究的熱點(diǎn)。
中藥質(zhì)量與其有效成分的組成、含量、產(chǎn)地和種屬等因素直接相關(guān),為中藥質(zhì)量控制帶來(lái)巨大挑戰(zhàn)。傳統(tǒng)的分析技術(shù)很難對(duì)多成分的中藥做出正確分析,難以達(dá)到中藥質(zhì)量控制的實(shí)際效果。代謝組學(xué)是基于藥物整體性的檢測(cè)技術(shù),能對(duì)中藥的品種栽培、產(chǎn)地加工、飲片炮制、分離純化等各個(gè)生產(chǎn)加工環(huán)節(jié)進(jìn)行質(zhì)量管控,是臨床用藥安全性和中藥質(zhì)量控制的有利手段[109]。
中藥品種鑒定是中藥質(zhì)量控制的關(guān)鍵。Li等[110]基于UPLC-Q-TOF/MS技術(shù)鑒定人參、西洋參和三七的花芽,發(fā)現(xiàn)32種潛在標(biāo)記化合物,并鑒定6個(gè)主要標(biāo)記物,分別為人參皂苷Rb3、Ra1、Rb2異構(gòu)體、Ra1異構(gòu)體、Rb1和Ra3異構(gòu)體。研究結(jié)果表明,該方法是首個(gè)能系統(tǒng)比較人參、西洋參和三七的花芽之間代謝組差異的研究,可廣泛應(yīng)用于代謝信息相似的中藥質(zhì)量控制。Duan等[111]基于GC-MS代謝指紋圖譜和擴(kuò)增片段長(zhǎng)度多態(tài)性(amplified fragment length polymorphism,AFLP)的遺傳圖譜成功對(duì)膜莢黃芪和蒙古黃芪進(jìn)行鑒別,說(shuō)明蒙古黃芪是膜莢黃芪的變種。通過(guò)多變量和單變量統(tǒng)計(jì)分析,發(fā)現(xiàn)2種黃芪的代謝指紋圖譜存在明顯差異,鑒定3個(gè)AFLP標(biāo)記物和甘露糖、木糖、丙二酸等8個(gè)標(biāo)志物來(lái)區(qū)分2種藥材。Fan等[112]采用1H-NMR技術(shù)對(duì)3種黃連屬植物進(jìn)行分析和鑒定,發(fā)現(xiàn)黃連的代謝物因種而異,黃連中巴馬汀、黃連堿、表小檗堿、氨基丁酸和脂肪酸的含量明顯較高,藥根堿的含量較低,而三角葉黃連和云南黃連中蔗糖和綠原酸的含量最高。該研究首次發(fā)現(xiàn),綠原酸、蔗糖和脂肪酸是鑒別黃連屬植物的主要成分,研究建立的黃連代謝指紋圖譜也可用于黃連屬植物的化學(xué)成分分析和藥物真?zhèn)舞b別。生長(zhǎng)年限是影響中藥成分的重要因素,直接關(guān)系藥材各成分的含量和藥效。薛英等[113]基于UPLC-Q-TOF/MS與1H-NMR的代謝組學(xué)方法對(duì)生長(zhǎng)1~3年的遠(yuǎn)志化學(xué)成分進(jìn)行分析和比較,結(jié)果顯示1年生長(zhǎng)的遠(yuǎn)志與2、3年生長(zhǎng)的遠(yuǎn)志化學(xué)成分相差較大。隨著中藥栽培時(shí)間的延長(zhǎng),其初級(jí)代謝物中蔗糖、果糖的含量逐漸降低,甘氨酸、棉籽糖的含量則增加;次級(jí)代謝物中皂苷類(lèi)成分的含量增加,山酮、低聚糖酯的含量則減少。中藥炮制是中藥材采收之后處理加工的重要環(huán)節(jié),所含化學(xué)成分在炮制過(guò)程必定發(fā)生改變,運(yùn)用代謝組學(xué)分析方法即可對(duì)發(fā)生改變的成分進(jìn)行綜合性分析。Sun等[114]建立高覆蓋、高靈敏度的MALDI-MS分析方法,對(duì)三七不同部位代謝產(chǎn)物的空間分布和蒸煮炮制過(guò)程進(jìn)行可視化分析,首次在三七根莖中鑒定并獲得三七皂苷、人參皂苷、氨基酸、丹參堿、葡萄糖酸、低分子有機(jī)酸等代謝產(chǎn)物的空間分布,并成功篩選出三七炮制過(guò)程中丹參堿、精氨酸、谷氨酰胺等一系列差異代謝物。這些代謝物的變化可能是三七炮制后發(fā)揮減毒增效的物質(zhì)基礎(chǔ)。另有學(xué)者對(duì)王不留行[115]、甘草[116]、女貞子[117]和何首烏[118]等生藥材和不同炮制品進(jìn)行分析,結(jié)果表明炮制前后中藥所含成分發(fā)生顯著變化,為中藥材的質(zhì)量控制和炮制提供重要依據(jù)。
表3 代謝組學(xué)在中藥毒性及安全性評(píng)價(jià)中的應(yīng)用
Table 3 Application of metabolomics in toxicity and safety evaluation of TCM
中藥毒性研究技術(shù)及方法代謝通路文獻(xiàn) 馬錢(qián)子腎毒性1H-NMR糖酵解、糖異生、牛磺酸代謝、丙酮酸代謝、丙氨酸代謝、天冬氨酸代謝、谷氨酸代謝、三羧酸循環(huán)、肌酸代謝、不飽和脂肪酸代謝、氧化三甲胺代謝、琥珀酸代謝、酮戊二酸代謝82,87 馬兜鈴腎毒性AFADESI-MS、UPLC-Q-TOF/ HDMS腸道菌群代謝、脂肪酸代謝、嘌呤代謝、膽酸代謝、葉酸代謝、花生四烯酸代謝、脂質(zhì)代謝、膽堿代謝、組胺代謝、氨基酸代謝、三磷酸腺苷代謝83,88 何首烏腎毒性UPLC-Q-TOF/MS苯丙氨酸代謝、酪氨酸代謝、膽汁酸代謝、膽紅素代謝85 魚(yú)腥草肝毒性1H-NMR、UPLC-Q-TOF/MS能量代謝、嘧啶代謝、能量代謝、膽汁酸代謝、氨基酸代謝84-85 腎毒性UPLC-Q-TOF/MS能量代謝、氨基酸代謝、脂質(zhì)代謝89 雷公藤腎毒性蛋白質(zhì)組學(xué)、UPLC- Q-TOF/MS嘌呤代謝、嘧啶代謝、甘油磷脂代謝、尿酸代謝90-91 生殖毒性GC-MS睪酮代謝、脂質(zhì)代謝、脂肪酸代謝92 京大戟腎毒性HPLC-Q-TOF/MS嘌呤代謝、磷脂代謝、能量代謝、氨基酸代謝、鞘脂代謝93 朱砂肝毒性1H-NMR肌酸代謝、氨基酸代謝、氧化三甲胺代謝、丙酮酸代謝、葡萄糖代謝、膽堿代謝、乳酸代謝94 甘遂、雄黃肝毒性、腎毒性1H-NMR糖代謝、氨基酸代謝、乳酸代謝、氧化三甲胺代謝、肌酸代謝95 肝毒性1H-NMR脂肪酸代謝、肌酸代謝、氨基酸代謝、?;撬岽x、乳酸代謝、腸道菌群代謝96 梔子肝毒性UPLC-Q-TOF/MS氨基酸代謝、嘧啶代謝、初級(jí)膽汁酸代謝、泛酸代謝97 補(bǔ)骨脂肝毒性UPLC-Q-TOF/MS蛋白質(zhì)組學(xué)1H-NMR谷胱甘肽代謝、嘌呤代謝、甘油磷脂代謝、能量代謝、丙酮酸代謝、丙氨酸代謝、谷氨酸代謝、甘氨酸代謝、絲氨酸代謝98-99 檳榔心臟毒性UPLC-Q-TOF-HDMS磷脂代謝、氨基酸代謝、脂肪酸代謝、亞油酸代謝、花生四烯酸代謝、甘油磷脂代謝、嘌呤代謝100 草烏心臟毒性、神經(jīng)毒性UPLC-Q-TOF-HDMS糖代謝、乳糖代謝、色氨酸代謝、核苷酸代謝、?;撬岽x、次?;撬岽x101 番荔枝肝毒性、腎毒性UFLC-Q-TOF-HDMS能量代謝、谷氨酸代謝、酪氨酸代謝102 半夏心臟毒性UPLC-Q-TOF/MS酪氨酸代謝、尿嘧啶代謝、脯氨酸代謝、色氨酸代謝、賴(lài)氨酸代謝103 蒼耳子肝毒性1H-NMR、UPLC-Q-TOF/MS脂肪酸代謝、谷氨酸代謝、纈氨酸代謝、色氨酸代謝、苯丙氨酸代謝、脂質(zhì)代謝104-105 川烏肝毒性腎毒性UPLC-Q-TOF-HDMS戊糖代謝、谷氨酸代謝、丙氨酸代謝、天冬氨酸代謝106 蓖麻腎毒性、肺毒性1H-NMR能量代謝、氨基酸代謝、氧化應(yīng)激反應(yīng)107 大黃肝毒性1H-NMR、GC-MS、轉(zhuǎn)錄組學(xué)脂肪酸代謝、糖酵解、甘氨酸代謝、絲氨酸代謝、蘇氨酸代謝108
綜合上述文獻(xiàn)結(jié)果表明,中藥質(zhì)量控制是發(fā)揮臨床藥效的基礎(chǔ),應(yīng)用代謝組學(xué)對(duì)影響藥材質(zhì)量的關(guān)鍵因素進(jìn)行分析,提供代謝產(chǎn)物的整體信息,確定與質(zhì)量變化相關(guān)的質(zhì)量標(biāo)志物,進(jìn)一步推動(dòng)中藥質(zhì)量控制體系的規(guī)范化。此外,要加強(qiáng)對(duì)中藥質(zhì)量標(biāo)志物進(jìn)行更具體、更系統(tǒng)的研究,注重多學(xué)科的交叉融合,從而提高中藥的療效和安全性。
隨著現(xiàn)代分析技術(shù)的不斷發(fā)展,代謝組學(xué)在中醫(yī)藥領(lǐng)域取得眾多創(chuàng)新性研究成果,代謝組學(xué)相關(guān)技術(shù)更是突飛猛進(jìn)。在研究層面上,細(xì)胞代謝組學(xué)通過(guò)現(xiàn)代分析技術(shù)手段檢測(cè)細(xì)胞中內(nèi)源性小分子代謝物的差異,在細(xì)胞層面闡明其生理和病理變化的動(dòng)態(tài)規(guī)律,該方法被眾多學(xué)者應(yīng)用于治療乳腺癌[50,119]、直腸癌[51]、肺癌[70]等抗腫瘤中藥的研究當(dāng)中。脂質(zhì)代謝組學(xué)通過(guò)對(duì)生物體中所含的脂質(zhì)及其相互作用機(jī)制進(jìn)行分析,識(shí)別對(duì)生物體內(nèi)調(diào)控起到關(guān)鍵作用的脂類(lèi)生物標(biāo)志物,揭示脂質(zhì)相關(guān)的代謝途徑和作用機(jī)制。將代謝組學(xué)與脂質(zhì)組學(xué)結(jié)合,成功為丹七通脈片[120]、丹參[121]、當(dāng)歸[122]、補(bǔ)血湯等中藥藥效的研究提供更加完整的代謝圖譜,為揭示中醫(yī)藥作用機(jī)制提供新方法。在技術(shù)層面,代謝流分析技術(shù)廣泛應(yīng)用于生物醫(yī)學(xué)的研究中,打破了傳統(tǒng)代謝組學(xué)僅能提供靜態(tài)代謝模式的局限,將代謝網(wǎng)絡(luò)以動(dòng)態(tài)變化的方式呈現(xiàn),成為研究生物體代謝和腫瘤、糖尿病、心血管疾病等發(fā)病機(jī)制的重要工具[123]。質(zhì)譜成像技術(shù)能高通量檢測(cè)組織切片中的物質(zhì),可從生物組織原位發(fā)現(xiàn)與作用機(jī)制、中藥質(zhì)量、中藥毒性相關(guān)的差異代謝物?;谫|(zhì)譜成像技術(shù)的空間代謝組學(xué)可對(duì)姜黃[124]、人參[125]、女貞子[126]等中藥材的質(zhì)量控制進(jìn)行分析,對(duì)燈盞花素[127]、三七葉皂苷[128]、百里醌[129]、紅景天苷[130]等中藥單體的作用機(jī)制進(jìn)行研究,同時(shí)也能對(duì)馬兜鈴酸[83]、補(bǔ)骨脂素[131]等中藥單體的內(nèi)源性代謝物進(jìn)行分析,鑒定與藥物毒性密切相關(guān)的原位生物標(biāo)志物,揭示潛在的藥物毒性分子作用機(jī)制。同時(shí),多組學(xué)整合技術(shù)以系統(tǒng)生物學(xué)和多平臺(tái)的分析方法為基礎(chǔ),涵蓋代謝組學(xué)、基因組學(xué)、轉(zhuǎn)錄組學(xué)、蛋白質(zhì)組學(xué)、影像組學(xué)等研究方法,能從多組學(xué)層面進(jìn)行信息挖掘及代謝通路分析,系統(tǒng)解答生物學(xué)問(wèn)題,具有多元化和系統(tǒng)性的獨(dú)特優(yōu)勢(shì)。隨著高通量代謝組學(xué)技術(shù)的發(fā)展,多組學(xué)整合技術(shù)被廣泛應(yīng)用于中醫(yī)藥和疾病研究中,鑒定與冠心病寒凝氣滯證、氣滯血瘀證[132]和參附方[133]、當(dāng)歸補(bǔ)血湯[134]等中藥療效相關(guān)的生物標(biāo)志物,實(shí)現(xiàn)對(duì)相關(guān)代謝途徑和作用機(jī)制的深入理解。
目前代謝組學(xué)在中醫(yī)藥領(lǐng)域的研究仍處于不斷發(fā)展和完善階段,存在數(shù)據(jù)可比性差、數(shù)據(jù)庫(kù)資源不足、生物標(biāo)志物特異性差等問(wèn)題,距離全面系統(tǒng)性研究還有一定差距。因此,在中醫(yī)藥現(xiàn)代化研究中,代謝組學(xué)的應(yīng)用需注重以下幾方面:①建立超高靈敏度、重復(fù)性強(qiáng)、覆蓋率高的高通量代謝組學(xué)定量分析方法;建立快速、高效的數(shù)據(jù)處理技術(shù);完善并擴(kuò)大代謝物數(shù)據(jù)庫(kù)和代謝組學(xué)數(shù)據(jù)信息;②采用空間代謝組學(xué)技術(shù)建立原位檢測(cè)方法,研究藥物和代謝物空間分布、細(xì)胞異質(zhì)性及其相互作用;③由于中醫(yī)藥的特殊性,模型的建立和實(shí)驗(yàn)設(shè)計(jì)既要與中醫(yī)藥的理念相一致,同時(shí)也要遵循現(xiàn)代科學(xué)規(guī)律;④將代謝組學(xué)與基因組學(xué)、轉(zhuǎn)錄組學(xué)、蛋白組學(xué)及藥理學(xué)等進(jìn)行整合,實(shí)現(xiàn)對(duì)中醫(yī)藥毒理、藥理、有效性和質(zhì)量控制等的研究。綜上所述,要利用有限的科研資源,在中醫(yī)基礎(chǔ)理論的指導(dǎo)下充分發(fā)展代謝組學(xué)前沿技術(shù),實(shí)現(xiàn)多組學(xué)數(shù)據(jù)的成功整合,不斷拓展代謝物數(shù)據(jù)庫(kù),逐漸形成科學(xué)嚴(yán)謹(jǐn)?shù)臉?biāo)準(zhǔn)化中醫(yī)藥代謝組學(xué)研究體系,在“守正創(chuàng)新”中推動(dòng)中醫(yī)藥現(xiàn)代化發(fā)展進(jìn)程。
利益沖突 所有作者均聲明不存在利益沖突
[1] Nicholson J K, Lindon J C, Holmes E. Metabonomics: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data [J]., 1999, 29(11): 1181-1189.
[2] Hocher B, Adamski J. Metabolomics for clinical use and research in chronic kidney disease [J]., 2017, 13(5): 269-284.
[3] Han Y, Sun H, Zhang A H,. Chinmedomics, a new strategy for evaluating the therapeutic efficacy of herbal medicines [J]., 2020, 216: 107680.
[4] Everett J R, Loo R L, Pullen F S. Pharmacometabonomics and personalized medicine [J]., 2013, 50(Pt 6): 523-545.
[5] 閆廣利, 孫暉, 張愛(ài)華, 等. 基于中醫(yī)方證代謝組學(xué)的中藥質(zhì)量標(biāo)志物發(fā)現(xiàn)研究[J]. 中草藥, 2018, 49(16): 3729-3734.
[6] 劉榮華, 俞洪華, 殷茜茜, 等. LC-MS在中藥代謝組學(xué)中的應(yīng)用進(jìn)展 [J]. 亞太傳統(tǒng)醫(yī)藥, 2021, 17(9): 183-191.
[7] Zou P P, Song Y L, Lei W,. Application of 1 H NMR-based metabolomics for discrimination of different parts and development of a new processing workflow for[J]., 2017, 7(6): 647-656.
[8] 徐天潤(rùn), 劉心昱, 許國(guó)旺. 基于液相色譜-質(zhì)譜聯(lián)用技術(shù)的代謝組學(xué)分析方法研究進(jìn)展 [J]. 分析測(cè)試學(xué)報(bào), 2020, 39(1): 10-18.
[9] Schulz S, Becker M, Groseclose M R,. Advanced MALDI mass spectrometry imaging in pharmaceutical research and drug development [J]., 2019, 55: 51-59.
[10] Buchberger A R, DeLaney K, Johnson J,. Mass spectrometry imaging: A review of emerging advancements and future insights [J]., 2018, 90(1): 240-265.
[11] Chen Y, Ni J, Gao Y,. Integrated proteomics and metabolomics reveals the comprehensive characterization of antitumor mechanism underlying Shikonin on colon cancer patient-derived xenograft model [J]., 2020, 10(1): 14092.
[12] 馬素娜, 關(guān)亞奇, 張淼, 等. 代謝組學(xué)技術(shù)在中醫(yī)證候?qū)W研究中的應(yīng)用優(yōu)勢(shì) [J]. 時(shí)珍國(guó)醫(yī)國(guó)藥, 2019, 30(7): 1714-1716.
[13] Wang P C, Wang Q H, Yang B Y,. The progress of metabolomics study in traditional Chinese medicine research [J]., 2015, 43(7): 1281-1310.
[14] Guo N, Wang P L, Yang J Y,. Serum metabolomic analysis of coronary heart disease patients with stable angina pectoris subtyped by traditional Chinese medicine diagnostics reveals biomarkers relevant to personalized treatments [J]., 2021, 12: 664320.
[15] 王亮, 曹云, 李中峰, 等. 慢性萎縮性胃炎脾胃濕熱證和脾胃虛寒證患者的血漿代謝組學(xué)特征 [J]. 中醫(yī)雜志, 2019, 60(2): 131-136.
[16] 馬欣, 顧宏圖, 趙瑜, 等. 不同證候的非酒精性脂肪肝合并肝損傷患者的血清代謝組學(xué)分析 [J]. 中華中醫(yī)藥雜志, 2017, 32(3): 1246-1250.
[17] 劉暢, 茍小軍, 黃迪, 等. 基于代謝組學(xué)方法的濕熱證“異病同證”研究 [J]. 世界科學(xué)技術(shù)—中醫(yī)藥現(xiàn)代化, 2017, 19(3): 392-407.
[18] Gu Y, Lu C, Zha Q L,. Plasma metabonomics study of rheumatoid arthritis and its Chinese medicine subtypes by using liquid chromatography and gas chromatography coupled with mass spectrometry [J]., 2012, 8(5): 1535-1543.
[19] Lin Z, Ye W, Zu X P,. Integrative metabolic and microbial profiling on patients with Spleen-Yang-deficiency syndrome [J]., 2018, 8(1): 6619.
[20] Jiang N, Liu H F, Li S D,. An integrated metabonomic and proteomic study on Kidney-Yin Deficiency Syndrome patients with diabetes mellitus in China [J]., 2015, 36(6): 689-698.
[21] 常虹, 孟洪宇, 王宇, 等. 基于代謝組學(xué)的肝、肺纖維化“異病同治”科學(xué)內(nèi)涵研究 [J]. 中草藥, 2018, 49(21): 5116-5124.
[22] 史琦, 王偉, 李友林, 等. 基于代謝組學(xué)的冠心病患者氣虛證識(shí)別模式 [J]. 中華中醫(yī)藥雜志, 2015, 30(2): 372-375.
[23] Gao K, Zhao H H, Gao J,. Mechanism of Chinese medicine herbs effects on chronic heart failure based on metabolic profiling [J]., 2017, 8: 864.
[24] Guo N, Chen Y G, Yang X F,. Urinary metabolomic profiling reveals difference between two traditional Chinese medicine subtypes of coronary heart disease [J]., 2021, 1179: 122808.
[25] Qiu Q, Li C, Wang Y,. Plasma metabonomics study on Chinese medicine syndrome evolution of heart failure rats caused by LAD ligation [J]., 2014, 14: 232.
[26] 劉陽(yáng), 趙營(yíng), 殷弘琳, 等. 基于非靶向代謝組學(xué)的心力衰竭氣虛血瘀證患者血清代謝產(chǎn)物初篩 [J]. 時(shí)珍國(guó)醫(yī)國(guó)藥, 2020, 31(11): 2789-2792.
[27] 史琦, 王偉, 李友林, 等. 基于代謝組學(xué)的冠心病患者血瘀證識(shí)別模式研究 [J]. 中西醫(yī)結(jié)合心腦血管病雜志, 2014, 12(5): 513-516.
[28] Zhao L L, Qiu X J, Wang W B,. NMR metabolomics and random forests models to identify potential plasma biomarkers of blood stasis syndrome with coronary heart disease patients [J]., 2019, 10: 1109.
[29] 王娟, 趙慧輝, 陳建新, 等. 慢性心力衰竭血瘀證患者血漿代謝物研究 [J]. 北京中醫(yī)藥大學(xué)學(xué)報(bào), 2016, 39(2): 101-105.
[30] Li L, Yao D N, Lu Y,. Metabonomics study on serum characteristic metabolites of psoriasis vulgaris patients with blood-stasis syndrome [J]., 2020, 11: 558731.
[31] Dong B, Song J. Plasma metabolic biomarkers for syndrome of phlegm and blood stasis in hyperlipidemia and atherosclerosis [J]., 2012, 32 (4): 6.
[32] Zhang A H, Sun H, Han Y,. Exploratory urinary metabolic biomarkers and pathways using UPLC-Q-TOF-HDMS coupled with pattern recognition approach [J]., 2012, 137(18): 4200-4208.
[33] Liu L Y, Zhang H J, Luo L Y,. Blood and urinary metabolomic evidence validating traditional Chinese medicine diagnostic classification of major depressive disorder [J]., 2018, 13: 53.
[34] 李若瑜, 苗宇船, 李明磊, 等. 大鼠非酒精性脂肪肝肝郁脾虛證的尿液代謝組學(xué)研究 [J]. 中國(guó)中醫(yī)基礎(chǔ)醫(yī)學(xué)雜志, 2019, 25(4): 467-470.
[35] 王穎, 王輝, 鄭小偉. 基于核磁共振技術(shù)的脾氣虛證、脾陽(yáng)虛證血漿代謝組學(xué)研究 [J]. 中華中醫(yī)藥雜志, 2013, 28(8): 2270-2274.
[36] Lin Z, Ye W, Zu X P,. Integrative metabolic and microbial profiling on patients with Spleen-Yang-deficiency syndrome [J]., 2018, 8(1): 6619.
[37] Yu Y, Yang S, Mao L G,. Identification of potential metabolic biomarkers in Yin deficiency syndrome using LC-MS [J].(Hoboken), 2020, 303(8): 2121-2130.
[38] Tao F F, Lü P, Xu C B,. Metabolomics analysis for defining serum biochemical markers in colorectal cancer patients withdeficiency syndrome ordeficiency syndrome [J]., 2017, 2017: 7382752.
[39] Lu X M, Xiong Z L, Li J J,. Metabonomic study on ‘Kidney-Yang Deficiency syndrome’ and intervention effects of Rhizoma Drynariae extracts in rats using ultra performance liquid chromatography coupled with mass spectrometry [J]., 2011, 83(3): 700-708.
[40] Zheng P, Wang Y, Lu H M,. Plasma metabolomics analysis based on GC-MS in infertile males with kidney-Yang deficiency syndrome [J]., 2017, 2017: 6270195.
[41] 張愛(ài)華, 孫暉, 閆廣利, 等. 中醫(yī)方證代謝組學(xué): 中醫(yī)藥研究的新策略 [J]. 中國(guó)中藥雜志, 2015, 40(4): 569-576.
[42] Xu J, Li X Y, Zhang F B,. Integrated UPLC-Q/TOF-MS technique and MALDI-MS to study of the efficacy of YiXinshu capsules against heart failure in a rat model [J]., 2019, 10: 1474.
[43] Liu M T, Liu X, Wang H P,. Metabolomics study on the effects of Buchang Naoxintong capsules for treating cerebral ischemia in rats using UPLC-Q/TOF-MS [J]., 2016, 180: 1-11.
[44] Dong H Y, Zhang S Q, Du W X,. Pharmacodynamics and metabonomics study of Tianma Gouteng Decoction for treatment of spontaneously hypertensive rats with liver-Yang hyperactivity syndrome [J]., 2020, 253: 112661.
[45] Shi S, Liu Z Y, Xue Z Y,. A plasma metabonomics study on the therapeutic effects of the Si-Miao-yong-an Decoction in hyperlipidemic rats [J]., 2020, 256: 112780.
[46] Du Z Y, Wang J L, Lu Y Y,. The cardiac protection of Baoyuan Decoction via gut-heart axis metabolic pathway [J]., 2020, 79: 153322.
[47] Zhou Q, Meng P, Zhang Y,. The compatibility effects of sini decoction against doxorubicin-induced heart failure in rats revealed by mass spectrometry-based serum metabolite profiling and computational analysis [J]., 2020, 252: 112618.
[48] Wang N, Huang X, Li T,. Application of RRLC-QTOF-MS-based metabonomics and UPE for investigating Spleen-Qi deficiency syndrome withtreatment [J]., 2020, 256: 112822.
[49] 朱洪影, 易林, 汪子怡, 等. 單細(xì)胞代謝組學(xué)分析技術(shù)研究進(jìn)展 [J]. 中國(guó)科學(xué)技術(shù)大學(xué)學(xué)報(bào), 2018, 48(10): 842-852.
[50] Ma S S, Wang F K, Zhang C J,. Cell metabolomics to study the function mechanism ofL. on triple-negative breast cancer cells [J]., 2020, 20(1): 262.
[51] Lv J, Jia Y T, Li J,. Gegen Qinlian Decoction enhances the effect of PD-1 blockade in colorectal cancer with microsatellite stability by remodelling the gut microbiota and the tumour microenvironment [J]., 2019, 10(6): 415.
[52] Tao H J, Yang X Y, Wang W X,. Regulation of serum lipidomics and amino acid profiles of rats with acute myocardial ischemia byandherb pair [J]., 2020, 67: 153162.
[53] Guo Z L, Zhu Y, Su X T,. Danhong injection dose-dependently varies amino acid metabolites and metabolic pathways in the treatment of rats with cerebral ischemia [J]., 2015, 36(6): 748-757.
[54] Zhang Q, Fu X W, Wang J S,. Treatment effects of ischemic stroke by berberine, baicalin, and jasminoidin from Huang-Lian-Jie-du-decoction (HLJDD) explored by an integrated metabolomics approach [J]., 2017, 2017: 9848594.
[55] Zhao Y H, Nie S S, Yi M,. UPLC-QTOF/MS-based metabolomics analysis of plasma reveals an effect of Xue-Fu-Zhu-Yu capsules on blood-stasis syndrome in CHD rats [J]., 2019, 241: 111908.
[56] 張明勇. 丹參防治阿爾茨海默病的細(xì)胞代謝組學(xué)和跨血腦屏障轉(zhuǎn)運(yùn)機(jī)制研究 [D]. 上海: 中國(guó)人民解放軍海軍軍醫(yī)大學(xué), 2019.
[57] Zhang Y, Yao Y, Shi X L,. Combination of cell metabolomics and pharmacology: A novel strategy to investigate the neuroprotective effect of Zhi-zi-Chi Decoction [J]., 2019, 236: 302-315.
[58] Gao X X, Cui J, Zheng X Y,. An investigation of the antidepressant action of Xiaoyaosan in rats using ultra performance liquid chromatography-mass spectrometry combined with metabonomics [J]., 2013, 27(7): 1074-1085.
[59] Gong W X, Zhu S W, Chen C C,. The anti-depression effect ofis related to the pharmacological activity of modulating the hematological anomalies [J]., 2019, 10: 192.
[60] Fang H, Zhang A H, Yu J B,. Insight into the metabolic mechanism of scoparone on biomarkers for inhibiting Yanghuang syndrome [J]., 2016, 6: 37519.
[61] Fang H, Zhang A H, Zhou X H,. High-throughput metabolomics reveals the perturbed metabolic pathways and biomarkers of Yang Huang syndrome as potential targets for evaluating the therapeutic effects and mechanism of geniposide [J]., 2020, 14(5): 651-663.
[62] Su G Y, Wang H F, Gao Y X,. 1H-NMR-based metabonomics of the protective effect ofand berberine on cinnabar-induced hepatotoxicity and nephrotoxicity in rats [J]., 2017, 22(11): 1855.
[63] Wang R, Xiong A Z, Teng Z Q,.andattenuate CCl4-induced acute liver injury: An ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) based metabolomic approach for the pharmacodynamic study of traditional Chinese medicines (TCMs) [J]., 2012, 13(11): 14634-14647.
[64] Wu J S, Li Y F, Li Y Y,. Huangqi Decoction alleviates alpha-naphthylisothiocyanate induced intrahepatic cholestasis by reversing disordered bile acid and glutathione homeostasis in mice [J]., 2017, 8: 938.
[65] Li C F, Li Z Y, Wu H W,. Therapeutic effect ofleaves on constipation mice based on pharmacodynamics and serum metabonomics [J]., 2022, 282: 114644.
[66] Cui D N, Wang X, Chen J Q,. Quantitative evaluation of the compatibility effects of Huangqin Decoction on the treatment of irinotecan-induced gastrointestinal toxicity using untargeted metabolomics [J]., 2017, 8: 211.
[67] Zhou X H, Zhang A H, Wang L,. Novel chinmedomics strategy for discovering effective constituents from Shenqiwan acting on Shenyangxu syndrome [J]., 2016, 14(8): 561-581.
[68] Wang Y L, Fan S N, Yang M,. Evaluation of the mechanism of Danggui-Shaoyao-San in regulating the metabolome of nephrotic syndrome based on urinary metabonomics and bioinformatics approaches [J]., 2020, 261: 113020.
[69] Pang H Q, Yue S J, Tang Y P,. Integrated metabolomics and network pharmacology approach to explain possible action mechanisms of Xin-Sheng-Hua granule for treating[J]., 2018, 9: 165.
[70] Zhou J L, Zheng J Y, Cheng X Q,. Chemical markers' knockout coupled with UHPLC-HRMS-based metabolomics reveals anti-cancer integration effects of the curcuminoids of turmeric (L.) on lung cancer cell line [J]., 2019, 175: 112738.
[71] Sun H, Zhang A H, Liu S B,. Cell metabolomics identify regulatory pathways and targets of magnoline against prostate cancer [J]., 2018, 1102/1103: 143-151.
[72] Gao L, Wang K X, Zhou Y Z,. Uncovering the anticancer mechanism of Compound Kushen Injection against HCC by integrating quantitative analysis, network analysis and experimental validation [J]., 2018, 8(1): 624.
[73] Gao K, Yang R, Zhang J,. Effects of Qijian mixture on type 2 diabetes assessed by metabonomics, gut microbiota and network pharmacology [J]., 2018, 130: 93-109.
[74] Zhao L C, Gao H C, Zhao Y X,. Metabonomic analysis of the therapeutic effect of Zhibai Dihuang Pill in treatment of streptozotocin-induced diabetic nephropathy [J]., 2012, 142(3): 647-656.
[75] Wang Y M, Guo X J, Xie J B,. A GC-MS based metabonomics study of rheumatoid arthritis and the interventional effects of the simiaowan in rats [J]., 2015, 20(12): 21364-21372.
[76] Wang N N, Zhao X N, Huai J X,. Arachidonic acid metabonomics study for understanding therapeutic mechanism of Huo Luo Xiao Ling Dan on rat model of rheumatoid arthritis [J]., 2018, 217: 205-211.
[77] Zuo J, Wang X, Liu Y,. Integrating network pharmacology and metabolomics study on anti-rheumatic mechanisms and antagonistic effects against methotrexate-induced toxicity of Qing-Luo-Yin [J]., 2018, 9: 1472.
[78] Li Y B, Li Y M, Lu W L,. Integrated network pharmacology and metabolomics analysis of the therapeutic effects of Zi Dian Fang on immune thrombocytopenic[J]., 2018, 9: 597.
[79] Gao D, Niu M, Wei S Z,. Identification of a pharmacological biomarker for the bioassay-based quality control of a thirteen-component TCM formula (Lianhua Qingwen) used in treating influenza A virus (H1N1) infection [J]., 2020, 11: 746.
[80] Zhao S Y, Liu Z L, Wang M L,. Anti-inflammatory effects of Zhishi and Zhiqiao revealed by network pharmacology integrated with molecular mechanism and metabolomics studies [J]., 2018, 50: 61-72.
[81] Ma Y, Bao Y R, Wang S,. Anti-inflammation effects and potential mechanism of saikosaponins by regulating nicotinate and nicotinamide metabolism and arachidonic acid metabolism [J]., 2016, 39(4): 1453-1461.
[82] Fan Y F, Liu S F, Chen X D,. Toxicological effects of Nux Vomica in rats urine and serum by means of clinical chemistry, histopathology and1H-NMR-based metabonomics approach [J]., 2018, 210: 242-253.
[83] Wang Z H, He B S, Liu Y Q,.metabolomics in nephrotoxicity of aristolochic acids based on air flow-assisted desorption electrospray ionization mass spectrometry imaging [J]., 2020, 10(6): 1083-1093.
[84] Ruan L Y, Li M H, Xing Y X,. Hepatotoxicity and hepatoprotection ofThund. as two sides of the same biological coin [J]., 2019, 230: 81-94.
[85] Yan Y, Shi N, Han X Y,. UPLC/MS/MS-based metabolomics study of the hepatotoxicity and nephrotoxicity in rats induced byThunb. [J]., 2020, 5(18): 10489-10500.
[86] Yu Y L, Wang P L, Yu R L,. Long-term exposure of psoralen and isopsoralen induced hepatotoxicity and serum metabolites profiles changes in female rats [J]., 2019, 9(11): 263.
[87] Gu L Q, Hou P Y, Zhang R W,. An analytical strategy to investigatenephrotoxicity based on simultaneous HILIC-ESI-MS/MS detection ofalkaloids, tyrosine and tyramine in HEK 293t cell lysates [J]., 2016, 1033/1034: 157-165.
[88] Zhao Y Y, Tang D D, Chen H,. Urinary metabolomics and biomarkers of aristolochic acid nephrotoxicity by UPLC-QTOF/HDMS [J]., 2015, 7(6): 685-700.
[89] Chen H J, Sha X X, Luo Y Y,. Acute and subacute toxicity evaluation ofethanol extract and plasma metabolic profiling analysis in both male and female rats [J]., 2021, 41(12): 2068-2082.
[90] Xie L J, Zhao Y W, Duan J Y,. Integrated proteomics and metabolomics reveal the mechanism of nephrotoxicity induced by triptolide [J]., 2020, 33(7): 1897-1906.
[91] 常立娟, 李佐靜, 李清, 等. 雷公藤致大鼠腎毒性血清代謝組學(xué)分析 [J]. 中國(guó)實(shí)驗(yàn)方劑學(xué)雜志, 2016, 22(24): 89-94.
[92] Ma B, Qi H H, Li J,. Triptolide disrupts fatty acids and peroxisome proliferator-activated receptor (PPAR) levels in male mice testes followed by testicular injury: A GC-MS based metabolomics study [J]., 2015, 336: 84-95.
[93] Liu Z Z, Zeng Y, Hou P Y. Metabolomic evaluation ofinduced nephrotoxicity in rats [J]., 2018, 56(1): 145-153.
[94] Wang H F, Bai J, Chen G,. A metabolic profiling analysis of the acute hepatotoxicity and nephrotoxicity of Zhusha Anshen Wan compared with cinnabar in rats using1H-NMR spectroscopy [J]., 2013, 146(2): 572-580.
[95] Tang B W, Ding J J, Wu F H,.1H NMR-based metabonomics study of the urinary biochemical changes in Kansui treated rat [J]., 2012, 141(1): 134-142.
[96] Huo T G, Fang Y, Zhao L S,.1H-NMR-based metabonomic study of sub-chronic hepatotoxicity induced by realgar [J]., 2016, 192: 1-9.
[97] Luo Y S, Gao F Y, Chang R R,. Metabolomics based comprehensive investigation ofinduced hepatotoxicity [J]., 2021, 153: 112250.
[98] Duan J Y, Dong W Y, Xie L J,. Integrative proteomics-metabolomics strategy reveals the mechanism of hepatotoxicity induced by[J]., 2020, 221: 103767.
[99] 胡超, 湯響林, 李杰, 等. 基于UPLC/QTOF-MS技術(shù)的補(bǔ)骨脂水提物對(duì)大鼠血漿代謝組學(xué)研究 [J]. 中藥藥理與臨床, 2016, 32(1): 22-26.
[100] Lin Q H, Wang C G, Jia Z,. UPLC-HDMS-based on serum metabolomics reveals the toxicity of arecae semen [J]., 2020, 247: 112223.
[101] Yan Y, Zhang A H, Dong H,. Toxicity and detoxification effects of herbal Caowu via ultra performance liquid chromatography/mass spectrometry metabolomics analyzed using pattern recognition method [J]., 2017, 13(52): 683-692.
[102] Miao Y J, Shi Y Y, Li F Q,. Metabolomics study on the toxicity ofby ultraperformance liquid-chromatography high-definition mass spectrometry coupled with pattern recognition approach and metabolic pathways analysis [J]., 2016, 184: 187-195.
[103] Su T, Tan Y, Tsui M S,. Metabolomics reveals the mechanisms for the cardiotoxicity ofand the toxicity-reducing effect of processing [J]., 2016, 6: 34692.
[104] Xue L M, Zhang Q Y, Han P,. Hepatotoxic constituents and toxicological mechanism ofL. fruits [J]., 2014, 152(2): 272-282.
[105] Lu F, Cao M, Wu B,. Urinary metabonomics study on toxicity biomarker discovery in rats treated with[J]., 2013, 149(1): 311-320.
[106] Dong H, Yan G L, Han Y,. UPLC-Q-TOF/MS-based metabolomic studies on the toxicity mechanisms of traditional Chinese medicine Chuanwu and the detoxification mechanisms of Gancao, Baishao, and Ganjiang [J]., 2015, 13(9): 687-698.
[107] Guo P P, Wang J S, Dong G,. NMR-based metabolomics approach to study the chronic toxicity of crude ricin frombean kernels on rats [J]., 2014, 10(9): 2426-2440.
[108] Man S L, Qiu P Y, Li J,. Global metabolic profiling for the study ofsaponins-induced hepatotoxicity in rats [J]., 2017, 32(1): 99-108.
[109] Liu S, Liang Y Z, Liu H T. Chemometrics applied to quality control and metabolomics for traditional Chinese medicines [J]., 2016, 1015/1016: 82-91.
[110] Li J, Zuo T T, Zhang C X,. Simultaneous profiling and holistic comparison of the metabolomes among the flower buds of,, andby UHPLC/IM-QTOF-HDMS E-based metabolomics analysis [J]., 2019, 24(11): 2188.
[111] Duan L X, Chen T L, Li M,. Use of the metabolomics approach to characterize Chinese medicinal material Huangqi [J]., 2012, 5(2): 376-386.
[112] Fan G, Tao L H, Yue Q H,. Metabolic discrimination of rhizoma coptidis from different species using1H-NMR spectroscopy and principal component analysis [J]., 2012, 78(6): 641-648.
[113] 薛英, 李曉偉, 李震宇, 等. 采用UPLC/Q-TOF MS與NMR代謝組學(xué)技術(shù)研究生長(zhǎng)年限對(duì)遠(yuǎn)志藥材質(zhì)量的影響 [J]. 藥學(xué)學(xué)報(bào), 2015, 50(3): 340-347.
[114] Sun C L, Ma S S, Li L L,. Visualizing the distributions and spatiotemporal changes of metabolites inby MALDI mass spectrometry imaging [J]., 2021, 45(6): 726-733.
[115] 周?chē)?guó)洪, 趙珍東, 汪小根, 等. 基于超高效液相-軌道離子肼質(zhì)譜技術(shù)的王不留行炮制前后代謝組學(xué)研究 [J]. 海峽藥學(xué), 2019, 31(11): 44-48.
[116] 文旺, 李莉, 李德坤, 等. 基于液質(zhì)聯(lián)用技術(shù)和植物代謝組學(xué)的甘草炮制品化學(xué)成分差異性分析 [J]. 中國(guó)實(shí)驗(yàn)方劑學(xué)雜志, 2020, 26(17): 104-110.
[117] Li M R, Wang X Y, Han L F,. Integration of multicomponent characterization, untargeted metabolomics and mass spectrometry imaging to unveil the holistic chemical transformations and key markers associated with wine steaming of[J]., 2020, 1624: 461228.
[118] 王健, 孫瑜, 陳莉莉, 等. 基于1H-NMR代謝組學(xué)技術(shù)評(píng)價(jià)何首烏炮制品中差異代謝物的研究 [J]. 現(xiàn)代藥物與臨床, 2020, 35(8): 1537-1543.
[119] Ma C Y, Li Y, Wu H Q,. Metabolomics analysis of the potential anticancer mechanism of annonaceous acetogenins on a multidrug resistant mammary adenocarcinoma cell [J]., 2018, 553: 1-6.
[120] Li Z W, Hou J J, Deng Y P,. Exploring the protective effects of Danqi Tongmai Tablet on acute myocardial ischemia rats by comprehensive metabolomics profiling [J]., 2020, 74: 152918.
[121] Jin Y D, Xie Z R, Li S S,. Combined lipidomics and network pharmacology study of protective effects ofagainst blood stasis syndrome [J]., 2021, 2021: 5526778.
[122] Liu Y T, Li X Q, Li A P,. UHPLC Q-Exactive MS-based spleen metabolomics and lipidomics to explore the effect mechanisms of Danggui Buxue Decoction inmice [J]., 2020, 185: 113234.
[123] 李文杰, 胡澤平. 代謝流分析在腫瘤代謝研究中的應(yīng)用進(jìn)展 [J]. 中國(guó)醫(yī)學(xué)前沿雜志: 電子版, 2019, 11(2): 18-22, 6.
[124] Shimma S, Sagawa T. Microscopy and mass spectrometry imaging reveals the distributions of curcumin species in dried turmeric root [J]., 2019, 67(34): 9652-9657.
[125] Lee J W, Ji S H, Lee Y S,. Mass spectrometry based profiling and imaging of various ginsenosides fromroots at different ages [J]., 2017, 18(6): 1114.
[126] Li M R, Wang X Y, Han L F,. Integration of multicomponent characterization, untargeted metabolomics and mass spectrometry imaging to unveil the holistic chemical transformations and key markers associated with wine steaming of[J]., 2020, 1624: 461228.
[127] Wang T, Lee H K, Yue G G L,. A novel binary matrix consisting of graphene oxide and caffeic acid for the analysis of scutellarin and its metabolites in mouse kidney by MALDI imaging [J]., 2021, 146(1): 289-295.
[128] Zhu T, Wang L, Tian F,. Anti-ischemia/reperfusion injury effects of notoginsenoside R1on small molecule metabolism in rat brain after ischemic stroke as visualized by MALDI-MS imaging [J]., 2020, 129: 110470.
[129] Tian F, Liu R Z, Fan C X,. Effects of thymoquinone on small-molecule metabolites in a rat model of cerebral ischemia reperfusion injury assessed using MALDI-MSI [J]., 2020, 10(1): 27.
[130] Meng X Y, Fu W Q, Huo M L,.label-free visualization of tissue distributions of salidroside in multiple mouse organs by MALDI-MS imaging [J]., 2020, 453: 116347.
[131] Shi G Z, Song D, Li P Y,. Screening of hepatotoxic compounds inL., a traditional Chinese herbal and dietary supplement, using high-resolution mass spectrometry and high-content imaging [J]., 2021, 35(9): e5140.
[132] Wu G S, Zhao J, Zhao J,. Exploring biological basis of syndrome differentiation in coronary heart disease patients with two distinct Syndromes by integrated multi-omics and network pharmacology strategy [J]., 2021, 16(1): 109.
[133] Huang Y T, Zhang K, Jiang M M,. Regulation of energy metabolism by combination therapy attenuates cardiac metabolic remodeling in heart failure [J]., 2020, 16(16): 3133-3148.
[134] Kwan K K L, Wong T Y, Yu A X D,. Integrated omics reveals the orchestrating role of calycosin in Danggui Buxue Tang, a herbal formula containingand, in inducing osteoblastic differentiation and proliferation [J]., 2021, 12: 670947.
Application and prospect of metabolomics in traditional Chinese medicine research
CUI Fu-yan1, 2, YANG Jia-ying1, 2, WANG Zhi-gang1, LI Xian-yu2, CHEN Peng2, YANG Hong-jun2, 3, GUO Na2
1. College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150000, China 2. Medical Experimental Center, China Academy of Chinese Medical Sciences, Beijing 100700, China 3. Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
As an important part of systems biology, metabolomics is consistent with the “holistic view” of the basic theories of traditional Chinese medicine (TCM). Metabolomics detects changes in metabolites in biological systems through modern analytical techniques, more accurately and directly reflects the terminal and phenotypic information of biological systems, and reveals the mechanism of TCM in the treatment of the complex diseases. It is an important step in the modernization of TCM to combine TCM research with metabolomics, which lays an important foundation for exploring new ideas and methods in the research of TCM. This study aims to summarize the relevant research results in the past ten years, summarize the application and research progress of metabolomics in Chinese medicine syndromes, mechanism, safety evaluation and quality control of TCM, analyze and summarize research methods of metabolomics in the field of TCM, and put forward the thinking and prospect of metabolomics in TCM research.
metabolomics; traditional Chinese medicine; application; syndromes; mechanism; safety evaluation; quality control
R285
A
0253 - 2670(2022)14 - 4512 - 15
10.7501/j.issn.0253-2670.2022.14.030
2022-03-11
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFC1708900);中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金資助(JBGS2021002);中國(guó)中醫(yī)科學(xué)院科技創(chuàng)新工程項(xiàng)目資助(CI2021A05031)
崔芙巖,女,碩士研究生,研究方向?yàn)橹兴幏治?。E-mail: 1437015148@qq.com
楊洪軍,研究員,博士生導(dǎo)師,主要從事中藥新藥設(shè)計(jì)理論與應(yīng)用、中藥復(fù)雜作用機(jī)制解析新技術(shù)新方法及應(yīng)用。Tel: (010)64089839 E-mail: hongjun0420@vip.sina.com
郭 娜,研究員,博士生導(dǎo)師,主要從事基于質(zhì)譜技術(shù)的中醫(yī)藥代謝組學(xué)分析方法研究。Tel: (010)64089536 E-mail: guona5246@126.com
[責(zé)任編輯 潘明佳]